1
|
Baumann C, Hussain ST, Roblíčková M, Riede F, Mannino MA, Bocherens H. Evidence for hunter-gatherer impacts on raven diet and ecology in the Gravettian of Southern Moravia. Nat Ecol Evol 2023; 7:1302-1314. [PMID: 37349568 DOI: 10.1038/s41559-023-02107-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 05/25/2023] [Indexed: 06/24/2023]
Abstract
The earlier Gravettian of Southern Moravia-the Pavlovian-is notable for the many raven bones (Corvus corax) documented in its faunal assemblages. On the basis of the rich zooarchaeological and settlement data from the Pavlovian, previous work suggested that common ravens were attracted by human domestic activities and subsequently captured by Pavlovian people, presumably for feathers and perhaps food. Here, we report independent δ15N, δ13C and δ34S stable isotope data obtained from 12 adult ravens from the Pavlovian key sites of Předmostí I, Pavlov I and Dolní Věstonice I to test this idea. We show that Pavlovian ravens regularly fed on larger herbivores and especially mammoths, aligning in feeding preferences with contemporaneous Gravettian foragers. We argue that opportunistic-generalist ravens were encouraged by human settlement and carcass provisioning. Our data may thus provide surprisingly early evidence for incipient synanthropism among Palaeolithic ravens. We suggest that anthropogenic manipulation of carrion supply dynamics furnished unique contexts for the emergence of human-oriented animal behaviours, in turn promoting novel human foraging opportunities-dynamics which are therefore important for understanding early hunter-gatherer ecosystem impacts.
Collapse
Affiliation(s)
- Chris Baumann
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
- Biogeology Research Group, Department of Geosciences, University of Tübingen, Tübingen, Germany
| | - Shumon T Hussain
- Department of Archaeology and Heritage Studies, Aarhus University, Aarhus, Denmark.
- BIOCHANGE - Center for Biodiversity Dynamics in a Changing World, Department of Biology, Aarhus University, Aarhus, Denmark.
- Center for Environmental Humanities (CEH), School of Culture and Society, Aarhus University, Aarhus, Denmark.
| | | | - Felix Riede
- Department of Archaeology and Heritage Studies, Aarhus University, Aarhus, Denmark
- BIOCHANGE - Center for Biodiversity Dynamics in a Changing World, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Marcello A Mannino
- Department of Archaeology and Heritage Studies, Aarhus University, Aarhus, Denmark
| | - Hervé Bocherens
- Biogeology Research Group, Department of Geosciences, University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Young AC, Katzner TE, Shinneman DJ, Johnson TN. Implications of tree expansion in shrubland ecosystems for two generalist avian predators. PLoS One 2023; 18:e0286478. [PMID: 37267264 DOI: 10.1371/journal.pone.0286478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
Shrublands globally have undergone structural changes due to plant invasions, including the expansion of native trees. Removal of native conifer trees, especially juniper (Juniperus spp.), is occurring across the Great Basin of the western U.S. to support declining sagebrush (Artemisia spp.) habitats and associated wildlife species, such as greater sage-grouse (Centrocercus urophasianus). One justification for conifer removal is that it may improve survival of sagebrush-associated wildlife by reducing the abundance of avian predators. However, the relationship between conifer expansion and predator distributions has not been explicitly evaluated. Further, although structural characteristics of habitat are important for generalist predators, overall prey abundance may also affect habitat use by predators. We examined habitat use of common ravens (Corvus corax) and red-tailed hawks (Buteo jamaicensis), two generalist predators whose populations are increasing in western North America, to variation in structural characteristics and prey distributions in sagebrush habitat that has experienced conifer expansion. Structural characteristics of habitat were important predictors of habitat use for both ravens and red-tailed hawks, whereas measures of prey abundance were unimportant for both species likely because generalist predators can use a wide variety of food resources. Ravens, but not red-tailed hawks, responded positively to increasing cover of juniper and the probability of habitat use was highest (> 0.95) where juniper cover within 100 m was > 20%. Habitat use by red-tailed hawks, but not ravens, was greater near cliffs but was not associated with juniper cover. Our study suggests that the removal of conifer in similar environments may lower the probability of habitat use for ravens, a common predator with significant impacts on many prey species. Therefore, we suggest conifer removal may improve sage-grouse reproductive success and survival depending on responses to conifer removal from other predators. Our results may be reflective of similar changes in rangeland ecosystems around the world undergoing expansion of conifer and other woody vegetation. Though species identities differ from sagebrush habitats, generalist avian predators in other habitats may have similar relationships with structural resources.
Collapse
Affiliation(s)
- A C Young
- Department of Fish & Wildlife Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - T E Katzner
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID, United States of America
| | - D J Shinneman
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID, United States of America
| | - T N Johnson
- Department of Fish & Wildlife Sciences, University of Idaho, Boise, Idaho, United States of America
| |
Collapse
|
3
|
Prochazka BG, O'Neil ST, Coates PS. A Bayesian multi-stage modelling framework to evaluate impacts of energy development on wildlife populations: an application to greater sage-grouse ( Centrocercus urophasianus). MethodsX 2023; 10:102023. [PMID: 36817696 PMCID: PMC9931900 DOI: 10.1016/j.mex.2023.102023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Increased demand for domestic production of renewable energy has led to expansion of energy infrastructure across western North America. Much of the western U.S. comprises remote landscapes that are home to a variety of vegetation communities and wildlife species, including the imperiled sagebrush ecosystem and indicator species such as greater sage-grouse (Centrocercus urophasianus). Geothermal sources in particular have potential for continued development across the western U.S. but impacts to greater sage-grouse and other species are unknown. To address this information gap, we describe a novel two-pronged methodology that analyzes impacts of geothermal energy production on pattern and process of greater sage-grouse populations using (a) before-after control-impact (BACI) measures of population growth and lek absence rates and (b) concurrent-to-operation evaluations of demographic rates. Growth and absence rate analyses utilized 14 years of lek survey data collected prior (2005-2011) and concurrent (2012-2018) to geothermal operations at two sites in Nevada, USA. Demographic analyses utilized relocation data, restricted inference to concurrent years, and incorporated 17 additional control sites. Demographic results were applied to >100 potential geothermal sites distributed across the study region to generate spatially explicit predictions of unrealized population-level impacts.•State-space and generalized linear models yield estimates of population growth and lek absence rates, respectively, before and after the onset of geothermal energy production; distances ranging from 2-30 km are evaluated as alternative control-impact footprint hypotheses; this provides inference about the spatial extent as well as the magnitude of impacts associated with geothermal development.•Estimation of important population demographic rates are implemented to investigate the processes by which geothermal energy development might reduce population growth; independent estimates of confounding, environmental effects from 17 control sites are made spatially explicit within 'impact' models to establish baseline conditions otherwise masked by collinearity.•Population matrix models are built using estimates from demographic analyses to provide landscape mapping of impacts associated with potential geothermal sites.
Collapse
|
4
|
Hackworth ZJ, Felch JM, Murphy SM, Cox JJ. Detectability of common ravens (
Corvus corax
) in the eastern
USA
: Rapid assessment of a recolonizing species. Ecosphere 2022. [DOI: 10.1002/ecs2.4148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Zachary J. Hackworth
- Department of Forestry and Natural Resources University of Kentucky Lexington Kentucky USA
| | - Joshua M. Felch
- Department of Forestry and Natural Resources University of Kentucky Lexington Kentucky USA
| | - Sean M. Murphy
- Department of Forestry and Natural Resources University of Kentucky Lexington Kentucky USA
| | - John J. Cox
- Department of Forestry and Natural Resources University of Kentucky Lexington Kentucky USA
| |
Collapse
|
5
|
Invasion of annual grasses following wildfire corresponds to maladaptive habitat selection by a sagebrush ecosystem indicator species. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
6
|
LAWRENCE AJ, Carleton SA, Gould WR, Nichols CT. Lesser Prairie‐Chicken Survival in Varying Densities of Energy Development. J Wildl Manage 2021. [DOI: 10.1002/jwmg.22084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrew J. LAWRENCE
- Department of Biology New Mexico State University Las Cruces NM 88003 USA
| | - Scott A. Carleton
- Division of Migratory Birds United States Fish and Wildlife Service Albuquerque NM 87102 USA
| | - William R. Gould
- Applied Statistics Program, College of Business New Mexico State University Las Cruces NM 88003 USA
| | - Clay T. Nichols
- Ecological Services Division United States Fish and Wildlife Service Arlington TX 76006 USA
| |
Collapse
|
7
|
Coates PS, O'neil ST, MuÑoz DA, Dwight IA, Tull JC. Sage‐Grouse Population Dynamics are Adversely Affected by Overabundant Feral Horses. J Wildl Manage 2021. [DOI: 10.1002/jwmg.22089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Peter S. Coates
- U.S. Geological Survey Western Ecological Research Center Dixon Field Station, 800 Business Park Road Dixon CA 95620 USA
| | - Shawn T. O'neil
- U.S. Geological Survey Western Ecological Research Center Dixon Field Station, 800 Business Park Road Dixon CA 95620 USA
| | - Diana A. MuÑoz
- U.S. Geological Survey Western Ecological Research Center Dixon Field Station, 800 Business Park Road Dixon CA 95620 USA
| | - Ian A. Dwight
- U.S. Geological Survey Western Ecological Research Center Dixon Field Station, 800 Business Park Road Dixon CA 95620 USA
| | - John C. Tull
- U.S. Fish and Wildlife Service Science Applications, Pacific Southwest Region 1340 Financial Boulevard Reno NV 89502 USA
| |
Collapse
|
8
|
O’Neil ST, Coates PS, Brussee BE, Ricca MA, Espinosa SP, Gardner SC, Delehanty DJ. Wildfire and the ecological niche: Diminishing habitat suitability for an indicator species within semi-arid ecosystems. GLOBAL CHANGE BIOLOGY 2020; 26:6296-6312. [PMID: 32741106 PMCID: PMC7693117 DOI: 10.1111/gcb.15300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/05/2020] [Indexed: 05/23/2023]
Abstract
Globally accelerating frequency and extent of wildfire threatens the persistence of specialist wildlife species through direct loss of habitat and indirect facilitation of exotic invasive species. Habitat specialists may be especially prone to rapidly changing environmental conditions because their ability to adapt lags behind the rate of habitat alteration. As a result, these populations may become increasingly susceptible to ecological traps by returning to suboptimal breeding habitats that were dramatically altered by disturbance. We demonstrate a multistage modeling approach that integrates habitat selection and survival during the key nesting life-stage of a bird species of high conservation concern, the greater sage-grouse (Centrocercus urophasianus; hereafter, sage-grouse). We applied these spatially explicit models to a spatiotemporally robust dataset of sage-grouse nest locations and fates across wildfire-altered sagebrush ecosystems of the Great Basin ecoregion, western United States. Female sage-grouse exhibited intricate habitat selection patterns that varied across regional gradients of ecological productivity among sagebrush communities, but often selected nest sites that disproportionately resulted in nest failure. For example, 23% of nests occurred in wildfire-affected habitats characterized by reduced sagebrush cover and greater composition of invasive annual grasses. We found survival of nests was negatively associated with wildfire-affected areas, but positively associated with higher elevations with increased ruggedness and overall shrub cover. Strong site fidelity likely drove sage-grouse to continue nesting in habitats degraded by wildfire. Hence, increasing frequency and extent of wildfire may contribute disproportionately to reduced reproductive success by creating ecological traps that act as population sinks. Identifying such habitat mismatches between selection and survival facilitates deeper understanding of the mechanisms driving reduced geographic niche space and population decline at broad spatiotemporal scales, while guiding management actions to areas that would be most beneficial to the species.
Collapse
Affiliation(s)
- Shawn T. O’Neil
- Western Ecological Research CenterU.S. Geological SurveyDixonCAUSA
| | - Peter S. Coates
- Western Ecological Research CenterU.S. Geological SurveyDixonCAUSA
| | | | - Mark A. Ricca
- Western Ecological Research CenterU.S. Geological SurveyDixonCAUSA
| | | | | | | |
Collapse
|
9
|
Ellis KS, Larsen RT, Koons DN. Dependence of spatial scale in landscape associations with cause‐specific predation of snowy plover nests. Ecosphere 2020. [DOI: 10.1002/ecs2.3257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Kristen S. Ellis
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins Colorado80523USA
| | - Randy T. Larsen
- Department of Plant and Wildlife Sciences Brigham Young University Provo Utah84602USA
| | - David N. Koons
- Department of Fish, Wildlife, and Conservation Biology, and Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado80523USA
| |
Collapse
|
10
|
Ellis KS, Larsen RT, Koons DN. The importance of functional responses among competing predators for avian nesting success. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kristen S. Ellis
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins CO USA
| | - Randy T. Larsen
- Department of Plant and Wildlife Sciences Brigham Young University Provo UT USA
| | - David N. Koons
- Department of Fish, Wildlife, and Conservation Biology Graduate Degree Program in Ecology Colorado State University Fort Collins CO USA
| |
Collapse
|
11
|
Cunningham CX, Johnson CN, Barmuta LA, Hollings T, Woehler EJ, Jones ME. Top carnivore decline has cascading effects on scavengers and carrion persistence. Proc Biol Sci 2018; 285:rspb.2018.1582. [PMID: 30487308 DOI: 10.1098/rspb.2018.1582] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023] Open
Abstract
Top carnivores have suffered widespread global declines, with well-documented effects on mesopredators and herbivores. We know less about how carnivores affect ecosystems through scavenging. Tasmania's top carnivore, the Tasmanian devil (Sarcophilus harrisii), has suffered severe disease-induced population declines, providing a natural experiment on the role of scavenging in structuring communities. Using remote cameras and experimentally placed carcasses, we show that mesopredators consume more carrion in areas where devils have declined. Carcass consumption by the two native mesopredators was best predicted by competition for carrion, whereas consumption by the invasive mesopredator, the feral cat (Felis catus), was better predicted by the landscape-level abundance of devils, suggesting a relaxed landscape of fear where devils are suppressed. Reduced discovery of carcasses by devils was balanced by the increased discovery by mesopredators. Nonetheless, carcasses persisted approximately 2.6-fold longer where devils have declined, highlighting their importance for rapid carrion removal. The major beneficiary of increased carrion availability was the forest raven (Corvus tasmanicus). Population trends of ravens increased 2.2-fold from 1998 to 2017, the period of devil decline, but this increase occurred Tasmania-wide, making the cause unclear. This case study provides a little-studied potential mechanism for mesopredator release, with broad relevance to the vast areas of the world that have suffered carnivore declines.
Collapse
Affiliation(s)
- Calum X Cunningham
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Christopher N Johnson
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.,Australian Research Council Centre for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Leon A Barmuta
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Tracey Hollings
- Department of Environment, Land, Water and Planning, Arthur Rylah Institute for Environmental Research, Heidelberg, Victoria 3084, Australia.,Centre of Excellence for Biosecurity Risk Analysis, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Eric J Woehler
- Birdlife Tasmania, GPO Box 68, Hobart, Tasmania, Australia
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
12
|
O'Neil ST, Coates PS, Brussee BE, Jackson PJ, Howe KB, Moser AM, Foster LJ, Delehanty DJ. Broad‐scale occurrence of a subsidized avian predator: Reducing impacts of ravens on sage‐grouse and other sensitive prey. J Appl Ecol 2018. [DOI: 10.1111/1365-2664.13249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Shawn T. O'Neil
- U.S. Geological Survey Western Ecological Research Center Dixon California
| | - Peter S. Coates
- U.S. Geological Survey Western Ecological Research Center Dixon California
| | - Brianne E. Brussee
- U.S. Geological Survey Western Ecological Research Center Dixon California
| | | | | | | | | | - David J. Delehanty
- Department of Biological Sciences Idaho State University Pocatello Idaho
| |
Collapse
|