1
|
Bertrand C, Aviron S, Pelosi C, Faburé J, Le Perchec S, Mamy L, Rault M. Effects of plant protection products on ecosystem functions provided by terrestrial invertebrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34534-w. [PMID: 39141266 DOI: 10.1007/s11356-024-34534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Plant protection products (PPP) are extensively used to protect plants against harmful organisms, but they also have unintended effects on non-target organisms, especially terrestrial invertebrates. The impact of PPP on ecosystem functions provided by these non-target invertebrates remains, however, unclear. The objectives of this article were to review PPP impacts on the ecosystem functions provided by pollinators, predators and parasitoids, and soil organisms, and to identify the factors that aggravate or mitigate PPP effects. The literature highlights that PPP alter several ecosystem functions: provision and maintenance of biodiversity, pollination, biotic interactions and habitat completeness in terrestrial ecosystems, and organic matter and soil structure dynamics. However, there are still a few studies dealing with ecosystem functions, with sometimes contradictory results, and consequences on agricultural provisioning services remain unclear. The model organisms used to assess PPP ecotoxicological effects are still limited, and should be expanded to better cover the wide functional diversity of terrestrial invertebrates. Data are lacking on PPP sublethal, transgenerational, and "cocktail" effects, and on their multitrophic consequences. In empirical assessments, studies on PPP unintended effects should consider agricultural-pedoclimatic contexts because they influence the responses of non-target organisms and associated ecosystem functions to PPP. Modeling might be a promising way to account for the complex interactions among PPP mixtures, biodiversity, and ecosystem functioning.
Collapse
Affiliation(s)
- Colette Bertrand
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Stéphanie Aviron
- INRAE, Institut Agro Rennes-Angers, ESA, UMR 0980 BAGAP, 35042, Rennes, France
| | - Céline Pelosi
- UMR EMMAH, INRAE, Avignon Université, 84000, Avignon, France
| | - Juliette Faburé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | | | - Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| | - Magali Rault
- Univ Avignon, Aix Marseille Univ, CNRS, IMBE, Pôle Agrosciences, 301 Rue Baruch de Spinoza, BP 21239, 84916, Avignon, IRD, France.
| |
Collapse
|
2
|
Russo L, Stout JC. Manipulating network connectance by altering plant attractiveness. PeerJ 2023; 11:e16319. [PMID: 38025756 PMCID: PMC10640842 DOI: 10.7717/peerj.16319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Background Mutualistic interactions between plants and their pollinating insects are critical to the maintenance of biodiversity. However, we have yet to demonstrate that we are able to manage the structural properties of these networks for the purposes of pollinator conservation and preserving functional outcomes, such as pollination services. Our objective was to explore the extent of our ability to experimentally increase, decrease, and maintain connectance, a structural attribute that reflects patterns of insect visitation and foraging preferences. Patterns of connectance relate to the stability and function of ecological networks. Methods We implemented a 2-year field experiment across eight sites in urban Dublin, Ireland, applying four agrochemical treatments to fixed communities of seven flowering plant species in a randomized block design. We spent ~117 h collecting 1,908 flower-visiting insects of 92 species or morphospecies with standardized sampling methods across the 2 years. We hypothesized that the fertilizer treatment would increase, herbicide decrease, and a combination of both maintain the connectance of the network, relative to a control treatment of just water. Results Our results showed that we were able to successfully increase network connectance with a fertilizer treatment, and maintain network connectance with a combination of fertilizer and herbicide. However, we were not successful in decreasing network connectance with the herbicide treatment. The increase in connectance in the fertilized treatment was due to an increased species richness of visiting insects, rather than changes to their abundance. We also demonstrated that this change was due to an increase in the realized proportion of insect visitor species rather than increased visitation by common, generalist species of floral visitors. Overall, this work suggests that connectance is an attribute of network structure that can be manipulated, with implications for management goals or conservation efforts in these mutualistic communities.
Collapse
Affiliation(s)
- Laura Russo
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Jane C. Stout
- Department of Botany, University of Dublin, Trinity College, Dublin, Ireland
| |
Collapse
|
3
|
Sarkar SC, Hatt S, Philips A, Akter M, Milroy SP, Xu W. Tomato Potato Psyllid Bactericera cockerelli (Hemiptera: Triozidae) in Australia: Incursion, Potential Impact and Opportunities for Biological Control. INSECTS 2023; 14:263. [PMID: 36975948 PMCID: PMC10058817 DOI: 10.3390/insects14030263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Incursion and establishment of an exotic pest may threaten natural habitats and disrupt ecosystems. On the other hand, resident natural enemies may play an important role in invasive pest control. Bactericera cockerelli, commonly known as the tomato-potato psyllid, is an exotic pest, first detected on mainland Australia in Perth, Western Australia, in early 2017. B. cockerelli causes direct damage to crops by feeding and indirectly by acting as the vector of the pathogen that causes zebra chip disease in potatoes, although the latter is not present in mainland Australia. At present, Australian growers rely on the frequent use of insecticides to control B. cockerelli, which may lead to a series of negative economic and environmental consequences. The incursion of B. cockerelli also provides a unique opportunity to develop a conservation biological control strategy through strategically targeting existing natural enemy communities. In this review, we consider opportunities to develop biological control strategies for B. cockerelli to alleviate the dependence on synthetic insecticides. We highlight the potential of existing natural enemies to contribute toward regulating populations of B. cockerelli in the field and discuss the challenges ahead to strengthen the key role they can play through conservation biological control.
Collapse
Affiliation(s)
| | - Séverin Hatt
- Agroecology and Organic Farming, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53121 Bonn, Germany
| | - Andrew Philips
- Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Mahjuba Akter
- Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | | | - Wei Xu
- Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
4
|
Parry H. Economic benefits of conservation biocontrol: A spatially explicit bioeconomic model for insect pest management in agricultural landscapes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.970624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spatially explicit population dynamic models have been successfully used to explore management scenarios in terms of pest suppression across a wide range of systems. However, the economic implications of pest management, particularly in the case of biological control and non-crop management strategies, have not been well considered. A bioeconomic spatially explicit simulation model was developed, that integrates models of pest population dynamics, pest movement and economics of management. The utility of the model is demonstrated here using Nysius vinitor, a pest of grain crops in Australia. The model estimates the short- and long-term economic benefits of three pest management strategies: (1) in-field pesticide spray; (2) pest suppression through weed management in non-crop habitat; and (3) bolstering biocontrol through revegetation with, or maintenance of, native vegetation. Across all management types, high yield and low relative management cost resulted in a greater chance of a gross profit. The impacts of the pests themselves were shown to be non-linear, with an intermediate level of pest pressure maximizing the economic gain from management. Pest dispersal capacity influenced the profitability of management of non-crop vegetation, with lower pest dispersal resulting in a greater likelihood of benefit, as benefits from non-crop management are localized (e.g., increased beneficial insect populations). In an intensively cropped landscape, pesticide management was most profitable over the short-term. Once a 10-year horizon was reached, then the profitability of revegetation was greater and continued to increase. While weeding requirements are low, it is likely to always be profitable in the long-term to maintain or restore native vegetation in good condition to control this pest in an intensively cropped landscape. Using pesticide alongside revegetation gave some short-term gain, but the negative impact of pesticide on beneficials outweighed the benefit and in the long-term it is less profitable. These results do not hold in a low production landscape, due to increased pest pressure and costs of managing non-crop habitat. In summary, when quantified over a 10–20 year time horizon, revegetation or conserving native remnants in good (i.e., non-weedy) condition could be economically more beneficial to control an insect pest than ongoing pesticide use, in intensively cropped landscapes.
Collapse
|
5
|
Bianchi FJ. From pattern to process: Towards mechanistic design principles for pest suppressive landscapes. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Pandey S, Johnson AC, Xie G, Gurr GM. Pesticide Regime Can Negate the Positive Influence of Native Vegetation Donor Habitat on Natural Enemy Abundance in Adjacent Crop Fields. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.815162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The benefits of non-crop vegetation to conservation biological control of insect pests in adjacent crops have often been demonstrated. Other studies have established that pesticide use can negatively impact natural enemies; but little is known about the outcomes from providing non-crop vegetation in systems with pesticide use. Here we conducted a natural experiment, sampling arthropods from within a set of four fields with varying pesticide use intensities that were otherwise similar and had perennial native vegetation adjacent to a single edge. Bayesian network analysis was applied to model the entire data set, then sensitivity analysis of numbers of arthropods captured in pitfall traps and sticky traps revealed that the overall effect of pesticide toxicity was large. Numbers of multiple arthropod taxa were especially strongly reduced in fields with pesticide regimes that had greater calculated toxicity scores. The effects on natural enemy numbers of the presence of adjacent perennial native vegetation was weaker than the effect of pesticide regime for all taxa except for Staphilinidae, for which it was equivalent. The benefit to in-crop numbers of natural enemies from the adjacent vegetation was strongest for ground active Araneae, Formicidae, and Dermaptera. Descriptive statistical analysis of the spatial distribution in the least heavily sprayed field suggested that the native vegetation was donor habitat for in-crop natural enemies, especially Hymenoptera, Dermaptera, and Formicidae, with numbers elevated close to the native vegetation, an effect that was apparent for around 100 m. Conservation of invertebrates in agricultural landscapes, including efforts to promote natural enemies for conservation biological control, are strongly impeded by “real world” pesticide regimes that include frequent applications and toxic compounds. Landscape features such as perennial native woody vegetation are potentially important refuges for a wide range of natural enemy taxa. The donor habitat effect of such refuges can elevate in-crop densities of these important ecosystem service providers over a scale of around 100 m, implying scope to enhance the strength of biological control in large fields (around 4 ha) by use of entirely wooded margins provided pesticide use is moderated.
Collapse
|
7
|
Bakker L, Werf W, Bianchi FJJA. Sweep netting samples, but not sticky trap samples, indicate beneficial arthropod abundance is negatively associated with landscape wide insecticide use. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lieneke Bakker
- Farming Systems Ecology Group Wageningen University and Research (WUR) Wageningen The Netherlands
| | - Wopke Werf
- Centre for Crop Systems Analysis Wageningen University and Research (WUR) Wageningen The Netherlands
| | - Felix J. J. A. Bianchi
- Farming Systems Ecology Group Wageningen University and Research (WUR) Wageningen The Netherlands
| |
Collapse
|
8
|
Janssen A, van Rijn PCJ. Pesticides do not significantly reduce arthropod pest densities in the presence of natural enemies. Ecol Lett 2021; 24:2010-2024. [PMID: 34160871 PMCID: PMC8453990 DOI: 10.1111/ele.13819] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/12/2021] [Accepted: 04/30/2021] [Indexed: 01/07/2023]
Abstract
Chemical pesticides remain the main agents for control of arthropod crop pests despite increased concern for their side effects. Although chemical pesticide applications generally result in short-term decreases of pest densities, densities can subsequently resurge to higher levels than before. Thus, pesticide effects on pest densities beyond a single pest generation may vary, but they have not been reviewed in a systematic manner. Using mathematical predator-prey models, we show that pest resurgence is expected when effective natural enemies are present, even when they are less sensitive to pesticides than the pest. Model simulations over multiple pest generations predict that pest resurgence due to pesticide applications will increase average pest densities throughout a growing season when effective natural enemies are present. We tested this prediction with a meta-analysis of published data of field experiments that compared effects of chemical control of arthropod plant pests in the presence and absence of natural enemies. This largely confirmed our prediction: overall, pesticide applications did not reduce pest densities significantly when natural enemies were present, which concerned the vast majority of cases. We also show that long-term pesticide effectiveness is underreported and suggest that pest control by natural enemies deserves more attention.
Collapse
Affiliation(s)
- Arne Janssen
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.,Department of Entomology, Federal University of Viçosa, Minas Gerais, Brazil
| | - Paul C J van Rijn
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Better outcomes for pest pressure, insecticide use, and yield in less intensive agricultural landscapes. Proc Natl Acad Sci U S A 2021; 118:2018100118. [PMID: 33731476 DOI: 10.1073/pnas.2018100118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Agricultural systems have been continuously intensified to meet rising demand for agricultural products. However, there are increasing concerns that larger, more connected crop fields and loss of seminatural areas exacerbate pest pressure, but findings to date have been inconclusive. Even less is known about whether increased pest pressure results in measurable effects for farmers, such as increased insecticide use and decreased crop yield. Using extensive spatiotemporal data sampled every 2 to 3 d throughout five growing seasons in 373 cotton fields, we show that pests immigrated earlier and were more likely to occur in larger cotton fields embedded in landscapes with little seminatural area (<10%). Earlier pest immigration resulted in earlier spraying that was further linked to more sprays per season. Importantly, crop yield was the lowest in these intensified landscapes. Our results demonstrate that both environmental conservation and production objectives can be achieved in conventional agriculture by decreasing field sizes and maintaining seminatural vegetation in the surrounding landscapes.
Collapse
|
10
|
Greenop A, Cook SM, Wilby A, Pywell RF, Woodcock BA. Invertebrate community structure predicts natural pest control resilience to insecticide exposure. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Arran Greenop
- NERC Centre for Ecology & Hydrology Wallingford UK
- Lancaster Environment Centre Lancaster University Lancaster UK
| | - Samantha M. Cook
- Biointeractions and Crop Protection Department Rothamsted Research Harpenden UK
| | - Andrew Wilby
- Lancaster Environment Centre Lancaster University Lancaster UK
| | | | | |
Collapse
|
11
|
Tamburini G, Santoiemma G, E O'Rourke M, Bommarco R, Chaplin-Kramer R, Dainese M, Karp DS, Kim TN, Martin EA, Petersen M, Marini L. Species traits elucidate crop pest response to landscape composition: a global analysis. Proc Biol Sci 2020; 287:20202116. [PMID: 33109015 DOI: 10.1098/rspb.2020.2116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent synthesis studies have shown inconsistent responses of crop pests to landscape composition, imposing a fundamental limit to our capacity to design sustainable crop protection strategies to reduce yield losses caused by insect pests. Using a global dataset composed of 5242 observations encompassing 48 agricultural pest species and 26 crop species, we tested the role of pest traits (exotic status, host breadth and habitat breadth) and environmental context (crop type, range in landscape gradient and climate) in modifying the pest response to increasing semi-natural habitats in the surrounding landscape. For natives, increasing semi-natural habitats decreased the abundance of pests that exploit only crop habitats or that are highly polyphagous. On the contrary, populations of exotic pests increased with an increasing cover of semi-natural habitats. These effects might be related to changes in host plants and other resources across the landscapes and/or to modified top-down control by natural enemies. The range of the landscape gradient explored and climate did not affect pests, while crop type modified the response of pests to landscape composition. Although species traits and environmental context helped in explaining some of the variability in pest response to landscape composition, the observed large interspecific differences suggest that a portfolio of strategies must be considered and implemented for the effective control of rapidly changing communities of crop pests in agroecosystems.
Collapse
Affiliation(s)
- Giovanni Tamburini
- Department of Soil, Plant and Food Sciences (DiSSPA), University of Bari, Bari, Italy
| | | | - Megan E O'Rourke
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Riccardo Bommarco
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Rebecca Chaplin-Kramer
- Natural Capital Project, Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| | - Matteo Dainese
- Institute for Alpine Environment, Eurac Research, Bozen/Bolzano, Italy
| | - Daniel S Karp
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, CA, USA
| | - Tania N Kim
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Emily A Martin
- Zoological Biodiversity, Institute of Geobotany, Leibniz University of Hannover, Hannover, Germany
| | - Matt Petersen
- Department of Entomology, University of Minnesota, St Paul, MN, USA
| | | |
Collapse
|
12
|
Aguilera G, Roslin T, Miller K, Tamburini G, Birkhofer K, Caballero‐Lopez B, Lindström SA, Öckinger E, Rundlöf M, Rusch A, Smith HG, Bommarco R. Crop diversity benefits carabid and pollinator communities in landscapes with semi‐natural habitats. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13712] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guillermo Aguilera
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Tomas Roslin
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Kirsten Miller
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
- School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
| | - Giovanni Tamburini
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
- Department of Soil, Plant and Food Sciences (DiSSPA‐Entomology) University of Bari Bari Italy
| | - Klaus Birkhofer
- Department of Ecology Brandenburg University of Technology Cottbus‐Senftenberg Cottbus Germany
| | | | - Sandra Ann‐Marie Lindström
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
- Department of Biology Lund University Lund Sweden
- Swedish Rural Economy and Agricultural Society Kristianstad Sweden
| | - Erik Öckinger
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Maj Rundlöf
- Department of Biology Lund University Lund Sweden
| | - Adrien Rusch
- INRAE, UMR 1065 Santé et Agroécologie du Vignoble Université de Bordeaux Villenave d'Ornon France
| | | | - Riccardo Bommarco
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
13
|
Gagic V, Marcora A, Howie L. Additive and interactive effects of pollination and biological pest control on crop yield. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13482] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Chaplin-Kramer R, O'Rourke M, Schellhorn N, Zhang W, Robinson BE, Gratton C, Rosenheim JA, Tscharntke T, Karp DS. Measuring What Matters: Actionable Information for Conservation Biocontrol in Multifunctional Landscapes. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00060] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|