1
|
Panigada V, Bodey TW, Friedlaender A, Druon JN, Huckstädt LA, Pierantonio N, Degollada E, Tort B, Panigada S. Targeting fin whale conservation in the North-Western Mediterranean Sea: insights on movements and behaviour from biologging and habitat modelling. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231783. [PMID: 38455994 PMCID: PMC10915541 DOI: 10.1098/rsos.231783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024]
Abstract
Biologging and habitat modelling are key tools supporting the development of conservation measures and mitigating the effects of anthropogenic pressures on marine species. Here, we analysed satellite telemetry data and foraging habitat preferences in relation to chlorophyll-a productivity fronts to understand the movements and behaviour of endangered Mediterranean fin whales (Balaenoptera physalus) during their spring-summer feeding aggregation in the North-Western Mediterranean Sea. Eleven individuals were equipped with Argos satellite transmitters across 3 years, with transmissions averaging 23.5 ± 11.3 days. Hidden Markov Models were used to identify foraging behaviour, revealing how individuals showed consistency in their use of seasonal core feeding grounds; this was supported by the distribution of potential foraging habitat. Importantly, tracked whales spent most of their time in areas with no explicit protected status within the study region. This highlights the need for enhanced time- and place-based conservation actions to mitigate the effects of anthropogenic impacts for this species, notably ship strike risk and noise disturbance in an area of exceptionally high maritime traffic levels. These findings strengthen the need to further assess critical habitats and Important Marine Mammal Areas that are crucial for focused conservation, management and mitigation efforts.
Collapse
Affiliation(s)
- Viola Panigada
- Tethys Research Institute, c/o Acquario Civico, Viale G.B. Gadio 2, 20121 Milano, Italy
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Thomas W. Bodey
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Ari Friedlaender
- Institute of Marine Sciences, Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Jean-Noël Druon
- Joint Research Centre, (JRC), European Commission, Ispra, Italy
| | - Luis A. Huckstädt
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, UK
| | - Nino Pierantonio
- Tethys Research Institute, c/o Acquario Civico, Viale G.B. Gadio 2, 20121 Milano, Italy
| | | | - Beatriu Tort
- Associació EDMAKTUB, 08393 Barcelona, Catalonia, Spain
| | - Simone Panigada
- Tethys Research Institute, c/o Acquario Civico, Viale G.B. Gadio 2, 20121 Milano, Italy
| |
Collapse
|
2
|
Hering R, Hauptfleisch M, Kramer-Schadt S, Stiegler J, Blaum N. Effects of fences and fence gaps on the movement behavior of three southern African antelope species. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.959423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Globally, migratory ungulates are affected by fences. While field observational studies reveal the amount of animal–fence interactions across taxa, GPS tracking-based studies uncover fence effects on movement patterns and habitat selection. However, studies on the direct effects of fences and fence gaps on movement behavior, especially based on high-frequency tracking data, are scarce. We used GPS tracking on three common African antelopes (Tragelaphus strepsiceros, Antidorcas marsupialis, and T. oryx) with movement strategies ranging from range residency to nomadism in a semi-arid, Namibian savanna traversed by wildlife-proof fences that elephants have regularly breached. We classified major forms of ungulate–fence interaction types on a seasonal and a daily scale. Furthermore, we recorded the distances and times spent at fences regarding the total individual space use. Based on this, we analyzed the direct effects of fences and fence gaps on the animals’ movement behavior for the previously defined types of animal–fence interactions. Antelope-fence interactions peaked during the early hours of the day and during seasonal transitions when the limiting resource changed between water and forage. Major types of ungulate–fence interactions were quick, trace-like, or marked by halts. We found that the amount of time spent at fences was highest for nomadic eland. Migratory springbok adjusted their space use concerning fence gap positions. If the small home ranges of sedentary kudu included a fence, they frequently interacted with this fence. For springbok and eland, distance traveled along a fence declined with increasing utilization of a fence gap. All species reduced their speed in the proximity of a fence but often increased their speed when encountering the fence. Crossing a fence led to increased speeds for all species. We demonstrate that fence effects mainly occur during crucial foraging times (seasonal scale) and during times of directed movements (daily scale). Importantly, we provide evidence that fences directly alter antelope movement behaviors with negative implications for energy budgets and that persistent fence gaps can reduce the intensity of such alterations. Our findings help to guide future animal–fence studies and provide insights for wildlife fencing and fence gap planning.
Collapse
|
3
|
Meehan TD, Saunders SP, DeLuca WV, Michel NL, Grand J, Deppe JL, Jimenez MF, Knight EJ, Seavy NE, Smith MA, Taylor L, Witko C, Akresh ME, Barber DR, Bayne EM, Beasley JC, Belant JL, Bierregaard RO, Bildstein KL, Boves TJ, Brzorad JN, Campbell SP, Celis‐Murillo A, Cooke HA, Domenech R, Goodrich L, Gow EA, Haines A, Hallworth MT, Hill JM, Holland AE, Jennings S, Kays R, King DT, Mackenzie SA, Marra PP, McCabe RA, McFarland KP, McGrady MJ, Melcer R, Norris DR, Norvell RE, Rhodes OE, Rimmer CC, Scarpignato AL, Shreading A, Watson JL, Wilsey CB. Integrating data types to estimate spatial patterns of avian migration across the Western Hemisphere. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2679. [PMID: 35588285 PMCID: PMC9787853 DOI: 10.1002/eap.2679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 06/15/2023]
Abstract
For many avian species, spatial migration patterns remain largely undescribed, especially across hemispheric extents. Recent advancements in tracking technologies and high-resolution species distribution models (i.e., eBird Status and Trends products) provide new insights into migratory bird movements and offer a promising opportunity for integrating independent data sources to describe avian migration. Here, we present a three-stage modeling framework for estimating spatial patterns of avian migration. First, we integrate tracking and band re-encounter data to quantify migratory connectivity, defined as the relative proportions of individuals migrating between breeding and nonbreeding regions. Next, we use estimated connectivity proportions along with eBird occurrence probabilities to produce probabilistic least-cost path (LCP) indices. In a final step, we use generalized additive mixed models (GAMMs) both to evaluate the ability of LCP indices to accurately predict (i.e., as a covariate) observed locations derived from tracking and band re-encounter data sets versus pseudo-absence locations during migratory periods and to create a fully integrated (i.e., eBird occurrence, LCP, and tracking/band re-encounter data) spatial prediction index for mapping species-specific seasonal migrations. To illustrate this approach, we apply this framework to describe seasonal migrations of 12 bird species across the Western Hemisphere during pre- and postbreeding migratory periods (i.e., spring and fall, respectively). We found that including LCP indices with eBird occurrence in GAMMs generally improved the ability to accurately predict observed migratory locations compared to models with eBird occurrence alone. Using three performance metrics, the eBird + LCP model demonstrated equivalent or superior fit relative to the eBird-only model for 22 of 24 species-season GAMMs. In particular, the integrated index filled in spatial gaps for species with over-water movements and those that migrated over land where there were few eBird sightings and, thus, low predictive ability of eBird occurrence probabilities (e.g., Amazonian rainforest in South America). This methodology of combining individual-based seasonal movement data with temporally dynamic species distribution models provides a comprehensive approach to integrating multiple data types to describe broad-scale spatial patterns of animal movement. Further development and customization of this approach will continue to advance knowledge about the full annual cycle and conservation of migratory birds.
Collapse
|
4
|
Merkle JA, Gage J, Sawyer H, Lowrey B, Kauffman MJ. Migration Mapper: Identifying movement corridors and seasonal ranges for large mammal conservation. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Jerod A. Merkle
- Department of Zoology and Physiology University of Wyoming Laramie WY USA
| | | | - Hall Sawyer
- Western Ecosystems Technology, Inc. Laramie WY USA
| | - Blake Lowrey
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology University of Wyoming Laramie WY USA
| | - Matthew J. Kauffman
- U.S. Geological Survey, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology University of Wyoming Laramie WY USA
| |
Collapse
|
5
|
Hering R, Hauptfleisch M, Jago M, Smith T, Kramer-Schadt S, Stiegler J, Blaum N. Don't stop me now: Managed fence gaps could allow migratory ungulates to track dynamic resources and reduce fence related energy loss. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.907079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In semi-arid environments characterized by erratic rainfall and scattered primary production, migratory movements are a key survival strategy of large herbivores to track resources over vast areas. Veterinary Cordon Fences (VCFs), intended to reduce wildlife-livestock disease transmission, fragment large parts of southern Africa and have limited the movements of large wild mammals for over 60 years. Consequently, wildlife-fence interactions are frequent and often result in perforations of the fence, mainly caused by elephants. Yet, we lack knowledge about at which times fences act as barriers, how fences directly alter the energy expenditure of native herbivores, and what the consequences of impermeability are. We studied 2-year ungulate movements in three common antelopes (springbok, kudu, eland) across a perforated part of Namibia's VCF separating a wildlife reserve and Etosha National Park using GPS telemetry, accelerometer measurements, and satellite imagery. We identified 2905 fence interaction events which we used to evaluate critical times of encounters and direct fence effects on energy expenditure. Using vegetation type-specific greenness dynamics, we quantified what animals gained in terms of high quality food resources from crossing the VCF. Our results show that the perforation of the VCF sustains herbivore-vegetation interactions in the savanna with its scattered resources. Fence permeability led to peaks in crossing numbers during the first flush of woody plants before the rain started. Kudu and eland often showed increased energy expenditure when crossing the fence. Energy expenditure was lowered during the frequent interactions of ungulates standing at the fence. We found no alteration of energy expenditure when springbok immediately found and crossed fence breaches. Our results indicate that constantly open gaps did not affect energy expenditure, while gaps with obstacles increased motion. Closing gaps may have confused ungulates and modified their intended movements. While browsing, sedentary kudu's use of space was less affected by the VCF; migratory, mixed-feeding springbok, and eland benefited from gaps by gaining forage quality and quantity after crossing. This highlights the importance of access to vast areas to allow ungulates to track vital vegetation patches.
Collapse
|
6
|
Laguna E, Barasona JA, Carpio AJ, Vicente J, Acevedo P. Permeability of artificial barriers (fences) for wild boar (Sus scrofa) in Mediterranean mixed landscapes. PEST MANAGEMENT SCIENCE 2022; 78:2277-2286. [PMID: 35229454 PMCID: PMC9313896 DOI: 10.1002/ps.6853] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fences are one of the most widespread manmade features in nature, constituting an artificial limitation to the movement of wildlife. To date, their effects on wildlife behavior have been understudied but this knowledge is required to design effective management procedures. Using 21 GPS-monitored wild boar, we evaluated the permeability of different types of fences and described temporal patterns and spatial hotspots for crossing events. A fence's permeability was inferred by the crossing success, i.e., the number of times that animals crossed a barrier vs the number of times they did not cross. The vulnerability of fences at watercourses was explored by assessing whether the frequency of crossings was higher around watercourse intersections than expected by chance. RESULTS Well-maintained big game proof fences were the most effective in reducing successful wild boar crossings; they were, on average, 30% more efficient than livestock type fences. Crossing success was higher for males than females and during the food shortage period than in the food abundance period. The frequency of crossings around watercourses was higher than expected by chance, especially in moderately and well-maintained big game proof type fences. CONCLUSION While no fence type was 100% wild boar proof, well-maintained big game proof fences substantially constrained the movement of boar. However, they are vulnerable around watercourses. Managing the conflicts in which this species is involved, such as shared infections and agricultural damage, would require fences that are even more effective than the ones analyzed here, ideally in conjunction with other preventive actions. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Eduardo Laguna
- Grupo de Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos (IREC)UCLM‐CSIC‐JCCMCiudad RealSpain
| | - José A Barasona
- VISAVET, Health Surveillance Centre, Department of Animal HealthComplutense University of MadridMadridSpain
| | - Antonio J. Carpio
- Grupo de Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos (IREC)UCLM‐CSIC‐JCCMCiudad RealSpain
- Department of ZoologyUniversity of CórdobaCórdobaSpain
| | - Joaquín Vicente
- Grupo de Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos (IREC)UCLM‐CSIC‐JCCMCiudad RealSpain
| | - Pelayo Acevedo
- Grupo de Sanidad y Biotecnología (SaBio), Instituto de Investigación en Recursos Cinegéticos (IREC)UCLM‐CSIC‐JCCMCiudad RealSpain
| |
Collapse
|
7
|
Stabach JA, Hughey LF, Crego RD, Fleming CH, Hopcraft JGC, Leimgruber P, Morrison TA, Ogutu JO, Reid RS, Worden JS, Boone RB. Increasing Anthropogenic Disturbance Restricts Wildebeest Movement Across East African Grazing Systems. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.846171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ability to move is essential for animals to find mates, escape predation, and meet energy and water demands. This is especially important across grazing systems where vegetation productivity can vary drastically between seasons or years. With grasslands undergoing significant changes due to climate change and anthropogenic development, there is an urgent need to determine the relative impacts of these pressures on the movement capacity of native herbivores. To measure these impacts, we fitted 36 white-bearded wildebeest (Connochaetes taurinus) with GPS collars across three study areas in southern Kenya (Amboseli Basin, Athi-Kaputiei Plains, and Mara) to test the relationship between movement (e.g., directional persistence, speed, home range crossing time) and gradients of vegetation productivity (i.e., NDVI) and anthropogenic disturbance. As expected, wildebeest moved the most (21.0 km day–1; CI: 18.7–23.3) across areas where movement was facilitated by low human footprint and necessitated by low vegetation productivity (Amboseli Basin). However, in areas with moderate vegetation productivity (Athi-Kaputiei Plains), wildebeest moved the least (13.3 km day–1; CI: 11.0–15.5). This deviation from expectations was largely explained by impediments to movement associated with a large human footprint. Notably, the movements of wildebeest in this area were also less directed than the other study populations, suggesting that anthropogenic disturbance (i.e., roads, fences, and the expansion of settlements) impacts the ability of wildebeest to move and access available resources. In areas with high vegetation productivity and moderate human footprint (Mara), we observed intermediate levels of daily movement (14.2 km day–1; CI: 12.3–16.1). Wildebeest across each of the study systems used grassland habitats outside of protected areas extensively, highlighting the importance of unprotected landscapes for conserving mobile species. These results provide unique insights into the interactive effects of climate and anthropogenic development on the movements of a dominant herbivore in East Africa and present a cautionary tale for the development of grazing ecosystems elsewhere.
Collapse
|
8
|
Dejid N, Olson K, Stratmann TSM, Mueller T. A gazelle's extraordinary, 18,000-km-long journey through the steppes of Mongolia. Ecology 2022; 103:e3660. [PMID: 35138644 DOI: 10.1002/ecy.3660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Nandintsetseg Dejid
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Kirk Olson
- Wildlife Conservation Society, Ulaanbaatar, Mongolia
| | - Theresa S M Stratmann
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany.,Department of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Thomas Mueller
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany.,Department of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
9
|
Silva I, Fleming CH, Noonan MJ, Alston J, Folta C, Fagan WF, Calabrese JM. Autocorrelation‐informed home range estimation: A review and practical guide. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13786] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Inês Silva
- Center for Advanced Systems Understanding (CASUS) Görlitz Germany
- Helmholtz‐Zentrum Dresden‐Rossendorf (HZDR) Dresden Germany
| | - Christen H. Fleming
- Department of Biology University of Maryland College Park MD USA
- Smithsonian's National Zoo and Conservation Biology Institute Front Royal VA USA
| | - Michael J. Noonan
- Department of Biology University of British Columbia Okanagan Kelowna BC Canada
| | - Jesse Alston
- Center for Advanced Systems Understanding (CASUS) Görlitz Germany
- Helmholtz‐Zentrum Dresden‐Rossendorf (HZDR) Dresden Germany
| | - Cody Folta
- Department of Biology University of Maryland College Park MD USA
| | - William F. Fagan
- Department of Biology University of Maryland College Park MD USA
| | - Justin M. Calabrese
- Center for Advanced Systems Understanding (CASUS) Görlitz Germany
- Helmholtz‐Zentrum Dresden‐Rossendorf (HZDR) Dresden Germany
- Department of Biology University of Maryland College Park MD USA
- Helmholtz Centre for Environmental Research—UFZ Leipzig Germany
| |
Collapse
|
10
|
Morrison TA, Merkle JA, Hopcraft JGC, Aikens EO, Beck JL, Boone RB, Courtemanch AB, Dwinnell SP, Fairbanks WS, Griffith B, Middleton AD, Monteith KL, Oates B, Riotte-Lambert L, Sawyer H, Smith KT, Stabach JA, Taylor KL, Kauffman MJ. Drivers of site fidelity in ungulates. J Anim Ecol 2021; 90:955-966. [PMID: 33481254 DOI: 10.1111/1365-2656.13425] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/28/2020] [Indexed: 01/26/2023]
Abstract
While the tendency to return to previously visited locations-termed 'site fidelity'-is common in animals, the cause of this behaviour is not well understood. One hypothesis is that site fidelity is shaped by an animal's environment, such that animals living in landscapes with predictable resources have stronger site fidelity. Site fidelity may also be conditional on the success of animals' recent visits to that location, and it may become stronger with age as the animal accumulates experience in their landscape. Finally, differences between species, such as the way memory shapes site attractiveness, may interact with environmental drivers to modulate the strength of site fidelity. We compared inter-year site fidelity in 669 individuals across eight ungulate species fitted with GPS collars and occupying a range of environmental conditions in North America and Africa. We used a distance-based index of site fidelity and tested hypothesized drivers of site fidelity using linear mixed effects models, while accounting for variation in annual range size. Mule deer Odocoileus hemionus and moose Alces alces exhibited relatively strong site fidelity, while wildebeest Connochaetes taurinus and barren-ground caribou Rangifer tarandus granti had relatively weak fidelity. Site fidelity was strongest in predictable landscapes where vegetative greening occurred at regular intervals over time (i.e. high temporal contingency). Species differed in their response to spatial heterogeneity in greenness (i.e. spatial constancy). Site fidelity varied seasonally in some species, but remained constant over time in others. Elk employed a 'win-stay, lose-switch' strategy, in which successful resource tracking in the springtime resulted in strong site fidelity the following spring. Site fidelity did not vary with age in any species tested. Our results provide support for the environmental hypothesis, particularly that regularity in vegetative phenology shapes the strength of site fidelity at the inter-annual scale. Large unexplained differences in site fidelity suggest that other factors, possibly species-specific differences in attraction to known sites, contribute to variation in the expression of this behaviour. Understanding drivers of variation in site fidelity across groups of organisms living in different environments provides important behavioural context for predicting how animals will respond to environmental change.
Collapse
Affiliation(s)
- Thomas A Morrison
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Jerod A Merkle
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - J Grant C Hopcraft
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Ellen O Aikens
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Jeffrey L Beck
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY, USA
| | - Randall B Boone
- Department of Ecosystem Science and Sustainability and the Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, USA
| | | | - Samantha P Dwinnell
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - W Sue Fairbanks
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, USA
| | - Brad Griffith
- U.S. Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Arthur D Middleton
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Kevin L Monteith
- Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie, WY, USA.,Department of Zoology and Physiology & Haub School of Environment and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - Brendan Oates
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Louise Riotte-Lambert
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Hall Sawyer
- Western Ecosystems Technology, Inc, Laramie, WY, USA
| | - Kurt T Smith
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY, USA
| | - Jared A Stabach
- Smithsonian Conservation Biology Institute, Conservation Ecology Center, National Zoological Park, Front Royal, VA, USA
| | | | - Matthew J Kauffman
- U.S. Geological Survey, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
11
|
Xu W, Dejid N, Herrmann V, Sawyer H, Middleton AD. Barrier Behaviour Analysis (BaBA) reveals extensive effects of fencing on wide‐ranging ungulates. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13806] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenjing Xu
- Department of Environmental Science, Policy, and Management University of California Berkeley CA USA
| | - Nandintsetseg Dejid
- Senckenberg Biodiversity and Climate Research Centre (SBiK‐F) Frankfurt Germany
| | - Valentine Herrmann
- Smithsonian Conservation Biology InstituteSmithsonian Institution Front Royal VA USA
| | - Hall Sawyer
- Western Ecosystems Technology, Inc. Laramie WY USA
| | - Arthur D. Middleton
- Department of Environmental Science, Policy, and Management University of California Berkeley CA USA
| |
Collapse
|
12
|
Fisher KE, Dixon PM, Han G, Adelman JS, Bradbury SP. Locating large insects using automated VHF radio telemetry with a multi‐antennae array. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Phil M. Dixon
- Department of Statistics Iowa State University Ames IA USA
| | - Gang Han
- Department of Statistics Iowa State University Ames IA USA
| | - James Stephen Adelman
- Department of Natural Resources, Ecology and Management Iowa State University Ames IA USA
- Department of Biological Sciences University of Memphis Memphis TN USA
| | - Steven P. Bradbury
- Department of Entomology Iowa State University Ames IA USA
- Department of Natural Resources, Ecology and Management Iowa State University Ames IA USA
| |
Collapse
|