1
|
Duran-Ahumada S, Karrer L, Cheng C, Roeske I, Pilchik J, Jimenez-Vallejo D, Smith E, Roy K, Kirstein OD, Martin-Park A, Contreras-Perera Y, Che-Mendoza A, Gonzalez-Olvera G, Puerta-Guardo HN, Uribe-Soto SI, Manrique-Saide P, Vazquez-Prokopec G. Wolbachia pipientis (Rickettsiales: Rickettsiaceae) mediated effects on the fitness and performance of Aedes aegypti (Diptera: Culicidae) under variable temperatures and initial larval densities. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1155-1167. [PMID: 39077840 DOI: 10.1093/jme/tjae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/19/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
Wolbachia pipientis (Hertig, 1936), also referred as Wolbachia, is a bacterium present across insect taxa, certain strains of which have been demonstrated to impact the fitness and capacity to transmit viruses in mosquitoes, particularly Aedes aegypti (Linnaeus, 1762). Most studies examine these impacts in limited sets of environmental regimes. Here we seek to understand the impacts of environmentally relevant conditions such as larval density, temperature, and their interaction on wAlbB-infected A. aegypti. Using a factorial design, we measured wAlbB stability (relative density, post-emergence in females, and in progeny), the ability for wAlbB to induce cytoplasmic incompatibility, and bacterial effects on mosquito fitness (fecundity, fertility, and body mass) and performance (adult survival and time to pupation) across 2 temperature regimes (fluctuating and constant) and 2 initial larval densities (low and high). Fluctuating daily regimes of temperature (27 to 40 °C) led to decreased post-emergence wAlbB density and increased wAlbB density in eggs compared to constant temperature (27 °C). An increased fecundity was found in wAlbB-carrying females reared at fluctuating temperatures compared to uninfected wild-type females. wAlbB-carrying adult females showed significantly increased survival than wild-type females. Contrarily, wAlbB-carrying adult males exhibited a significantly lower survival than wild-type males. We found differential effects of assessed treatments (Wolbachia infection status, temperature, and larval density) across mosquito sexes and life stages. Taken together, our results indicate that realistic conditions may not impact dramatically the stability of wAlbB infection in A. aegypti. Nonetheless, understanding the ecological consequence of A. aegypti-wAlbB interaction is complex due to life history tradeoffs under conditions faced by natural populations.
Collapse
Affiliation(s)
- Sebastian Duran-Ahumada
- Population Biology, Ecology, and Evolution Graduate Program Emory University Atlanta, GA, USA
- Department of Environmental Sciences, Emory University Atlanta, GA, USA
| | - Luiza Karrer
- Department of Environmental Sciences, Emory University Atlanta, GA, USA
| | - Chun Cheng
- Department of Environmental Sciences, Emory University Atlanta, GA, USA
- Rollins School of Public Health, Emory University Atlanta, GA, USA
| | - Isabella Roeske
- Department of Environmental Sciences, Emory University Atlanta, GA, USA
| | - Josie Pilchik
- Department of Environmental Sciences, Emory University Atlanta, GA, USA
| | - David Jimenez-Vallejo
- Population Biology, Ecology, and Evolution Graduate Program Emory University Atlanta, GA, USA
- Department of Environmental Sciences, Emory University Atlanta, GA, USA
| | - Emily Smith
- Population Biology, Ecology, and Evolution Graduate Program Emory University Atlanta, GA, USA
| | - Kristina Roy
- Department of Environmental Sciences, Emory University Atlanta, GA, USA
| | - Oscar D Kirstein
- Department of Environmental Sciences, Emory University Atlanta, GA, USA
| | - Abdiel Martin-Park
- Laboratory for the Biological Control of Aedes aegypti, Collaborative Unit for Entomological Bioassays (UCBE-LCB), Autonomous University of Yucatan, Merida, Mexico
| | - Yamili Contreras-Perera
- Laboratory for the Biological Control of Aedes aegypti, Collaborative Unit for Entomological Bioassays (UCBE-LCB), Autonomous University of Yucatan, Merida, Mexico
| | - Azael Che-Mendoza
- Laboratory for the Biological Control of Aedes aegypti, Collaborative Unit for Entomological Bioassays (UCBE-LCB), Autonomous University of Yucatan, Merida, Mexico
| | - Gabriela Gonzalez-Olvera
- Laboratory for the Biological Control of Aedes aegypti, Collaborative Unit for Entomological Bioassays (UCBE-LCB), Autonomous University of Yucatan, Merida, Mexico
| | - Henry N Puerta-Guardo
- Laboratory for the Biological Control of Aedes aegypti, Collaborative Unit for Entomological Bioassays (UCBE-LCB), Autonomous University of Yucatan, Merida, Mexico
| | - Sandra I Uribe-Soto
- Sciences Faculty, National University of Colombia, Medellin Campus, Medellin, Antioquia, Colombia
| | - Pablo Manrique-Saide
- Laboratory for the Biological Control of Aedes aegypti, Collaborative Unit for Entomological Bioassays (UCBE-LCB), Autonomous University of Yucatan, Merida, Mexico
| | | |
Collapse
|
2
|
Martinez J, Ross PA, Gu X, Ant TH, Murdochy SM, Tong L, da Silva Filipe A, Hoffmann AA, Sinkins SP. Genomic and Phenotypic Comparisons Reveal Distinct Variants of Wolbachia Strain wAlbB. Appl Environ Microbiol 2022; 88:e0141222. [PMID: 36318064 PMCID: PMC9680635 DOI: 10.1128/aem.01412-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
The intracellular bacterium Wolbachia inhibits virus replication and is being harnessed around the world to fight mosquito-borne diseases through releases of mosquitoes carrying the symbiont. Wolbachia strains vary in their ability to invade mosquito populations and suppress viruses in part due to differences in their density within the insect and associated fitness costs. Using whole-genome sequencing, we demonstrate the existence of two variants in wAlbB, a Wolbachia strain being released in natural populations of Aedes aegypti mosquitoes. The two variants display striking differences in genome architecture and gene content. Differences in the presence/absence of 52 genes between variants include genes located in prophage regions and others potentially involved in controlling the symbiont's density. Importantly, we show that these genetic differences correlate with variation in wAlbB density and its tolerance to heat stress, suggesting that different wAlbB variants may be better suited for field deployment depending on local environmental conditions. Finally, we found that the wAlbB genome remained stable following its introduction in a Malaysian mosquito population. Our results highlight the need for further genomic and phenotypic characterization of Wolbachia strains in order to inform ongoing Wolbachia-based programs and improve the selection of optimal strains in future field interventions. IMPORTANCE Dengue is a viral disease transmitted by Aedes mosquitoes that threatens around half of the world population. Recent advances in dengue control involve the introduction of Wolbachia bacterial symbionts with antiviral properties into mosquito populations, which can lead to dramatic decreases in the incidence of the disease. In light of these promising results, there is a crucial need to better understand the factors affecting the success of such strategies, in particular the choice of Wolbachia strain for field releases and the potential for evolutionary changes. Here, we characterized two variants of a Wolbachia strain used for dengue control that differ at the genomic level and in their ability to replicate within the mosquito. We also found no evidence for the evolution of the symbiont within the 2 years following its deployment in Malaysia. Our results have implications for current and future Wolbachia-based health interventions.
Collapse
Affiliation(s)
- Julien Martinez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute, the University of Melbourne, Parkville, VIC, Australia
| | - Xinyue Gu
- Pest and Environmental Adaptation Research Group, Bio21 Institute, the University of Melbourne, Parkville, VIC, Australia
| | - Thomas H. Ant
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Shivan M. Murdochy
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Lily Tong
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute, the University of Melbourne, Parkville, VIC, Australia
| | - Steven P. Sinkins
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
3
|
Pagendam D, Elfekih S, Nassar MS, Nelson S, Almalik AM, Tawfik EA, Al-Fageeh MB, Hoffmann AA. Spatio-Temporal Modelling Informing Wolbachia Replacement Releases in a Low Rainfall Climate. INSECTS 2022; 13:949. [PMID: 36292897 PMCID: PMC9604250 DOI: 10.3390/insects13100949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Releases of Aedes aegypti carrying Wolbachia bacteria are known to suppress arbovirus transmission and reduce the incidence of vector-borne diseases. In planning for Wolbachia releases in the arid environment of Jeddah, Saudi Arabia, we collected entomological data with ovitraps across a 7-month period in four locations. Herein, we show that mosquito presence in basements does not differ from that of non-basement areas of buildings. In modelling mosquito presence across the study sites, we found the spatial structure to be statistically significant in one of the four sites, while a significant spatial structure was found for egg production data across three of the four sites. The length scales of the spatial covariance functions fitted to the egg production data ranged from 143 m to 574 m, indicating that high productivity regions can be extensive in size. Rank-correlation analyses indicated that mosquito presence tended to persist from the dry to wet season, but that egg production ranks at locations could reverse. The data suggest that, in Jeddah, the quality of the local environment for breeding can vary over time. The data support the feasibility of dry season releases but with release numbers needing to be flexible depending on local rates of invasion.
Collapse
Affiliation(s)
- Dan Pagendam
- CSIRO Data61, Dutton Park, Brisbane, QLD 4101, Australia
| | - Samia Elfekih
- CSIRO H&B, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3052, Australia
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of Biosciences, University of Melbourne, Parkville, VIC 3052, Australia
| | - Majed S. Nassar
- King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Samuel Nelson
- CSIRO Data61, Black Mountain, Canberra, ACT 2601, Australia
| | - Abdulaziz M. Almalik
- King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Essam A. Tawfik
- King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Mohamed B. Al-Fageeh
- King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of Biosciences, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
4
|
Ross PA. Designing effective Wolbachia release programs for mosquito and arbovirus control. Acta Trop 2021; 222:106045. [PMID: 34273308 DOI: 10.1016/j.actatropica.2021.106045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023]
Abstract
Mosquitoes carrying endosymbiotic bacteria called Wolbachia are being released in mosquito and arbovirus control programs around the world through two main approaches: population suppression and population replacement. Open field releases of Wolbachia-infected male mosquitoes have achieved over 95% population suppression by reducing the fertility of wild mosquito populations. The replacement of populations with Wolbachia-infected females is self-sustaining and can greatly reduce local dengue transmission by reducing the vector competence of mosquito populations. Despite many successful interventions, significant questions and challenges lie ahead. Wolbachia, viruses and their mosquito hosts can evolve, leading to uncertainty around the long-term effectiveness of a given Wolbachia strain, while few ecological impacts of Wolbachia releases have been explored. Wolbachia strains are diverse and the choice of strain to release should be made carefully, taking environmental conditions and the release objective into account. Mosquito quality control, thoughtful community awareness programs and long-term monitoring of populations are essential for all types of Wolbachia intervention. Releases of Wolbachia-infected mosquitoes show great promise, but existing control measures remain an important way to reduce the burden of mosquito-borne disease.
Collapse
|
5
|
Trewin BJ, Parry HR, Pagendam DE, Devine GJ, Zalucki MP, Darbro JM, Jansen CC, Schellhorn NA. Simulating an invasion: unsealed water storage (rainwater tanks) and urban block design facilitate the spread of the dengue fever mosquito, Aedes aegypti, in Brisbane, Australia. Biol Invasions 2021; 23:3891-3906. [PMID: 34456614 PMCID: PMC8386157 DOI: 10.1007/s10530-021-02619-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 08/13/2021] [Indexed: 10/25/2022]
Abstract
Aedes aegypti (Linnaeus) was once highly prevalent across eastern Australia, resulting in epidemics of dengue fever. Drought conditions have led to a rapid rise in semi-permanent, urban water storage containers called rainwater tanks known to be critical larval habitat for the species. The presence of these larval habitats has increased the risk of establishment of highly urbanised, invasive mosquito vectors such as Ae. aegypti. Here we use a spatially explicit network model to examine the role that unsealed rainwater tanks may play in population connectivity of an Ae. aegypti invasion in suburbs of Brisbane, a major Australian city. We characterise movement between rainwater tanks as a diffusion-like process, limited by a maximum distance of movement, average life expectancy, and a probability that Ae. aegypti will cross wide open spaces such as roads. The simulation model was run against a number of scenarios that examined population spread through the rainwater tank network based on non-compliance rates of tanks (unsealed or sealed) and road grids. We show that Ae. aegypti tank infestation and population spread was greatest in areas of high tank density and road lengths were shortest e.g. cul-de-sacs. Rainwater tank non-compliance rates of over 30% show increased connectivity when compared to less than 10%, suggesting rainwater tanks non-compliance should be maintained under this level to minimize the spread of an invading Ae. aegypti population. These results presented as risk maps of Ae. aegypti spread across Brisbane, can assist health and government authorities on where to optimally target rainwater tank surveillance and educational activities. Supplementary Information The online version contains supplementary material available at 10.1007/s10530-021-02619-z.
Collapse
Affiliation(s)
- Brendan J Trewin
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity Business Unit, Brisbane, Australia.,Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, Australia
| | - Hazel R Parry
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity Business Unit, Brisbane, Australia
| | - Daniel E Pagendam
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity Business Unit, Brisbane, Australia
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Myron P Zalucki
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, Australia
| | - Jonathan M Darbro
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Metro North Public Health Unit, Queensland Health, Windsor, Brisbane, Australia
| | - Cassie C Jansen
- Metro North Public Health Unit, Queensland Health, Windsor, Brisbane, Australia.,Communicable Diseases Branch, Department of Health, Queensland Health, Herston, Australia
| | - Nancy A Schellhorn
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity Business Unit, Brisbane, Australia
| |
Collapse
|
6
|
Pinto SB, Riback TIS, Sylvestre G, Costa G, Peixoto J, Dias FBS, Tanamas SK, Simmons CP, Dufault SM, Ryan PA, O’Neill SL, Muzzi FC, Kutcher S, Montgomery J, Green BR, Smithyman R, Eppinghaus A, Saraceni V, Durovni B, Anders KL, Moreira LA. Effectiveness of Wolbachia-infected mosquito deployments in reducing the incidence of dengue and other Aedes-borne diseases in Niterói, Brazil: A quasi-experimental study. PLoS Negl Trop Dis 2021; 15:e0009556. [PMID: 34252106 PMCID: PMC8297942 DOI: 10.1371/journal.pntd.0009556] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/22/2021] [Accepted: 06/09/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The introduction of the bacterium Wolbachia (wMel strain) into Aedes aegypti mosquitoes reduces their capacity to transmit dengue and other arboviruses. Evidence of a reduction in dengue case incidence following field releases of wMel-infected Ae. aegypti has been reported previously from a cluster randomised controlled trial in Indonesia, and quasi-experimental studies in Indonesia and northern Australia. METHODOLOGY/PRINCIPAL FINDINGS Following pilot releases in 2015-2016 and a period of intensive community engagement, deployments of adult wMel-infected Ae. aegypti mosquitoes were conducted in Niterói, Brazil during 2017-2019. Deployments were phased across four release zones, with a total area of 83 km2 and a residential population of approximately 373,000. A quasi-experimental design was used to evaluate the effectiveness of wMel deployments in reducing dengue, chikungunya and Zika incidence. An untreated control zone was pre-defined, which was comparable to the intervention area in historical dengue trends. The wMel intervention effect was estimated by controlled interrupted time series analysis of monthly dengue, chikungunya and Zika case notifications to the public health surveillance system before, during and after releases, from release zones and the control zone. Three years after commencement of releases, wMel introgression into local Ae. aegypti populations was heterogeneous throughout Niterói, reaching a high prevalence (>80%) in the earliest release zone, and more moderate levels (prevalence 40-70%) elsewhere. Despite this spatial heterogeneity in entomological outcomes, the wMel intervention was associated with a 69% reduction in dengue incidence (95% confidence interval 54%, 79%), a 56% reduction in chikungunya incidence (95%CI 16%, 77%) and a 37% reduction in Zika incidence (95%CI 1%, 60%), in the aggregate release area compared with the pre-defined control area. This significant intervention effect on dengue was replicated across all four release zones, and in three of four zones for chikungunya, though not in individual release zones for Zika. CONCLUSIONS/SIGNIFICANCE We demonstrate that wMel Wolbachia can be successfully introgressed into Ae. aegypti populations in a large and complex urban setting, and that a significant public health benefit from reduced incidence of Aedes-borne disease accrues even where the prevalence of wMel in local mosquito populations is moderate and spatially heterogeneous. These findings are consistent with the results of randomised and non-randomised field trials in Indonesia and northern Australia, and are supportive of the Wolbachia biocontrol method as a multivalent intervention against dengue, chikungunya and Zika.
Collapse
Affiliation(s)
| | | | | | | | - Julia Peixoto
- World Mosquito Program, Fiocruz, Rio de Janeiro, Brazil
| | - Fernando B. S. Dias
- World Mosquito Program, Fiocruz, Rio de Janeiro, Brazil
- Gabinete da Presidência, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Stephanie K. Tanamas
- World Mosquito Program, Institute of Vector Borne Disease, Monash University, Clayton, Australia
| | - Cameron P. Simmons
- World Mosquito Program, Institute of Vector Borne Disease, Monash University, Clayton, Australia
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Suzanne M. Dufault
- Division of Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America
| | - Peter A. Ryan
- World Mosquito Program, Institute of Vector Borne Disease, Monash University, Clayton, Australia
| | - Scott L. O’Neill
- World Mosquito Program, Institute of Vector Borne Disease, Monash University, Clayton, Australia
| | - Frederico C. Muzzi
- World Mosquito Program, Institute of Vector Borne Disease, Monash University, Clayton, Australia
| | - Simon Kutcher
- World Mosquito Program, Institute of Vector Borne Disease, Monash University, Clayton, Australia
| | - Jacqui Montgomery
- World Mosquito Program, Institute of Vector Borne Disease, Monash University, Clayton, Australia
| | - Benjamin R. Green
- World Mosquito Program, Institute of Vector Borne Disease, Monash University, Clayton, Australia
| | - Ruth Smithyman
- World Mosquito Program, Institute of Vector Borne Disease, Monash University, Clayton, Australia
| | | | | | - Betina Durovni
- World Mosquito Program, Fiocruz, Rio de Janeiro, Brazil
- Centre for Strategic Studies, Fiocruz, Rio de Janeiro, Brazil
| | - Katherine L. Anders
- World Mosquito Program, Institute of Vector Borne Disease, Monash University, Clayton, Australia
| | - Luciano A. Moreira
- World Mosquito Program, Fiocruz, Rio de Janeiro, Brazil
- Instituto Rene Rachou, Fiocruz, Belo Horizonte, Brazil
| |
Collapse
|
7
|
Pagendam DE, Trewin BJ, Snoad N, Ritchie SA, Hoffmann AA, Staunton KM, Paton C, Beebe N. Modelling the Wolbachia incompatible insect technique: strategies for effective mosquito population elimination. BMC Biol 2020; 18:161. [PMID: 33158442 PMCID: PMC7646074 DOI: 10.1186/s12915-020-00887-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/01/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The Wolbachia incompatible insect technique (IIT) shows promise as a method for eliminating populations of invasive mosquitoes such as Aedes aegypti (Linnaeus) (Diptera: Culicidae) and reducing the incidence of vector-borne diseases such as dengue, chikungunya and Zika. Successful implementation of this biological control strategy relies on high-fidelity separation of male from female insects in mass production systems for inundative release into landscapes. Processes for sex-separating mosquitoes are typically error-prone and laborious, and IIT programmes run the risk of releasing Wolbachia-infected females and replacing wild mosquito populations. RESULTS We introduce a simple Markov population process model for studying mosquito populations subjected to a Wolbachia-IIT programme which exhibit an unstable equilibrium threshold. The model is used to study, in silico, scenarios that are likely to yield a successful elimination result. Our results suggest that elimination is best achieved by releasing males at rates that adapt to the ever-decreasing wild population, thus reducing the risk of releasing Wolbachia-infected females while reducing costs. CONCLUSIONS While very high-fidelity sex separation is required to avoid establishment, release programmes tend to be robust to the release of a small number of Wolbachia-infected females. These findings will inform and enhance the next generation of Wolbachia-IIT population control strategies that are already showing great promise in field trials.
Collapse
Affiliation(s)
- D E Pagendam
- CSIRO Data61, 41 Boggo Road, Dutton Park, QLD, 4102, Australia
| | - B J Trewin
- CSIRO Health and Biosecurity, 41 Boggo Road, Dutton Park, QLD, 4102, Australia.
| | - N Snoad
- Verily Life Sciences, 259 East Grand Avenue, South San Francisco, CA, 94080, USA
| | - S A Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, QLD, 4878, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD, 4878, Australia
| | - A A Hoffmann
- School of Biological Sciences, Bio21 Institute, The University of Melbourne, Parkville, VIC, Australia
| | - K M Staunton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, QLD, 4878, Australia
| | - C Paton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, QLD, 4878, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD, 4878, Australia
| | - N Beebe
- CSIRO Health and Biosecurity, 41 Boggo Road, Dutton Park, QLD, 4102, Australia
- School of Biological Sciences, University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
8
|
Dhole S, Lloyd AL, Gould F. Gene Drive Dynamics in Natural Populations: The Importance of Density Dependence, Space, and Sex. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020; 51:505-531. [PMID: 34366722 PMCID: PMC8340601 DOI: 10.1146/annurev-ecolsys-031120-101013] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The spread of synthetic gene drives is often discussed in the context of panmictic populations connected by gene flow and described with simple deterministic models. Under such assumptions, an entire species could be altered by releasing a single individual carrying an invasive gene drive, such as a standard homing drive. While this remains a theoretical possibility, gene drive spread in natural populations is more complex and merits a more realistic assessment. The fate of any gene drive released in a population would be inextricably linked to the population's ecology. Given the uncertainty often involved in ecological assessment of natural populations, understanding the sensitivity of gene drive spread to important ecological factors is critical. Here we review how different forms of density dependence, spatial heterogeneity, and mating behaviors can impact the spread of self-sustaining gene drives. We highlight specific aspects of gene drive dynamics and the target populations that need further research.
Collapse
Affiliation(s)
- Sumit Dhole
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Alun L Lloyd
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8213, USA
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, North Carolina 27695-7565, USA
| | - Fred Gould
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, North Carolina 27695-7565, USA
| |
Collapse
|
9
|
Golnar AJ, Ruell E, Lloyd AL, Pepin KM. Embracing Dynamic Models for Gene Drive Management. Trends Biotechnol 2020; 39:211-214. [PMID: 33010965 DOI: 10.1016/j.tibtech.2020.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/29/2022]
Abstract
Robust methods of predicting how gene drive systems will interact with ecosystems is essential for safe deployment of gene drive technology. We describe how quantitative tools can reduce risk uncertainty, streamline empirical research, guide risk management, and promote cross-sector collaboration throughout the process of gene drive technology development and implementation.
Collapse
Affiliation(s)
- Andrew J Golnar
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, 4101 Laporte Ave., Fort Collins, CO 80521, USA.
| | - Emily Ruell
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, 4101 Laporte Ave., Fort Collins, CO 80521, USA
| | - Alun L Lloyd
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
| | - Kim M Pepin
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, 4101 Laporte Ave., Fort Collins, CO 80521, USA
| |
Collapse
|
10
|
Sánchez C HM, Bennett JB, Wu SL, Rašić G, Akbari OS, Marshall JM. Modeling confinement and reversibility of threshold-dependent gene drive systems in spatially-explicit Aedes aegypti populations. BMC Biol 2020; 18:50. [PMID: 32398005 PMCID: PMC7218562 DOI: 10.1186/s12915-020-0759-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
Background The discovery of CRISPR-based gene editing and its application to homing-based gene drive systems has been greeted with excitement, for its potential to control mosquito-borne diseases on a wide scale, and concern, for the invasiveness and potential irreversibility of a release. Gene drive systems that display threshold-dependent behavior could potentially be used during the trial phase of this technology, or when localized control is otherwise desired, as simple models predict them to spread into partially isolated populations in a confineable manner, and to be reversible through releases of wild-type organisms. Here, we model hypothetical releases of two recently engineered threshold-dependent gene drive systems—reciprocal chromosomal translocations and a form of toxin-antidote-based underdominance known as UDMEL—to explore their ability to be confined and remediated. Results We simulate releases of Aedes aegypti, the mosquito vector of dengue, Zika, and other arboviruses, in Yorkeys Knob, a suburb of Cairns, Australia, where previous biological control interventions have been undertaken on this species. We monitor spread to the neighboring suburb of Trinity Park to assess confinement. Results suggest that translocations could be introduced on a suburban scale, and remediated through releases of non-disease-transmitting male mosquitoes with release sizes on the scale of what has been previously implemented. UDMEL requires fewer releases to introduce, but more releases to remediate, including of females capable of disease transmission. Both systems are expected to be confineable to the release site; however, spillover of translocations into neighboring populations is less likely. Conclusions Our analysis supports the use of translocations as a threshold-dependent drive system capable of spreading disease-refractory genes into Ae. aegypti populations in a confineable and reversible manner. It also highlights increased release requirements when incorporating life history and population structure into models. As the technology nears implementation, further ecological work will be essential to enhance model predictions in preparation for field trials.
Collapse
Affiliation(s)
- Héctor M Sánchez C
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Jared B Bennett
- Biophysics Graduate Group, University of California, Berkeley, CA, 94720, USA
| | - Sean L Wu
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Gordana Rašić
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Omar S Akbari
- Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, CA, 92093, USA
| | - John M Marshall
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, 94720, USA. .,Innovative Genomics Institute, Berkeley, CA, 94720, USA.
| |
Collapse
|
11
|
Champer J, Zhao J, Champer SE, Liu J, Messer PW. Population Dynamics of Underdominance Gene Drive Systems in Continuous Space. ACS Synth Biol 2020; 9:779-792. [PMID: 32142612 DOI: 10.1021/acssynbio.9b00452] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Underdominance systems can quickly spread through a population, but only when introduced in considerable numbers. This promises a gene drive mechanism that is less invasive than homing drives, potentially enabling new approaches in the fight against vector-borne diseases. If regional confinement can indeed be achieved, the decision-making process for a release would likely be much simpler compared to other, more invasive types of drives. The capacity of underdominance gene drive systems to spread in a target population without invading other populations is typically assessed via network models of panmictic demes linked by migration. However, it remains less clear how such systems would behave in more realistic population models where organisms move over a continuous landscape. Here, we use individual-based simulations to study the dynamics of several proposed underdominance systems in continuous-space. We find that all these systems can fail to persist in such environments, even after an initially successful establishment in the release area, confirming previous theoretical results from diffusion theory. At the same time, we find that a two-locus two-toxin-antidote system can invade connected demes through a narrow migration corridor. This suggests that the parameter space where underdominance systems can establish and persist in a release area while at the same time remaining confined to that area could be quite limited, depending on how a population is spatially structured. Overall, these results indicate that realistic spatial context must be considered when assessing strategies for the deployment of underdominance drives.
Collapse
|
12
|
Ryan PA, Turley AP, Wilson G, Hurst TP, Retzki K, Brown-Kenyon J, Hodgson L, Kenny N, Cook H, Montgomery BL, Paton CJ, Ritchie SA, Hoffmann AA, Jewell NP, Tanamas SK, Anders KL, Simmons CP, O'Neill SL. Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. Gates Open Res 2020; 3:1547. [PMID: 31667465 DOI: 10.12688/gatesopenres.13061.1] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 01/13/2023] Open
Abstract
Background: The wMel strain of Wolbachia has been successfully introduced into Aedes aegypti mosquitoes and subsequently shown in laboratory studies to reduce transmission of a range of viruses including dengue, Zika, chikungunya, yellow fever, and Mayaro viruses that cause human disease. Here we report the entomological and epidemiological outcomes of staged deployment of Wolbachia across nearly all significant dengue transmission risk areas in Australia. Methods: The wMel strain of Wolbachia was backcrossed into the local Aedes aegypti genotype (Cairns and Townsville backgrounds) and mosquitoes were released in the field by staff or via community assisted methods. Mosquito monitoring was undertaken and mosquitoes were screened for the presence of Wolbachia. Dengue case notifications were used to track dengue incidence in each location before and after releases. Results: Empirical analyses of the Wolbachia mosquito releases, including data on the density, frequency and duration of Wolbachia mosquito releases, indicate that Wolbachia can be readily established in local mosquito populations, using a variety of deployment options and over short release durations (mean release period 11 weeks, range 2-22 weeks). Importantly, Wolbachia frequencies have remained stable in mosquito populations since releases for up to 8 years. Analysis of dengue case notifications data demonstrates near-elimination of local dengue transmission for the past five years in locations where Wolbachia has been established. The regression model estimate of Wolbachia intervention effect from interrupted time series analyses of case notifications data prior to and after releases, indicated a 96% reduction in dengue incidence in Wolbachia treated populations (95% confidence interval: 84 - 99%). Conclusion: Deployment of the wMel strain of Wolbachia into local Ae. aegypti populations across the Australian regional cities of Cairns and most smaller regional communities with a past history of dengue has resulted in the reduction of local dengue transmission across all deployment areas.
Collapse
Affiliation(s)
- Peter A Ryan
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Andrew P Turley
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Geoff Wilson
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Tim P Hurst
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia.,Biosecurity and Agricultural Services, Department of Jobs, Precincts and Regions, Victoria State Government, Atwood, Victoria, Australia
| | - Kate Retzki
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Jack Brown-Kenyon
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Lauren Hodgson
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Nichola Kenny
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Helen Cook
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Brian L Montgomery
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia.,Metro South Public Health Unit, Queensland Health, Coopers Plains, Queensland, Australia
| | - Christopher J Paton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland, Australia
| | - Scott A Ritchie
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland, Australia
| | - Ary A Hoffmann
- School of Biosciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas P Jewell
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, USA.,Centre for Statistical Methodology, London School of Hygiene and Tropical Medicine, London, UK
| | - Stephanie K Tanamas
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Katherine L Anders
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Cameron P Simmons
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia.,Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Scott L O'Neill
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
13
|
Ryan PA, Turley AP, Wilson G, Hurst TP, Retzki K, Brown-Kenyon J, Hodgson L, Kenny N, Cook H, Montgomery BL, Paton CJ, Ritchie SA, Hoffmann AA, Jewell NP, Tanamas SK, Anders KL, Simmons CP, O'Neill SL. Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. Gates Open Res 2020; 3:1547. [PMID: 31667465 PMCID: PMC6801363 DOI: 10.12688/gatesopenres.13061.2] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 01/14/2023] Open
Abstract
Background: The
wMel strain of
Wolbachia has been successfully introduced into
Aedes aegypti mosquitoes and subsequently shown in laboratory studies to reduce transmission of a range of viruses including dengue, Zika, chikungunya, yellow fever, and Mayaro viruses that cause human disease. Here we report the entomological and epidemiological outcomes of staged deployment of
Wolbachia across nearly all significant dengue transmission risk areas in Australia. Methods: The
wMel strain of
Wolbachia was backcrossed into the local
Aedes aegypti genotype (Cairns and Townsville backgrounds) and mosquitoes were released in the field by staff or via community assisted methods. Mosquito monitoring was undertaken and mosquitoes were screened for the presence of
Wolbachia. Dengue case notifications were used to track dengue incidence in each location before and after releases. Results: Empirical analyses of the
Wolbachia mosquito releases, including data on the density, frequency and duration of
Wolbachia mosquito releases, indicate that
Wolbachia can be readily established in local mosquito populations, using a variety of deployment options and over short release durations (mean release period 11 weeks, range 2-22 weeks). Importantly,
Wolbachia frequencies have remained stable in mosquito populations since releases for up to 8 years. Analysis of dengue case notifications data demonstrates near-elimination of local dengue transmission for the past five years in locations where
Wolbachia has been established. The regression model estimate of
Wolbachia intervention effect from interrupted time series analyses of case notifications data prior to and after releases, indicated a 96% reduction in dengue incidence in
Wolbachia treated populations (95% confidence interval: 84 – 99%). Conclusion: Deployment of the
wMel strain of
Wolbachia into local
Ae. aegypti populations across the Australian regional cities of Cairns and most smaller regional communities with a past history of dengue has resulted in the reduction of local dengue transmission across all deployment areas.
Collapse
Affiliation(s)
- Peter A Ryan
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Andrew P Turley
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Geoff Wilson
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Tim P Hurst
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia.,Biosecurity and Agricultural Services, Department of Jobs, Precincts and Regions, Victoria State Government, Atwood, Victoria, Australia
| | - Kate Retzki
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Jack Brown-Kenyon
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Lauren Hodgson
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Nichola Kenny
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Helen Cook
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Brian L Montgomery
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia.,Metro South Public Health Unit, Queensland Health, Coopers Plains, Queensland, Australia
| | - Christopher J Paton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland, Australia
| | - Scott A Ritchie
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland, Australia
| | - Ary A Hoffmann
- School of Biosciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas P Jewell
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, USA.,Centre for Statistical Methodology, London School of Hygiene and Tropical Medicine, London, UK
| | - Stephanie K Tanamas
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Katherine L Anders
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Cameron P Simmons
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia.,Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Scott L O'Neill
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|