1
|
Wilkinson V, Richards SA, Burgess L, Næsborg-Nielsen C, Gutwein K, Vermaak Y, Mounsey K, Carver S. Adaptive interventions for advancing in situ wildlife disease management. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3019. [PMID: 39103912 DOI: 10.1002/eap.3019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/24/2024] [Accepted: 05/23/2024] [Indexed: 08/07/2024]
Abstract
There is a critical need for advancements in disease management strategies for wildlife, but free-living animals pose numerous challenges that can hinder progress. Most disease management attempts involve fixed interventions accompanied by post hoc outcome assessments focused on success or failure. Though these approaches have led to valuable management advances, there are limitations to both the rate of advancement and amount of information that can be gained. As such, strategies that support more rapid progress are required. Sarcoptic mange, caused by epidermal infection with Sarcoptes scabiei mites, is a globally emerging and re-emerging panzootic that exemplifies this problem. The bare-nosed wombat (Vombatus ursinus), a marsupial endemic to southeastern Australia, is impacted by sarcoptic mange throughout its geographic range and enhanced disease management capabilities are needed to improve upon existing in situ methods. We sought to advance in situ wildlife disease management for sarcoptic mange in free-living bare-nosed wombats, implementing an adaptive approach using fluralaner (Bravecto, MSD Animal Health) and a structured process of learning and method-optimisation. By using surveillance of treated wombats to inform real-time management changes, we have demonstrated the efficacy of topically administered fluralaner at 45 and 85 mg/kg against sarcoptic mange. Importantly, we observed variation in the effects of 45 mg/kg doses, but through our adaptive approach found that 85 mg/kg doses consistently reduced mange severity. Through modifying our surveillance program, we also identified individual-level variation in wombat observability and used this to quantify the level of surveillance needed to assess long-term management success. Our adaptive intervention represents the first report of sarcoptic mange management with fluralaner in free-living wildlife and evaluation of its efficacy in situ. This study illustrates how adapting interventions in real time can advance wildlife disease management and may be applicable to accelerating in situ improvements for other host-pathogen systems.
Collapse
Affiliation(s)
- Vicky Wilkinson
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Shane A Richards
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Leah Burgess
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Katja Gutwein
- Mange Management Inc., St Andrews, Victoria, Australia
| | - Yolandi Vermaak
- Wombat Support & Rescue NSW/ACT Inc., Canberra, Australian Capital Territory, Australia
| | - Kate Mounsey
- School of Health, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- Odum School of Ecology, Center for the Ecology of Infectious Diseases, University of Georgia, Athena, USA
| |
Collapse
|
2
|
Stannard HJ, Wynan MB, Wynan RJ, Cox A, Ralph H, Doran GS. Pharmacokinetics of a topical application of moxidectin in bare-nosed wombats (Vombatus ursinus). Vet Parasitol Reg Stud Reports 2024; 53:101074. [PMID: 39025544 DOI: 10.1016/j.vprsr.2024.101074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
Sarcoptic mange is a debilitating disease that affects bare-nosed wombats (Vombatus ursinus). One of the drugs currently used for treatment is moxidectin, as it has a relatively high efficacy against endo and ectoparasites and side effects are uncommon in domestic species, thus it is considered a relatively safe drug to use at the recommended doses. Developing further understanding of the pharmacokinetics of moxidectin will aid in developing treatment regimens for sarcoptic mange in wombats. Here we analyzed the pharmacokinetic parameters of using 100 ml of moxidectin (5 g/l) applied topically. We found that mean peak plasma concentration was 0.50 ng/ml and half-life was 8 days. Moxidectin was excreted in scats with the mean peak concentration of 2461.43 ng/g (on a dry matter basis). Our study has provided the pharmacokinetic parameters of a commonly used treatment for sarcoptic mange in wombats. There were no adverse side effects recorded in the wombats after applying moxidectin topically. This study replicated real-world conditions using topical application on free-living wombats. The relatively low plasma concentration suggests the drug is not accumulating in the blood stream and is excreted via scats.
Collapse
Affiliation(s)
- Hayley J Stannard
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.
| | - Marie B Wynan
- Jarake Wildlife Sanctuary Ltd, Nimmitabel, NSW, Australia; Wombat Protection Society of Australia, Tomerong, NSW, Australia
| | - Ray J Wynan
- Jarake Wildlife Sanctuary Ltd, Nimmitabel, NSW, Australia
| | - Amanda Cox
- Wombat Protection Society of Australia, Tomerong, NSW, Australia
| | - Howard Ralph
- Southern Cross Wildlife Care, Braidwood, NSW, Australia
| | - Gregory S Doran
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia; Gulbali Institute, Charles Sturt University, Albert Pugsley Place, Wagga Wagga, NSW, Australia
| |
Collapse
|
3
|
Næsborg-Nielsen C, Mounsey K, Wilkinson V, Eisenhofer R, Burridge CP, Carver S. Changes in the Skin Microbiota in Two Bare-nosed Wombats (Vombatus ursinus) with Differing Recovery Trajectories following Treatment for Sarcoptic Mange. J Wildl Dis 2024; 60:734-738. [PMID: 38717896 DOI: 10.7589/jwd-d-23-00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/20/2024] [Indexed: 07/09/2024]
Abstract
We report tracking of bacterial skin microbiota for two bare-nosed wombats (Vombatus ursinus) following in situ treatment for sarcoptic mange. Sarcoptes scabiei, the etiologic agent, has dramatic effects on skin microbiota. Our case reports show differing disease trajectory and bacterial beta diversity between the two treated individuals.
Collapse
Affiliation(s)
- Christina Næsborg-Nielsen
- Department of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7005, Australia
| | - Kate Mounsey
- School of Health, University of Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland 4456, Australia
- Sunshine Coast Health Institute, 6 Doherty Street, Birtinya, Queensland 4575, Australia
| | - Vicky Wilkinson
- Department of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7005, Australia
| | - Raphael Eisenhofer
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen 1353, Denmark
| | - Christopher P Burridge
- Department of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7005, Australia
| | - Scott Carver
- Department of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7005, Australia
- Odum School of Ecology, University of Georgia, 140 E Green Street, Athens, Georgia 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, 203 D. W. Brooks Drive, Athens, Georgia 30602, USA
| |
Collapse
|
4
|
Wilkinson V, Richards SA, Carver S, Næsborg-Nielsen C, Cray C, Rossi G. Non-specific markers of inflammation in bare-nosed wombats ( Vombatus ursinus) with sarcoptic mange. Front Vet Sci 2024; 11:1403221. [PMID: 39005722 PMCID: PMC11240855 DOI: 10.3389/fvets.2024.1403221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Sarcoptic mange, caused by epidermal infection with Sarcoptes scabiei, negatively impacts the health, welfare, and local abundance of bare-nosed wombats (Vombatus ursinus) in Australia. Improved understanding of the host immune response to disease and its contribution to pathophysiology could be used to inform management actions for this species in and ex situ. To evaluate the immune response of bare-nosed wombats to sarcoptic mange, we validated three assays (haptoglobin, agarose gel electrophoresis, and micro-erythrocyte sedimentation rate) measuring non-specific markers of inflammation using serum samples from free-living wombats from Tasmania (n = 33). We then analysed correlations between the assay results for each non-specific marker of inflammation and wombat's sarcoptic mange scores, and performed histopathological examinations to investigate association of the acute phase response with systemic amyloidosis. We present evidence that haptoglobin and erythrocyte sedimentation rate increased, and albumin decreased, in association with sarcoptic mange scores. This research demonstrates links between the acute phase response and sarcoptic mange severity in bare-nosed wombats, highlighting the utility of non-specific markers of inflammation for aiding assessment of the systemic effects of mange. Showing the value of agarose gel electrophoresis, we also identified specific acute phase proteins warranting future evaluation and found evidence of an immunoglobulin response in mange-affected wombats, revealed by increasing γ-globulins in association with apparent disease severity. Meanwhile, owing to its relatively low resource requirements and rapidity, the erythrocyte sedimentation rate assay may be useful as a point-of-care test to support therapeutic decisions in the field. Our methods and findings are likely to be applicable to a range of other clinical and population health scenarios in captive and free-living wombats, and species impacted by sarcoptic mange globally.
Collapse
Affiliation(s)
- Vicky Wilkinson
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Shane A Richards
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | | | - Carolyn Cray
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, University of Miami, Miami, FL, United States
| | - Gabriele Rossi
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| |
Collapse
|
5
|
Takano K, Carver S, Vermaak Y, Fischer K, Harvey RJ, Mounsey KE. Assessment of the in vitro acaricidal activity of Bravecto ® (fluralaner) and a proposed orange oil-based formulation vehicle for the treatment of Sarcoptes scabiei. Parasit Vectors 2024; 17:194. [PMID: 38664829 PMCID: PMC11046784 DOI: 10.1186/s13071-024-06275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Sarcoptic mange is a serious animal welfare concern in bare-nosed wombats (Vombatus ursinus). Fluralaner (Bravecto®) is a novel acaricide that has recently been utilised for treating mange in wombats. The topical 'spot-on' formulation of fluralaner can limit treatment delivery options in situ, but dilution to a volume for 'pour-on' delivery is one practicable solution. This study investigated the in vitro acaricidal activity of Bravecto, a proposed essential oil-based diluent (Orange Power®), and two of its active constituents, limonene and citral, against Sarcoptes scabiei. METHODS Sarcoptes scabiei were sourced from experimentally infested pigs. In vitro assays were performed to determine the lethal concentration (LC50) and survival time of the mites when exposed to varying concentrations of the test solutions. RESULTS All compounds were highly effective at killing mites in vitro. The LC50 values of Bravecto, Orange Power, limonene and citral at 1 h were 14.61 mg/ml, 4.50%, 26.53% and 0.76%, respectively. The median survival times of mites exposed to undiluted Bravecto, Orange Power and their combination were 15, 5 and 10 min, respectively. A pilot survival assay of mites collected from a mange-affected wombat showed survival times of < 10 min when exposed to Bravecto and Orange Power and 20 min when exposed to moxidectin. CONCLUSIONS These results confirm the acaricidal properties of Bravecto, demonstrate acaricidal properties of Orange Power and support the potential suitability of Orange Power and its active constituents as a diluent for Bravecto. As well as killing mites via direct exposure, Orange Power could potentially enhance the topical delivery of Bravecto to wombats by increasing drug penetration in hyperkeratotic crusts. Further research evaluating the physiochemical properties and modes of action of Orange Power and its constituents as a formulation vehicle would be of value.
Collapse
Affiliation(s)
- Kotaro Takano
- School of Health, University of the Sunshine Coast, Maroochydore, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Scott Carver
- Odum School of Ecology, University of Georgia, Georgia, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Georgia, 30602, USA
| | - Yolandi Vermaak
- Wombat Support and Rescue NSW/ACT Inc., Australian Capital Territory, Canberra, Australia
| | - Katja Fischer
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Robert J Harvey
- School of Health, University of the Sunshine Coast, Maroochydore, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Kate E Mounsey
- School of Health, University of the Sunshine Coast, Maroochydore, QLD, Australia.
- Sunshine Coast Health Institute, Birtinya, QLD, Australia.
| |
Collapse
|
6
|
Hindle IJ, Forbes LK, Walters SJ, Carver S. The effects of spatially-constrained treatment regions upon a model of wombat mange. J Math Biol 2024; 88:53. [PMID: 38565734 PMCID: PMC10987376 DOI: 10.1007/s00285-024-02078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
The use of therapeutic agents is a critical option to manage wildlife disease, but their implementation is usually spatially constrained. We seek to expand knowledge around the effectiveness of management of environmentally-transmitted Sarcoptes scabiei on a host population, by studying the effect of a spatially constrained treatment regime on disease dynamics in the bare-nosed wombat Vombatus ursinus. A host population of wombats is modelled using a system of non-linear partial differential equations, a spatially-varying treatment regime is applied to this population and the dynamics are studied over a period of several years. Treatment could result in mite decrease within the treatment region, extending to a lesser degree outside, with significant increases in wombat population. However, the benefits of targeted treatment regions within an environment are shown to be dependent on conditions at the start (endemic vs. disease free), as well as on the locations of these special regions (centre of the wombat population or against a geographical boundary). This research demonstrates the importance of understanding the state of the environment and populations before treatment commences, the effects of re-treatment schedules within the treatment region, and the transient large-scale changes in mite numbers that can be brought about by sudden changes to the environment. It also demonstrates that, with good knowledge of the host-pathogen dynamics and the spatial terrain, it is possible to achieve substantial reduction in mite numbers within the target region, with increases in wombat numbers throughout the environment.
Collapse
Affiliation(s)
- Ivy J Hindle
- Department of Life Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Lawrence K Forbes
- Department of Mathematics and Physics, University of Tasmania, Hobart, TAS, 7001, Australia.
| | - Stephen J Walters
- Department of Mathematics and Physics, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Scott Carver
- Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
7
|
Ausband DE, Rebholz PF, Moriarty JG, Riley SPD. Treat Yourself: Pilot Testing a New Method to Treat Mange in Wild Carnivores. J Wildl Dis 2024; 60:507-512. [PMID: 38291913 DOI: 10.7589/jwd-d-23-00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/29/2023] [Indexed: 02/01/2024]
Abstract
Mange is a skin disease caused by mites that parasitize an animal's skin, often yielding inflamed immune responses and hair loss. At a population level, mange may reduce survival and cause population declines. Many forms of mange can be treated quite effectively when an animal is in hand; however, this is not often feasible for many free-ranging wildlife populations. Some animals, particularly territorial carnivores, will rub or roll to scent mark and transmit information about their presence to other individuals. We posited that rub stations comprised, in part, of anthelmintic medication and foreign scents that induce rubbing could be used to remotely treat mange in the wild. We deployed 39 rub stations containing lure and dye in Santa Monica Mountains National Recreation Area, Southern California, USA, October-November 2022. Carnivores rubbed or rolled at >97% of rub stations, with coyotes (Canis latrans), gray foxes (Urocyon cinereoargenteus), and bobcats (Lynx rufus) being the most abundant species. Time to first rub or roll was generally <1 wk. Several sympatric species (e.g., mule deer, Odocoileus hemionus) were detected at rub stations but did not rub. Our pilot test provides strong evidence that treating mange in wild carnivores may be possible using the remote medicinal rub stations we describe. Future efforts to add medicine to rub stations and monitor for a change in mange prevalence are a logical next step.
Collapse
Affiliation(s)
- David E Ausband
- US Geological Survey, Idaho Cooperative Fish and Wildlife Research Unit, University of Idaho, 875 Perimeter Drive, MS 1141, Moscow, Idaho 83844, USA
| | - Peter F Rebholz
- Idaho Cooperative Fish and Wildlife Research Unit, University of Idaho, 975 West 6th Street, Moscow, Idaho 83844, USA
| | - Joanne G Moriarty
- National Park Service, Santa Monica Mountains National Recreation Area, 401 W. Hillcrest Drive, Thousand Oaks, California 91360, USA
| | - Seth P D Riley
- National Park Service, Santa Monica Mountains National Recreation Area, 401 W. Hillcrest Drive, Thousand Oaks, California 91360, USA
| |
Collapse
|
8
|
Carver S, Stannard GL, Martin AM. The Distinctive Biology and Characteristics of the Bare-Nosed Wombat ( Vombatus ursinus). Annu Rev Anim Biosci 2024; 12:135-160. [PMID: 37738454 DOI: 10.1146/annurev-animal-021022-042133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The bare-nosed wombat is an iconic Australian fauna with remarkable biological characteristics and mythology. This solitary, muscular, fossorial, herbivorous marsupial from southeast Australia has continent and continental island subspeciation. Vombatiformes also contains hairy-nosed wombats (Lasiorhinus spp.); koala (Phascolarctos cinereus); and extinct megafauna, Phascolonus gigas (giant wombat), Diprotodon, and Thylacoleo (marsupial lion). Culturally important to Aboriginal people, bare-nosed wombats engineer ecosystems through digging, grazing, and defecation. Olfaction and cubic fecal aggregations appear critical for communication, including identity, courtship, and mating. Though among the largest fossorial herbivores, they have a nutrient-poor diet, a home range up to an order of magnitude smaller than expected, and a metabolism among the lowest extreme for mammals >10 kg. Metabolic depression may confer advantages over resource competitors and fossorial lifestyle protection from predators, fires, and climatic extremes. Bare-nosed wombats are loved and persecuted by European colonists. Recent population increases may reflect softening attitudes toward, and greater protections of, bare-nosed wombats.
Collapse
Affiliation(s)
- Scott Carver
- Department of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia;
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA;
| | - Georgia L Stannard
- Department of Archaeology and History, La Trobe University, Bundoora, Victoria, Australia;
| | - Alynn M Martin
- Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, Kingsville, Texas, USA;
| |
Collapse
|
9
|
Carver S, Lewin ZM, Burgess LG, Wilkinson V, Whitehead J, Driessen MM. Density independent decline from an environmentally transmitted parasite. Biol Lett 2023; 19:20230169. [PMID: 37607579 PMCID: PMC10444343 DOI: 10.1098/rsbl.2023.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
Invasive environmentally transmitted parasites have the potential to cause declines in host populations independent of host density, but this is rarely characterized in naturally occurring populations. We investigated (1) epidemiological features of a declining bare-nosed wombat (Vombatus ursinus) population in central Tasmania owing to a sarcoptic mange (agent Sarcoptes scabiei) outbreak, and (2) reviewed all longitudinal wombat-mange studies to improve our understanding of when host population declines may occur. Over a 7-year period, the wombat population declined 80% (95% CI 77-86%) and experienced a 55% range contraction. The average apparent prevalence of mange was high 27% (95% CI 21-34), increased slightly over our study period, and the population decline continued unabated, independent of declining host abundance. Combined with other longitudinal studies, our research indicated wombat populations may be at risk of decline when apparent prevalence exceeds 25%. This empirical study supports the capacity of environmentally transmitted parasites to cause density independent host population declines and suggests prevalence limits may be an indicator of impending decline-causing epizootics in bare-nosed wombats. This research is the first to test effects of density in mange epizootics where transmission is environmental and may provide a guide for when apparent prevalence indicates a local conservation threat.
Collapse
Affiliation(s)
- Scott Carver
- Department of Biological Sciences, University of Tasmania, Tasmania, Australia
| | - Zachary M. Lewin
- Department of Biological Sciences, University of Tasmania, Tasmania, Australia
| | - Leah G. Burgess
- Department of Biological Sciences, University of Tasmania, Tasmania, Australia
| | - Vicky Wilkinson
- Department of Biological Sciences, University of Tasmania, Tasmania, Australia
| | | | | |
Collapse
|
10
|
Takano K, de Hayr L, Carver S, Harvey RJ, Mounsey KE. Pharmacokinetic and pharmacodynamic considerations for treating sarcoptic mange with cross-relevance to Australian wildlife. Int J Parasitol Drugs Drug Resist 2023; 21:97-113. [PMID: 36906936 PMCID: PMC10023865 DOI: 10.1016/j.ijpddr.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/07/2023]
Abstract
Sarcoptes scabiei is the microscopic burrowing mite responsible for sarcoptic mange, which is reported in approximately 150 mammalian species. In Australia, sarcoptic mange affects a number of native and introduced wildlife species, is particularly severe in bare-nosed wombats (Vombatus ursinus) and an emerging issue in koala and quenda. There are a variety of acaricides available for the treatment of sarcoptic mange which are generally effective in eliminating mites from humans and animals in captivity. In wild populations, effective treatment is challenging, and concerns exist regarding safety, efficacy and the potential emergence of acaricide resistance. There are risks where acaricides are used intensively or inadequately, which could adversely affect treatment success rates as well as animal welfare. While reviews on epidemiology, treatment strategies, and pathogenesis of sarcoptic mange in wildlife are available, there is currently no review evaluating the use of specific acaricides in the context of their pharmacokinetic and pharmacodynamic properties, and subsequent likelihood of emerging drug resistance, particularly for Australian wildlife. This review critically evaluates acaricides that have been utilised to treat sarcoptic mange in wildlife, including dosage forms and routes, pharmacokinetics, mode of action and efficacy. We also highlight the reports of resistance of S. scabiei to acaricides, including clinical and in vitro observations.
Collapse
Affiliation(s)
- Kotaro Takano
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Lachlan de Hayr
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Scott Carver
- Department of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Robert J Harvey
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Kate E Mounsey
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia.
| |
Collapse
|
11
|
Fine-Scale Landscape Epidemiology: Sarcoptic Mange in Bare-Nosed Wombats (Vombatus ursinus). Transbound Emerg Dis 2023. [DOI: 10.1155/2023/2955321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Landscape epidemiology provides a valuable framework to interpret, predict, and manage spatiotemporal patterns of disease. Yet, owing to the difficulty of detecting pathogen occurrence in free-ranging wildlife, disentangling the factors driving disease dynamics remains a considerable challenge, particularly at fine spatial scales. Here, we investigated the fine-scale landscape epidemiology of sarcoptic mange—a visually apparent disease caused by the mite Sarcoptes scabiei—in bare-nosed wombats (Vombatus ursinus), by: (1) characterizing the distribution and density of wombats within the landscape and (2) examining the effect of environmental variation on the occurrence and apparent prevalence of mange. Wombats were heterogeneously distributed over 19.4 km of transect space (0.096–1.39 wombats ha−1) and seven months of time (increasing by a factor of 1.76). Wombat density was negatively associated with distance to vegetation cover, supporting a general propensity for wombats to occur and burrow near vegetation (native and exotic, excluding pasture). The apparent prevalence of mange varied spatially (3.1–37.5%), with the probability of disease greater in wombats with minimal vegetation and low-lying pans in their estimated home range. We observed trends of increased prevalence in areas with more burrows available per wombat and in individuals occurring near vegetation cover (although not within their home range). Wombat density and active burrow density did not influence the prevalence of mange. This research emphasizes the fine scale at which spatiotemporal patterns of disease can manifest and is the first to investigate the influence of host density for any species with indirect transmission of S. scabiei. Collectively, our results suggest that individuals inhabiting less optimal habitat (pasture) may be at greater risk of disease, or that diseased wombats may be competitively excluded from more optimal habitat (vegetated areas). We discuss implications for understanding and managing mange in wombats and cross-applicability to other mange-affected species with environmental transmission.
Collapse
|
12
|
Hindle IJ, Forbes LK, Carver S. The effect of spatial dynamics on the behaviour of an environmentally transmitted disease. JOURNAL OF BIOLOGICAL DYNAMICS 2022; 16:144-159. [PMID: 35404769 DOI: 10.1080/17513758.2022.2061614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Understanding the spread of pathogens through the environment is critical to a fuller comprehension of disease dynamics. However, many mathematical models of disease dynamics ignore spatial effects. We seek to expand knowledge around the interaction between the bare-nosed wombat (Vombatus ursinus) and sarcoptic mange (etiologic agent Sarcoptes scabiei), by extending an aspatial mathematical model to include spatial variation. S. scabiei was found to move through our modelled region as a spatio-temporal travelling wave, leaving behind pockets of localized host extinction, consistent with field observations. The speed of infection spread was also comparable with field research. Our model predicts that the inclusion of spatial dynamics leads to the survival and recovery of affected wombat populations when an aspatial model predicts extinction. Collectively, this research demonstrates how environmentally transmitted S. scabiei can result in travelling wave dynamics, and that inclusion of spatial variation reveals a more resilient host population than aspatial modelling approaches.
Collapse
Affiliation(s)
- Ivy J Hindle
- School of Physical Sciences, University of Tasmania, Hobart, Australia
| | - Lawrence K Forbes
- School of Physical Sciences, University of Tasmania, Hobart, Australia
| | - Scott Carver
- Department of Biological Sciences, University of Tasmania, Hobart, Australia
| |
Collapse
|
13
|
Penrose B, MacIntosh AE, Parbhakar-Fox A, Smith LBE, Sawyer T, D'Agnese E, Carver S. Heavy metal wombats? Metal exposure pathways to bare-nosed wombats (Vombatus ursinus) living on remediated tin mine tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155526. [PMID: 35489482 DOI: 10.1016/j.scitotenv.2022.155526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Rehabilitation of disused mine sites through stabilisation and botanical restoration is ecologically important, but metal transfer pathways to colonising wildlife are often less understood and have never been studied in marsupials. The rehabilitated Royal George tin mine tailings (Tasmania, Australia) and colonisation by bare-nosed wombats (Vombatus ursinus) represented an opportunity to examine potential metal transfer from mine tailings to an herbivorous marsupial. The aim of this study was to examine metal transfer pathways from the mine tailings to wombats, and to determine if wombats are at risk from metal exposure. Concentrations of metals were measured in the tailings substrate, surface water and vegetation, as well as fur samples from a resident wombat, and non-resident (control) wombats. The mineralogy of the tailings is dominated by quartz, muscovite, feldspars, topaz, kaolinite and calcite. Concentrations of several metals were high (exceeding varying health standards) in the tailings (As, Cu, Hg, Pb, Ni, Zn), water (As, Cd, Cu, Zn) and vegetation (As, Cd, Cu, Pb, Mn, Zn). Relative to non-resident wombats, elevated levels of As, Cd, Cu, Pb and Sn were measured in the fur of a resident wombat. Based on modelling of the exposure pathways, consumption of plant material is the most likely metal transfer pathway for As, Cu and Pb, although the risks from ingestion of tailings to this fossorial marsupial should not be discounted. This study is the first to investigate metal exposure pathways to marsupials using rehabilitated mine tailings. Further research is needed to accurately quantify ecological risks and toxicity for wombats and other marsupials native to mining landscapes.
Collapse
Affiliation(s)
- Beth Penrose
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 98, Hobart, Tas 7001, Australia.
| | - Amy E MacIntosh
- School of Natural Sciences, University of Tasmania, Private Bag 79, Hobart, Tasmania 7001, Australia
| | - Anita Parbhakar-Fox
- Centre for Ore Deposit and Earth Sciences (CODES), University of Tasmania, Private Bag 79, Sandy Bay, TAS 7001, Australia
| | - Laura B E Smith
- School of Natural Sciences, University of Tasmania, Private Bag 79, Hobart, Tasmania 7001, Australia
| | - Terrie Sawyer
- Centre for Ore Deposit and Earth Sciences (CODES), University of Tasmania, Private Bag 79, Sandy Bay, TAS 7001, Australia
| | - Erin D'Agnese
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 98, Hobart, Tas 7001, Australia
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Private Bag 79, Hobart, Tasmania 7001, Australia
| |
Collapse
|
14
|
Bains J, Carver S, Hua S. Pathophysiological and Pharmaceutical Considerations for Enhancing the Control of Sarcoptes scabiei in Wombats Through Improved Transdermal Drug Delivery. Front Vet Sci 2022; 9:944578. [PMID: 35836504 PMCID: PMC9274280 DOI: 10.3389/fvets.2022.944578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Sarcoptic scabiei is an invasive parasitic mite that negatively impacts wombats, causing sarcoptic mange disease, characterized by alopecia, intense pruritus, hyperkeratosis, and eventual mortality. Evidence suggests that wombats may be unable to recovery from infection without the assistance of treatments. Transdermal drug delivery is considered the most ideal route of administration for in situ treatment in free-ranging wombats, as it is non-invasive and avoids the need to capture affected individuals. Although there are effective antiparasitic drugs available, an essential challenge is adequate administration of drugs and sufficient drug retention and absorption when delivered. This review will describe the implications of sarcoptic mange on the physiology of wombats as well as discuss the most widely used antiparasitic drugs to treat S. scabiei (ivermectin, moxidectin, and fluralaner). The prospects for improved absorption of these drugs will be addressed in the context of pathophysiological and pharmaceutical considerations influencing transdermal drug delivery in wombats with sarcoptic mange.
Collapse
Affiliation(s)
- Jaskaran Bains
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Susan Hua
| |
Collapse
|
15
|
Kwait R, Kerwin K, Herzog C, Bennett J, Padhi S, Zoccolo I, Maslo B. Whole‐room ultraviolet sanitization as a method for the site‐level treatment of
Pseudogymnoascus destructans. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Robert Kwait
- Department of Ecology, Evolution, and Natural Resources, Rutgers the State University of New Jersey New Brunswick New Jersey USA
| | - Kathleen Kerwin
- Department of Ecology, Evolution, and Natural Resources, Rutgers the State University of New Jersey New Brunswick New Jersey USA
| | - Carl Herzog
- New York State Department of Environmental Conservation Albany New York USA
| | - Joan Bennett
- Department of Plant Biology and Pathology Rutgers, the State University of New Jersey New Brunswick New Jersey USA
| | - Sally Padhi
- Department of Plant Biology and Pathology Rutgers, the State University of New Jersey New Brunswick New Jersey USA
| | - Isabelle Zoccolo
- Department of Ecology, Evolution, and Natural Resources, Rutgers the State University of New Jersey New Brunswick New Jersey USA
| | - Brooke Maslo
- Department of Ecology, Evolution, and Natural Resources, Rutgers the State University of New Jersey New Brunswick New Jersey USA
| |
Collapse
|
16
|
Mounsey K, Harvey RJ, Wilkinson V, Takano K, Old J, Stannard H, Wicker L, Phalen D, Carver S. Drug dose and animal welfare: important considerations in the treatment of wildlife. Parasitol Res 2022; 121:1065-1071. [PMID: 35147771 PMCID: PMC8832083 DOI: 10.1007/s00436-022-07460-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/01/2022] [Indexed: 10/25/2022]
Abstract
A recent publication in Parasitology Research by (Old et al. Parasitol Res 120:1077-1090, 2021) raises the topical and often controversial issue of the treatment of wildlife by personnel with little or no formal scientific training (e.g. wildlife carers). In a valuable contribution to the subject, Old and colleagues document a wide range of topical (pour-on) application doses and frequencies of moxidectin (Cydectin®) administered in situ to bare-nosed wombats (Vombatus ursinus) by members of the wildlife carer/treater community in southeast Australia to treat sarcoptic mange disease. This treatment occurred under minor use permits issued by the Australian Pesticides and Veterinary Management Authority (APVMA). These permits do not require veterinary supervision, although carers are registered and are expected to comply with the guidelines of this permit.The prevalence and severity of sarcoptic mange in wildlife is influenced by a variety of factors including mite biology, environmental conditions, population density, animal behaviour and immune susceptibility (Browne et al. Bioscience, 2021). In bare-nosed wombats, combinations of these elements play a substantial role in making the treatment of an already difficult disease more complex. (Moroni et al. Parasit Vectors 13:471, 2020) comment that any pharmacological treatment of free-ranging wildlife must consider these factors when assessing their feasibility and implications, especially in the context of emerging drug resistance and potential long-term ecological impacts. As individuals with significant interest in sarcoptic mange and representing a range of professional research and veterinary expertise, we see value in providing expert commentary on this issue.
Collapse
Affiliation(s)
- Kate Mounsey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia. .,Sunshine Coast Health Institute, Birtinya, QLD, 4556, Australia.
| | - Robert J Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia.,Sunshine Coast Health Institute, Birtinya, QLD, 4556, Australia
| | - Victoria Wilkinson
- School of Natural Sciences, University of Tasmania, Hobart, TAS, 7005, Australia
| | - Kotaro Takano
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia.,Sunshine Coast Health Institute, Birtinya, QLD, 4556, Australia
| | - Julie Old
- School of Science, Western Sydney University, Hawkesbury campus, Penrith, NSW, 2751, Australia
| | - Hayley Stannard
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Leanne Wicker
- Wildlife Conservation and Science, Zoos Victoria, Parkville, VIC, 3052, Australia
| | - David Phalen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Hobart, TAS, 7005, Australia
| |
Collapse
|
17
|
Browne E, Driessen MM, Cross PC, Escobar LE, Foley J, López-Olvera JR, Niedringhaus KD, Rossi L, Carver S. Sustaining Transmission in Different Host Species: The Emblematic Case of Sarcoptes scabiei. Bioscience 2021. [DOI: 10.1093/biosci/biab106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Some pathogens sustain transmission in multiple different host species, but how this epidemiologically important feat is achieved remains enigmatic. Sarcoptes scabiei is among the most host generalist and successful of mammalian parasites. We synthesize pathogen and host traits that mediate sustained transmission and present cases illustrating three transmission mechanisms (direct, indirect, and combined). The pathogen traits that explain the success of S. scabiei include immune response modulation, on-host movement capacity, off-host seeking behaviors, and environmental persistence. Sociality and host density appear to be key for hosts in which direct transmission dominates, whereas in solitary hosts, the use of shared environments is important for indirect transmission. In social den-using species, combined direct and indirect transmission appears likely. Empirical research rarely considers the mechanisms enabling S. scabiei to become endemic in host species—more often focusing on outbreaks. Our review may illuminate parasites’ adaptation strategies to sustain transmission through varied mechanisms across host species.
Collapse
Affiliation(s)
- Elizabeth Browne
- Department of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Michael M Driessen
- Department of Primary Industries, Parks, Water, and Environment, Hobart, Tasmania
| | - Paul C Cross
- US Geological Survey, Northern Rocky Mountain Science Center, Bozeman, Montana, United States
| | - Luis E Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, United States
| | - Janet Foley
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States
| | - Jorge R López-Olvera
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Kevin D Niedringhaus
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States
| | - Luca Rossi
- Department of Veterinary Science, University of Turin, Turin, Italy
| | - Scott Carver
- Department of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
18
|
Browne E, Driessen MM, Ross R, Roach M, Carver S. Environmental suitability of bare-nosed wombat burrows for Sarcoptes scabiei. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 16:37-47. [PMID: 34434693 PMCID: PMC8374697 DOI: 10.1016/j.ijppaw.2021.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022]
Abstract
Some of the most important pathogens affecting wildlife are transmitted indirectly via the environment. Yet the environmental stages of pathogens are often poorly understood, relative to infection in the host, making this an important research frontier. Sarcoptic mange is a globally widespread disease caused by the parasitic mite Sarcoptes scabiei. The bare-nosed wombat (Vombatus ursinus) is particularly susceptible, and their solitary nature and overlapping use of burrows strongly indicate the importance of environmental transmission. However, due to the challenge of accessing and monitoring within wombat burrows, there has been limited research into their suitability for off-host mite survival and environmental transmission (i.e., to serve as a fomite). We created a model using published laboratory data to predict mite survival times based on temperature and humidity. We then implemented innovative technologies (ground-penetrating radar and a tele-operated robotic vehicle) to map and access wombat burrows to record temperature and relative humidity. We found that the stable conditions within burrows were conducive for off-host survival of S. scabiei, particularly in winter (estimated mite survival of 16.41 ± 0.34 days) and less so in warmer and drier months (summer estimated survival of 5.96 ± 0.37 days). We also compared two areas with higher and lower average mange prevalence in wombats (13.35% and 4.65%, respectively), finding estimated mite survival was slightly higher in the low prevalence area (10.10 and 12.12 days, respectively), contrary to our expectations, suggesting other factors are also important for population prevalence. Our study is the first to demonstrate the suitability of the bare-nosed wombat burrow for off-host mite survival and environmental transmission. Our findings have implications for understanding observed patterns of mange, disease dynamics and disease management for not only bare-nosed wombats, but also other burrow or den-obligate species exposed to S. scabiei via environmental transmission. Wombat burrows are a source of environmental transmission of Sarcoptes scabiei. We used ground-penetrating radar and a robotic vehicle to measure burrow conditions. We estimate S. scabiei can survive 5.96–16.41 days within burrows depending on season. Seasonal variation in environmental survival may influence disease dynamics in wombats.
Collapse
Affiliation(s)
- Elizabeth Browne
- Department of Biological Sciences, University of Tasmania, Australia
| | - Michael M Driessen
- Department of Primary Industries, Parks, Water and Environment, Tasmanian Government, Australia
| | - Robert Ross
- Department of Engineering La Trobe University, Melbourne, Australia
| | - Michael Roach
- University of Tasmania, School of Natural Sciences (Earth Sciences) and ARC Centre of Excellence in Ore Deposits (CODES), Australia
| | - Scott Carver
- Department of Biological Sciences, University of Tasmania, Australia
| |
Collapse
|
19
|
Abstract
Abstract
In this study we evaluate the design and efficacy of Wombot, an exploratory robot used to study environmental conditions within wombat burrows. Our purpose-built robot traverses through the difficult terrain present in wombat burrows whilst facilitating placement and retrieval of environmental data loggers. Our preliminary results suggest that the environmental conditions present within the burrows would result in a long mite survival time which shows significant risk for spreading infestations throughout a wombat population.
Article Highlights
Wombats live in difficult to observe burrows and suffer from mange cased by Sarcoptes scabiei.
A teleoperated robot was designed to traverse the difficult terrain within burrows whilst placing and retrieving environmental loggers.
Cool and humid environmental conditions within burrows suggest a relatively long mite survival time of 16–18 days
Collapse
|
20
|
Tamura J, Ingram J, Martin AM, Burridge CP, Carver S. Contrasting population manipulations reveal resource competition between two large marsupials: bare-nosed wombats and eastern grey kangaroos. Oecologia 2021; 197:313-325. [PMID: 34095983 DOI: 10.1007/s00442-021-04959-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/28/2021] [Indexed: 11/27/2022]
Abstract
Resource competition is an important interaction that can structure ecological communities, but is difficult to demonstrate in nature, and rarely demonstrated for large mammals including marsupials. We analysed 10 years of population survey data to investigate resource competition between bare-nosed wombats (Vombatus ursinus) and eastern grey kangaroos (Macropus giganteus) at two sites to assess whether resource competition is occurring. At one site, wombat abundance was reduced by increased mortality from mange disease, whereas at the other site, kangaroo abundance was reduced primarily by culling. We used the modified Lotka-Volterra competition (LVC) models to describe the mechanism of resource competition and fitted those models to the empirical data by maximum likelihood estimation. We found strong negative relationships between the abundance of wombats and kangaroos at each site, and resource competition was also mechanistically supported by the modified LVC models. The estimated competition coefficients indicate that bare-nosed wombats are a slightly superior competitor of eastern grey kangaroos than vice versa, and that intraspecific competition is almost twice as strong as interspecific competition. In addition, this study facilitated the calculation of the transmission rate associated with mange disease at one site (0.011), and the removal rate owing to culling, the introduction of a predator species, and drought at the other site (0.0006). Collectively, this research represents a rare empirical demonstration of resource competition between large mammals and contributes new insight into the ecology of two of Australia's largest grazing marsupials.
Collapse
Affiliation(s)
- Julie Tamura
- School of Natural Sciences, University of Tasmania, Sandy Bay, TAS, Australia.
| | - Janeane Ingram
- School of Geography, Planning and Spatial Sciences, University of Tasmania, Sandy Bay, TAS, Australia
| | - Alynn M Martin
- School of Natural Sciences, University of Tasmania, Sandy Bay, TAS, Australia
| | | | - Scott Carver
- School of Natural Sciences, University of Tasmania, Sandy Bay, TAS, Australia
| |
Collapse
|
21
|
USE OF FLUMETHRIN-IMPREGNATED COLLARS TO MANAGE AN EPIDEMIC OF SARCOPTIC MANGE IN AN URBAN POPULATION OF ENDANGERED SAN JOAQUIN KIT FOXES ( VULPES MACROTIS MUTICA). J Zoo Wildl Med 2021; 51:631-642. [PMID: 33480538 DOI: 10.1638/2019-0197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2020] [Indexed: 11/21/2022] Open
Abstract
Sarcoptic mange epidemics can have long-lasting impacts on susceptible wildlife populations, potentially contributing to local population declines and extirpation. Since 2013, there have been 460 reported cases of sarcoptic mange in an urban population of endangered San Joaquin kit foxes (Vulpes macrotis mutica) in Bakersfield, CA, with many of them resulting in fatality. As part of a multifaceted response to mitigate mange-caused mortalities and reduce this conservation threat, a 2-yr randomized field trial was conducted to assess the efficacy of long-acting flumethrin collars against sarcoptic mange in kit foxes. Thirty-five kit foxes living in a high-density population on a college campus were captured, examined, administered selamectin, and each fox randomly assigned to either receive a flumethrin collar placed within a VHF radio collar or a VHF radio collar without flumethrin. The survival and mange-infestation status of study animals was monitored via radio telemetry, remote cameras, and periodic recapture examinations and compared among treated and control kit foxes using a Cox proportional hazards model. The average time to onset of mange for treated kit foxes (176 days) was similar to controls (171 days) and treatment with flumethrin did not significantly reduce mange risk for all kit foxes. Kit foxes that had a mild mange infestation at the beginning of the study were four times more likely to develop mange again, regardless of flumethrin treatment, compared with kit foxes that had no signs at initial recruitment. This study demonstrates an approach to evaluating population-level protection and contributes to the limited literature on efficacy, safety, and practicality of acaricides in free-ranging wildlife.
Collapse
|
22
|
Escobar LE, Carver S, Cross PC, Rossi L, Almberg ES, Yabsley MJ, Niedringhaus KD, Van Wick P, Dominguez-Villegas E, Gakuya F, Xie Y, Angelone S, Gortázar C, Astorga F. Sarcoptic mange: An emerging panzootic in wildlife. Transbound Emerg Dis 2021; 69:927-942. [PMID: 33756055 DOI: 10.1111/tbed.14082] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Sarcoptic mange, a skin infestation caused by the mite Sarcoptes scabiei, is an emerging disease for some species of wildlife, potentially jeopardizing their welfare and conservation. Sarcoptes scabiei has a near-global distribution facilitated by its forms of transmission and use of a large diversity of host species (many of those with broad geographic distribution). In this review, we synthesize the current knowledge concerning the geographic and host taxonomic distribution of mange in wildlife, the epidemiological connections between species, and the potential threat of sarcoptic mange for wildlife conservation. Recent sarcoptic mange outbreaks in wildlife appear to demonstrate ongoing geographic spread, increase in the number of hosts and increased virulence. Sarcoptic mange has been reported in at least 12 orders, 39 families and 148 species of domestic and wild mammals, making it one of the most generalist ectoparasites of mammals. Taxonomically, the orders with most species found infested so far include Perissodactyla (67% species from the entire order), Artiodactyla (47%), and Diprotodontia (67% from this order). This suggests that new species from these mammal orders are likely to suffer cross-species transmission and be reported positive to sarcoptic mange as surveillance improves. We propose a new agenda for the study of sarcoptic mange in wildlife, including the study of the global phylogeography of S. scabiei, linkages between ecological host traits and sarcoptic mange susceptibility, immunology of individuals and species, development of control strategies in wildlife outbreaks and the effects of global environmental change in the sarcoptic mange system. The ongoing transmission globally and sustained spread among areas and wildlife species make sarcoptic mange an emerging panzootic in wildlife. A better understanding of sarcoptic mange could illuminate the aspects of ecological and evolutionary drivers in cross-species transmission for many emerging diseases.
Collapse
Affiliation(s)
- Luis E Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - Scott Carver
- Department of Biological Sciences, University of Tasmania, Hobart, Australia
| | - Paul C Cross
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT, USA
| | - Luca Rossi
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Torino, Italy
| | | | - Michael J Yabsley
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.,Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Kevin D Niedringhaus
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | | | | | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | | | | | - Francisca Astorga
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de las Américas, Santiago, Chile
| |
Collapse
|
23
|
Carver S, Charleston M, Hocking G, Gales R, Driessen MM. Long‐Term Spatiotemporal Dynamics and Factors Associated with Trends in Bare‐Nosed Wombats. J Wildl Manage 2021. [DOI: 10.1002/jwmg.22014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Scott Carver
- Department of Biological Sciences University of Tasmania Private Bag 55 Hobart Tasmania 7001 Australia
| | - Michael Charleston
- Department of Mathematics and Statistics University of Tasmania Tasmania Australia
| | - Gregory Hocking
- Department of Primary Industries, Parks, Water and Environment Tasmanian Government GPO Box 44 Hobart Tasmania 7000 Australia
| | - Rosemary Gales
- Department of Primary Industries, Parks, Water and Environment Tasmanian Government GPO Box 44 Hobart Tasmania 7000 Australia
| | - Michael M. Driessen
- Department of Primary Industries, Parks, Water and Environment Tasmanian Government GPO Box 44 Hobart Tasmania 7000 Australia
| |
Collapse
|
24
|
Wilkinson V, Takano K, Nichols D, Martin A, Holme R, Phalen D, Mounsey K, Charleston M, Kreiss A, Pye R, Browne E, Næsborg-Nielsen C, Richards SA, Carver S. Fluralaner as a novel treatment for sarcoptic mange in the bare-nosed wombat (Vombatus ursinus): safety, pharmacokinetics, efficacy and practicable use. Parasit Vectors 2021; 14:18. [PMID: 33407820 PMCID: PMC7789169 DOI: 10.1186/s13071-020-04500-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Background Sarcoptic mange causes significant animal welfare and occasional conservation concerns for bare-nosed wombats (Vombatus ursinus) throughout their range. To date, in situ chemotherapeutic interventions have involved macrocytic lactones, but their short duration of action and need for frequent re-administration has limited treatment success. Fluralaner (Bravecto®; MSD Animal Health), a novel isoxazoline class ectoparasiticide, has several advantageous properties that may overcome such limitations. Methods Fluralaner was administered topically at 25 mg/kg (n = 5) and 85 mg/kg (n = 2) to healthy captive bare-nosed wombats. Safety was assessed over 12 weeks by clinical observation and monitoring of haematological and biochemical parameters. Fluralaner plasma pharmacokinetics were quantified using ultra-performance liquid chromatography and tandem mass spectrometry. Efficacy was evaluated through clinical assessment of response to treatment, including mange and body condition scoring, for 15 weeks after topical administration of 25 mg/kg fluralaner to sarcoptic mange-affected wild bare-nosed wombats (n = 3). Duration of action was determined through analysis of pharmacokinetic parameters and visual inspection of study subjects for ticks during the monitoring period. Methods for diluting fluralaner to enable ‘pour-on’ application were compared, and an economic and treatment effort analysis of fluralaner relative to moxidectin was undertaken. Results No deleterious health impacts were detected following fluralaner administration. Fluralaner was absorbed and remained quantifiable in plasma throughout the monitoring period. For the 25 mg/kg and 85 mg/kg treatment groups, the respective means for maximum recorded plasma concentrations (Cmax) were 6.2 and 16.4 ng/ml; for maximum recorded times to Cmax, 3.0 and 37.5 days; and for plasma elimination half-lives, 40.1 and 166.5 days. Clinical resolution of sarcoptic mange was observed in all study animals within 3–4 weeks of treatment, and all wombats remained tick-free for 15 weeks. A suitable product for diluting fluralaner into a ‘pour-on’ was found. Treatment costs were competitive, and predicted treatment effort was substantially lower relative to moxidectin. Conclusions Fluralaner appears to be a safe and efficacious treatment for sarcoptic mange in the bare-nosed wombat, with a single dose lasting over 1–3 months. It has economic and treatment-effort-related advantages over moxidectin, the most commonly used alternative. We recommend a dose of 25 mg/kg fluralaner and, based on the conservative assumption that at least 50% of a dose makes dermal contact, Bravecto Spot-On for Large Dogs as the most appropriate formulation for adult bare-nosed wombats. Graphical abstract ![]()
Collapse
Affiliation(s)
- Vicky Wilkinson
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, Australia.
| | - Kotaro Takano
- The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD, Australia
| | - David Nichols
- Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, Tasmania, Australia
| | - Alynn Martin
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, Australia
| | - Roz Holme
- Cedar Creek Wombat Rescue Inc, PO Box 538, Cessnock, NSW, Australia
| | - David Phalen
- The University of Sydney, C01A, JI Shute, Camden, Sydney, NSW, Australia
| | - Kate Mounsey
- The University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD, Australia
| | - Michael Charleston
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, Australia
| | - Alexandre Kreiss
- Bonorong Wildlife Sanctuary, 593 Briggs Rd, Brighton, Tasmania, Australia
| | - Ruth Pye
- Bonorong Wildlife Sanctuary, 593 Briggs Rd, Brighton, Tasmania, Australia
| | - Elizabeth Browne
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, Australia
| | | | - Shane A Richards
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, Australia
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, Australia
| |
Collapse
|
25
|
Moroni B, Valldeperes M, Serrano E, López-Olvera JR, Lavín S, Rossi L. Comment on: "The treatment of sarcoptic mange in wildlife: a systematic review". Parasit Vectors 2020; 13:471. [PMID: 32933573 PMCID: PMC7491160 DOI: 10.1186/s13071-020-04347-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/05/2020] [Indexed: 11/10/2022] Open
Abstract
This letter comments on the article “The treatment of sarcoptic mange in wildlife: a systematic review” published in Parasites & Vectors 2019, 12:99, and discusses the limitations in the use of endectocides for scabies control in free-ranging wildlife. The ecological impact and drug resistance to ivermectin are also discussed. In our view, scabies control in free-ranging wildlife should be based preferably on population management measures, and whether to apply individual treatments to free-ranging populations should be considered very carefully and avoided where not absolutely warranted.
Collapse
Affiliation(s)
- Barbara Moroni
- Dipartimento di Scienze Veterinarie, Universitá di Torino, Grugliasco, Torino, Italy
| | - Marta Valldeperes
- Wildlife Ecology & Health group (WE&H), and Serveid'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Emmanuel Serrano
- Wildlife Ecology & Health group (WE&H), and Serveid'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Jorge Ramón López-Olvera
- Wildlife Ecology & Health group (WE&H), and Serveid'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Santiago Lavín
- Wildlife Ecology & Health group (WE&H), and Serveid'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Luca Rossi
- Dipartimento di Scienze Veterinarie, Universitá di Torino, Grugliasco, Torino, Italy.
| |
Collapse
|