1
|
Holmes AE, Baerwald MR, Rodzen J, Schreier BM, Mahardja B, Finger AJ. Evaluating environmental DNA detection of a rare fish in turbid water using field and experimental approaches. PeerJ 2024; 12:e16453. [PMID: 38188170 PMCID: PMC10768661 DOI: 10.7717/peerj.16453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/23/2023] [Indexed: 01/09/2024] Open
Abstract
Detection sensitivity of aquatic species using environmental DNA (eDNA) generally decreases in turbid water but is poorly characterized. In this study, eDNA detection targeted delta smelt (Hypomesus transpacificus), a critically endangered estuarine fish associated with turbid water. eDNA sampling in the field was first paired with a trawl survey. Species-specific detection using a Taqman qPCR assay showed concordance between the methods, but a weak eDNA signal. Informed by the results of field sampling, an experiment was designed to assess how turbidity and filtration methods influence detection of a rare target. Water from non-turbid (5 NTU) and turbid (50 NTU) estuarine sites was spiked with small volumes (0.5 and 1 mL) of water from a delta smelt tank to generate low eDNA concentrations. Samples were filtered using four filter types: cartridge filters (pore size 0.45 μm) and 47 mm filters (glass fiber, pore size 1.6 μm and polycarbonate, pore sizes 5 and 10 μm). Prefiltration was also tested as an addition to the filtration protocol for turbid water samples. eDNA copy numbers were analyzed using a censored data method for qPCR data. The assay limits and lack of PCR inhibition indicated an optimized assay. Glass fiber filters yielded the highest detection rates and eDNA copies in non-turbid and turbid water. Prefiltration improved detection in turbid water only when used with cartridge and polycarbonate filters. Statistical analysis identified turbidity as a significant effect on detection probability and eDNA copies detected; filter type and an interaction between filter type and prefilter were significant effects on eDNA copies detected, suggesting that particulate-filter interactions can affect detection sensitivity. Pilot experiments and transparent criteria for positive detection could improve eDNA surveys of rare species in turbid environments.
Collapse
Affiliation(s)
- Ann E. Holmes
- Genomic Variation Laboratory, University of California, Davis, Davis, California, United States
- Graduate Group in Ecology, University of California, Davis, Davis, California, United States
| | - Melinda R. Baerwald
- California Department of Water Resources, West Sacramento, California, United States
| | - Jeff Rodzen
- Genetics Research Laboratory, California Department of Fish and Wildlife, Sacramento, California, United States
| | - Brian M. Schreier
- California Department of Water Resources, West Sacramento, California, United States
| | - Brian Mahardja
- Bureau of Reclamation, US Department of the Interior, Sacramento, California, United States
| | - Amanda J. Finger
- Genomic Variation Laboratory, University of California, Davis, Davis, California, United States
| |
Collapse
|
2
|
Duarte S, Simões L, Costa FO. Current status and topical issues on the use of eDNA-based targeted detection of rare animal species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166675. [PMID: 37647964 DOI: 10.1016/j.scitotenv.2023.166675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Animal detection through DNA present in environmental samples (eDNA) is a valuable tool for detecting rare species, that are difficult to observe and monitor. eDNA-based tools are underpinned by molecular evolutionary principles, key to devising tools to efficiently single out a targeted species from an environmental sample. Here, we present a comprehensive review of the use of eDNA-based methods for the detection of targeted animal species, such as rare, endangered, or invasive species, through the analysis of 549 publications (2008-2022). Aquatic ecosystems have been the most surveyed, in particular, freshwaters (74 %), and to a less extent marine (14 %) and terrestrial systems (10 %). Vertebrates, in particular, fish (38 %), and endangered species, have been the focus of most of these studies, and Cytb and COI are the most employed markers. Among invertebrates, assays have been mainly designed for Mollusca and Crustacea species (21 %), in particular, to target invasive species, and COI the most employed marker. Targeted molecular approaches, in particular qPCR, have been the most adopted (75 %), while eDNA metabarcoding has been rarely used to target single or few species (approx. 6 %). However, less attention has been given in these studies to the effects of environmental factors on the amount of shed DNA, the differential amount of shed DNA among species, or the sensitivity of the markers developed, which may impact the design of the assays, particularly to warrant the required detection level and avoid false negatives and positives. The accuracy of the assays will also depend on the availability of genetic data and vouchered tissue or DNA samples from closely related species to assess both marker and primers' specificity. In addition, eDNA-based assays developed for a particular species may have to be refined for use in a new geographic area taking into account site-specific populations, as well as any intraspecific variation.
Collapse
Affiliation(s)
- Sofia Duarte
- Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Luara Simões
- Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Filipe O Costa
- Centre of Molecular and Environmental Biology (CBMA) and ARNET-Aquatic Research Network, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Takahashi M, Saccò M, Kestel JH, Nester G, Campbell MA, van der Heyde M, Heydenrych MJ, Juszkiewicz DJ, Nevill P, Dawkins KL, Bessey C, Fernandes K, Miller H, Power M, Mousavi-Derazmahalleh M, Newton JP, White NE, Richards ZT, Allentoft ME. Aquatic environmental DNA: A review of the macro-organismal biomonitoring revolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162322. [PMID: 36801404 DOI: 10.1016/j.scitotenv.2023.162322] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Environmental DNA (eDNA) is the fastest growing biomonitoring tool fuelled by two key features: time efficiency and sensitivity. Technological advancements allow rapid biodiversity detection at both species and community levels with increasing accuracy. Concurrently, there has been a global demand to standardise eDNA methods, but this is only possible with an in-depth overview of the technological advancements and a discussion of the pros and cons of available methods. We therefore conducted a systematic literature review of 407 peer-reviewed papers on aquatic eDNA published between 2012 and 2021. We observed a gradual increase in the annual number of publications from four (2012) to 28 (2018), followed by a rapid growth to 124 publications in 2021. This was mirrored by a tremendous diversification of methods in all aspects of the eDNA workflow. For example, in 2012 only freezing was applied to preserve filter samples, whereas we recorded 12 different preservation methods in the 2021 literature. Despite an ongoing standardisation debate in the eDNA community, the field is seemingly moving fast in the opposite direction and we discuss the reasons and implications. Moreover, by compiling the largest PCR-primer database to date, we provide information on 522 and 141 published species-specific and metabarcoding primers targeting a wide range of aquatic organisms. This works as a user-friendly 'distillation' of primer information that was hitherto scattered across hundreds of papers, but the list also reflects which taxa are commonly studied with eDNA technology in aquatic environments such as fish and amphibians, and reveals that groups such as corals, plankton and algae are under-studied. Efforts to improve sampling and extraction methods, primer specificity and reference databases are crucial to capture these ecologically important taxa in future eDNA biomonitoring surveys. In a rapidly diversifying field, this review synthetises aquatic eDNA procedures and can guide eDNA users towards best practice.
Collapse
Affiliation(s)
- Miwa Takahashi
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia; Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Environomics Future Science Platform, Crawley, Western Australia, Australia.
| | - Mattia Saccò
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia.
| | - Joshua H Kestel
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Georgia Nester
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Matthew A Campbell
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Mieke van der Heyde
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Matthew J Heydenrych
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia; Jarman Laboratory, Indian Ocean Marine Research Centre, School of Biological Sciences, University of Western Australia, Australia
| | - David J Juszkiewicz
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Paul Nevill
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Kathryn L Dawkins
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Cindy Bessey
- Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Oceans and Atmosphere, Crawley, Western Australia, Australia
| | - Kristen Fernandes
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Haylea Miller
- Commonwealth Scientific and Industrial Research Organization, Indian Oceans Marine Research Centre, Environomics Future Science Platform, Crawley, Western Australia, Australia
| | - Matthew Power
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Mahsa Mousavi-Derazmahalleh
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Joshua P Newton
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Nicole E White
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Zoe T Richards
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Lab, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA 6102, Australia; Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
DNA Barcoding of Trichobilharzia (Trematoda: Schistosomatidae) Species and Their Detection in eDNA Water Samples. DIVERSITY 2023. [DOI: 10.3390/d15010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We designed and tested species-specific PCR primers to detect Trichobilharzia species via environmental DNA (eDNA) barcoding in selected Austrian water bodies. Tests were performed with eDNA samples from the field as well as with artificial samples from the lab, where snails releasing cercariae were kept in aquariums. From two localities, Trichobilharzia was documented based on the release of cercariae from snails, enabling morphological species identification. In both cases, the corresponding species were detected via eDNA: Trichobilharzia szidati and Trichobilharzia physellae. Nonetheless, the stochasticity was high in the replicates. PCR tests with aquarium water into which the cercariae had been released allowed eDNA detection even after 44 days. As in the PCRs with eDNA samples from the field, positive results of these experiments were not obtained for all samples and replicates. PCR sensitivity tests with dilution series of T. szidati genomic DNA as well as of PCR amplification products yielded successful amplification down to concentrations of 0.83 pg/µL and 0.008 pg/µL, respectively. Our results indicate that the presumed species specificity of PCR primers may not be guaranteed, even if primers were designed for specific species. This entails misidentification risks, particularly in areas with incomplete species inventories.
Collapse
|
5
|
van der Heyde M, Bunce M, Nevill P. Key factors to consider in the use of environmental DNA metabarcoding to monitor terrestrial ecological restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157617. [PMID: 35901901 DOI: 10.1016/j.scitotenv.2022.157617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/30/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Ecological restoration of terrestrial environments is a globally important process to combat the loss of biodiversity and ecosystem services. Holistic monitoring of restored biota and active management of restoration is necessary to improve restoration processes and outcomes, and provide evidence to stakeholders that targets are being achieved. Increasingly, environmental DNA (eDNA) metabarcoding is used as a restoration monitoring tool because it is able to generate biodiversity data rapidly, accurately, non-destructively, and reliably, on a wide breadth of organisms from soil microbes to mammals. The overall objective of this review is to discuss the key factors to consider in the use of environmental DNA for monitoring of restored terrestrial ecosystems, hopefully improving monitoring, and ultimately, restoration outcomes. We identified that the majority of eDNA based studies of ecosystem restoration are currently conducted in Europe, North America, and Australia, and that almost half of total studies were published in 2021-22. Soil was the most popular sample substrate, soil microbial communities the most targeted taxa, and forests the most studied ecosystem. We suggest there is no 'one size fits all' approach to restoration monitoring using eDNA, and discuss survey design. Factors to consider include substrate selection, sample collection and storage, assay selection, and data interpretation, all of which require careful planning to obtain reliable, and accurate information that can be used for restoration monitoring and decision making. We explore future directions for research and argue that eDNA metabarcoding can be a useful tool in the restoration monitoring 'toolkit', but requires informed application and greater accessibility to data by a wide spectrum of stakeholders.
Collapse
Affiliation(s)
- Mieke van der Heyde
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, GPP Box U1987, Perth, Western Australia 6102, Australia; Trace and Environmental DNA Laboratory, School of Life and Molecular Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6102, Australia.
| | - Michael Bunce
- Trace and Environmental DNA Laboratory, School of Life and Molecular Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6102, Australia; Institute of Environmental Science and Research (ESR), Kenepuru, Porirua 5022, New Zealand
| | - Paul Nevill
- ARC Centre for Mine Site Restoration, School of Molecular and Life Sciences, Curtin University, Bentley, GPP Box U1987, Perth, Western Australia 6102, Australia; Trace and Environmental DNA Laboratory, School of Life and Molecular Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6102, Australia
| |
Collapse
|
6
|
Villacorta-Rath C, Espinoza T, Cockayne B, Schaffer J, Burrows D. Environmental DNA analysis confirms extant populations of the cryptic Irwin’s turtle within its historical range. BMC Ecol Evol 2022; 22:57. [PMID: 35501685 PMCID: PMC9059348 DOI: 10.1186/s12862-022-02009-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background Approximately 50% of freshwater turtles worldwide are currently threatened by habitat loss, rural development and altered stream flows. Paradoxically, reptiles are understudied organisms, with many species lacking basic geographic distribution and abundance data. The iconic Irwin’s turtle, Elseya irwini, belongs to a unique group of Australian endemic freshwater turtles capable of cloacal respiration. Water resource development, increased presence of saltwater crocodiles and its cryptic behaviour, have made sampling for Irwin’s turtle in parts of its range problematic, resulting in no confirmed detections across much of its known range for > 25 years. Here, we used environmental DNA (eDNA) analysis for E. irwini detection along its historical and contemporary distribution in the Burdekin, Bowen and Broken River catchments and tributaries. Five replicate water samples were collected at 37 sites across those three river catchments. Environmental DNA was extracted using a glycogen-aided precipitation method and screened for the presence of E. irwini through an eDNA assay targeting a 127 base pair-long fragment of the NADH dehydrogenase 4 (ND4) mitochondrial gene. Results Elseya irwini eDNA was detected at sites within its historic distribution in the lower Burdekin River, where the species had not been formally recorded for > 25 years, indicating the species still inhabits the lower Burdekin area. We also found higher levels of E. iriwni eDNA within its contemporary distribution in the Bowen and Broken Rivers, matching the prevailing scientific view that these areas host larger populations of E. irwini. Conclusions This study constitutes the first scientific evidence of E. irwini presence in the lower Burdekin since the original type specimens were collected as part of its formal description, shortly after the construction of the Burdekin Falls Dam. From the higher percentage of positive detections in the upper reaches of the Broken River (Urannah Creek), we conclude that this area constitutes the core habitat area for the species. Our field protocol comprises a user-friendly, time-effective sampling method. Finally, due to safety risks associated with traditional turtle sampling methods in the Burdekin River (e.g., estuarine crocodiles) we propose eDNA sampling as the most pragmatic detection method available for E. irwini. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02009-6.
Collapse
|
7
|
Ellis MR, Clark ZSR, Treml EA, Brown MS, Matthews TG, Pocklington JB, Stafford-Bell RE, Bott NJ, Nai YH, Miller AD, Sherman CDH. Detecting marine pests using environmental DNA and biophysical models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151666. [PMID: 34793806 DOI: 10.1016/j.scitotenv.2021.151666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
The spread of marine pests is occurring at record rates due to globalisation and increasing trade. Environmental DNA (eDNA) is an emerging tool for pest surveillance, allowing for the detection of genetic material shed by organisms into the environment. However, factors influencing the spatial and temporal detection limits of eDNA in marine environments are poorly understood. In this study we use eDNA assays to assess the invasive ranges of two marine pests in south-eastern Australia, the kelp Undaria pinnatifida and the seastar Asterias amurensis. We explored the temporal and spatial detection limits of eDNA under different oceanographic conditions by combining estimates of eDNA decay with biophysical modelling. Positive eDNA detections at several new locations indicate the invasive range of both pest species is likely to be wider than currently assumed. Environmental DNA decay rates were similar for both species, with a decay rate constant of 0.035 h-1 for U. pinnatifida, and a decay rate constant of 0.041 h-1 for A. amurensis, resulting in a 57-73% decrease in eDNA concentrations in the first 24 h and decaying beyond the limits of detection after 3-4 days. Biophysical models informed by eDNA decay profiles indicate passive transport of eDNA up to a maximum of 10 to 20 km from its source, with a ~90-95% reduction in eDNA concentration within 1-3 km from the source, depending on local oceanography. These models suggest eDNA signals are likely to be highly localised, even in complex marine environments. This was confirmed with spatially replicated eDNA sampling around an established U. pinnatifida population indicating detection limits of ~750 m from the source. This study highlights the value of eDNA methods for marine pest surveillance and provides a much-needed description of the spatio-temporal detection limits of eDNA under different oceanographic conditions.
Collapse
Affiliation(s)
- Morgan R Ellis
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| | - Zach S R Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| | - Eric A Treml
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Morgan S Brown
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Ty G Matthews
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Jacqueline B Pocklington
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; Environment and Science Division, Parks Victoria, Melbourne, Victoria 3000, Australia
| | - Richard E Stafford-Bell
- Department of Jobs, Precincts and Regions, 475 Mickleham Road, Attwood, Vic. 3049, Australia
| | - Nathan J Bott
- School of Science, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia
| | - Yi Heng Nai
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria, 3220, Australia
| | - Adam D Miller
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| | - Craig D H Sherman
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia.
| |
Collapse
|
8
|
A Comparison of eDNA and Visual Survey Methods for Detection of Longnose Darter Percina nasuta in Missouri. FISHES 2022. [DOI: 10.3390/fishes7020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The longnose darter Percina nasuta is a rare and cryptic fish that recently disappeared from much of its historic range. We developed and used an environmental DNA (eDNA) assay for longnose darter paired with visual surveys to better determine the species’ range and compare detection probability between sampling approaches in an occupancy modeling framework. We detected longnose darter eDNA further upstream in the mainstem St. Francis River than previously reported and in a tributary for the first time. Our multi-scale occupancy approach compared models where detection was constant against a model that allowed detection to vary by survey method. The constant model received the most support indicating survey method was not a strong predictor and detection was estimated at 0.70 (0.45–0.86; 95% CI) across both methods. Our study produced effective longnose darter eDNA primers and demonstrated the application of eDNA for sampling small-bodied, cryptic fish. We detected longnose darter eDNA 27 km upstream of their known range and determined that snorkel surveys are the most efficient sampling method if water clarity allows. We recommend target sample sizes to achieve various detection goals for both sample methods and our results inform future design of distributional and monitoring efforts.
Collapse
|
9
|
Ramón-Laca A, Wells A, Park L. A workflow for the relative quantification of multiple fish species from oceanic water samples using environmental DNA (eDNA) to support large-scale fishery surveys. PLoS One 2021; 16:e0257773. [PMID: 34570816 PMCID: PMC8476043 DOI: 10.1371/journal.pone.0257773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022] Open
Abstract
While the number of published marine studies using environmental DNA (eDNA) has increased substantially in recent years, marine fish surveys are still scarce. To examine the potential for eDNA to support marine fisheries monitoring surveys, we optimized an eDNA isolation method, developed a multispecies assay and tested it on eDNA samples collected along the Pacific coast of the United States. Four commercial DNA extraction kits that exploit the capability of the nucleic acids binding a solid phase (two using a silica matrix and two magnetic beads) as well an organic separation method were tested. A species-specific multiplex qPCR assay was developed and tested to simultaneously target Pacific hake (Merluccius productus), Pacific lamprey (Entosphenus tridentatus) and eulachon (Thaleichthys pacificus). The specificity of the assay was tested in silico, in vitro and in natura. Environmental DNA isolation using phenol:chloroform:isoamyl purification with a phase lock was optimized and yielded the highest amount of total and target DNA and was used to extract 46 marine water samples for the detection of the three species of interest. The multiplex qPCR assay used in the quantification process was also optimized to provide convenience and accuracy. Pacific hake was present in 44% of the eDNA samples while the other two species were absent. Here, we present a complete workflow for the simultaneous detection and quantification of multiple marine fish species using eDNA. This workflow supports large-scale at-sea sampling efforts with preservation at ambient temperatures and has demonstrated DNA extraction efficiency and reliability. The multiplex qPCR assay is shown to be sensitive and specific for the purposes of simultaneously monitoring the relative abundance of multiple targeted fish species.
Collapse
Affiliation(s)
- Ana Ramón-Laca
- School of Marine Environmental Affairs, University of Washington, Seattle, WA, United States of America
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, United States of America
| | - Abigail Wells
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, United States of America
- Lynker Technologies, Leesburg, VA, United States of America
| | - Linda Park
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, United States of America
| |
Collapse
|
10
|
Jo T, Ikeda S, Fukuoka A, Inagawa T, Okitsu J, Katano I, Doi H, Nakai K, Ichiyanagi H, Minamoto T. Utility of environmental DNA analysis for effective monitoring of invasive fish species in reservoirs. Ecosphere 2021. [DOI: 10.1002/ecs2.3643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Toshiaki Jo
- Graduate School of Human Development and Environment Kobe University 3‐11, Tsurukabuto, Nada‐ku Kobe Hyogo657‐8501Japan
- Research Fellow of Japan Society for the Promotion of Science 5‐3‐1 Kojimachi Chiyoda‐ku Tokyo102‐0083Japan
| | - Saki Ikeda
- Faculty of Human Development Kobe University 3‐11, Tsurukabuto, Nada‐ku Kobe Hyogo657‐8501Japan
| | - Arisa Fukuoka
- Graduate School of Human Development and Environment Kobe University 3‐11, Tsurukabuto, Nada‐ku Kobe Hyogo657‐8501Japan
| | - Takashi Inagawa
- OYO Corporation 275, Aza‐Ishibata, Oaza‐Nishikata, Miharu‐machi Tamura‐gun Fukushima963‐7722Japan
| | - Jiro Okitsu
- OYO Corporation 275, Aza‐Ishibata, Oaza‐Nishikata, Miharu‐machi Tamura‐gun Fukushima963‐7722Japan
| | - Izumi Katano
- Faculty of Science Nara Women’s University Kitauoyahigashi‐machi Nara630‐8506Japan
| | - Hideyuki Doi
- Graduate School of Simulation Studies University of Hyogo Minatojima‐minamimachi Kobe Hyogo650‐0047Japan
| | - Katsuki Nakai
- Lake Biwa Museum 1091 Oroshimo Kusatsu Shiga525‐0001Japan
| | - Hidetaka Ichiyanagi
- Water Resources Environment Center 2‐14‐2, Kojimachi Chiyoda‐ku Tokyo102‐0083Japan
| | - Toshifumi Minamoto
- Graduate School of Human Development and Environment Kobe University 3‐11, Tsurukabuto, Nada‐ku Kobe Hyogo657‐8501Japan
| |
Collapse
|
11
|
Fediajevaite J, Priestley V, Arnold R, Savolainen V. Meta-analysis shows that environmental DNA outperforms traditional surveys, but warrants better reporting standards. Ecol Evol 2021; 11:4803-4815. [PMID: 33976849 PMCID: PMC8093654 DOI: 10.1002/ece3.7382] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 01/05/2023] Open
Abstract
Decades of environmental DNA (eDNA) method application, spanning a wide variety of taxa and habitats, has advanced our understanding of eDNA and underlined its value as a tool for conservation practitioners. The general consensus is that eDNA methods are more accurate and cost-effective than traditional survey methods. However, they are formally approved for just a few species globally (e.g., Bighead Carp, Silver Carp, Great Crested Newt). We conducted a meta-analysis of studies that directly compare eDNA with traditional surveys to evaluate the assertion that eDNA methods are consistently "better."Environmental DNA publications for multiple species or single macro-organism detection were identified using the Web of Science, by searching "eDNA" and "environmental DNA" across papers published between 1970 and 2020. The methods used, focal taxa, habitats surveyed, and quantitative and categorical results were collated and analyzed to determine whether and under what circumstances eDNA outperforms traditional surveys.Results show that eDNA methods are cheaper, more sensitive, and detect more species than traditional methods. This is, however, taxa-dependent, with amphibians having the highest potential for detection by eDNA survey. Perhaps most strikingly, of the 535 papers reviewed just 49 quantified the probability of detection for both eDNA and traditional survey methods and studies were three times more likely to give qualitative statements of performance. Synthesis and applications: The results of this meta-analysis demonstrate that where there is a direct comparison, eDNA surveys of macro-organisms are more accurate and efficient than traditional surveys. This conclusion, however, is based on just a fraction of available eDNA papers as most do not offer this granularity. We recommend that conclusions are substantiated with comparable and quantitative data. Where a direct comparison has not been made, we caution against the use of qualitative statements about relative performance. This consistency and rigor will simplify how the eDNA research community tracks methods-based advances and will also provide greater clarity for conservation practitioners. To this end suggest reporting standards for eDNA studies.
Collapse
Affiliation(s)
| | | | - Richard Arnold
- Thomson Environmental Consultants Compass House Surrey Research Park Guildford UK
| | | |
Collapse
|
12
|
Dressler TL, Lafferty KD, Jerde CL, Dudley T. Looking where it's hard to see: a case study documenting rare Eucyclogobius newberryi presence in a California lagoon. JOURNAL OF FISH BIOLOGY 2020; 97:572-576. [PMID: 32441325 DOI: 10.1111/jfb.14401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/16/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Environmental DNA (eDNA) analysis is increasingly used for biomonitoring and research of fish populations and communities by environmental resource managers and academic researchers. Although managers are much interested in expanding the use of eDNA as a survey technique, they are sceptical about both its utility (given that information is often limited to presence/absence of a species) and feasibility (given the need for proper laboratory facilities for sample processing). Nonetheless, under the right circumstances, eDNA analysis is cost-effective compared to many traditional aquatic survey methods and does not disturb habitat or harm the animals being surveyed. This article presents a case study in which eDNA analysis was successfully used to document the presence of a rare fish species in a waterway earmarked for restoration. The authors discuss the conditions that allowed this study to occur quickly and smoothly and speculate on how the goals of researchers and managers can be integrated for efficient and informative use of this tool.
Collapse
Affiliation(s)
- Terra L Dressler
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, USA
| | - Kevin D Lafferty
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
- U.S. Geological Survey Western Ecological Research Center, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Christopher L Jerde
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Tom Dudley
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
13
|
Furlan EM, Davis J, Duncan RP. Identifying error and accurately interpreting environmental DNA metabarcoding results: A case study to detect vertebrates at arid zone waterholes. Mol Ecol Resour 2020; 20:1259-1276. [PMID: 32310337 DOI: 10.1111/1755-0998.13170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 12/18/2022]
Abstract
Environmental DNA (eDNA) metabarcoding surveys enable rapid, noninvasive identification of taxa from trace samples with wide-ranging applications from characterizing local biodiversity to identifying food-web interactions. However, the technique is prone to error from two major sources: (a) contamination through foreign DNA entering the workflow, and (b) misidentification of DNA within the workflow. Both types of error have the potential to obscure true taxon presence or to increase taxonomic richness by incorrectly identifying taxa as present at sample sites, but multiple error sources can remain unaccounted for in metabarcoding studies. Here, we use data from an eDNA metabarcoding study designed to detect vertebrate species at waterholes in Australia's arid zone to illustrate where and how in the workflow errors can arise, and how to mitigate those errors. We detected the DNA of 36 taxa spanning 34 families, 19 orders and five vertebrate classes in water samples from waterholes, demonstrating the potential for eDNA metabarcoding surveys to provide rapid, noninvasive detection in remote locations, and to widely sample taxonomic diversity from aquatic through to terrestrial taxa. However, we initially identified 152 taxa in the samples, meaning there were many false positive detections. We identified the sources of these errors, allowing us to design a stepwise process to detect and remove error, and provide a template to minimize similar errors that are likely to arise in other metabarcoding studies. Our findings suggest eDNA metabarcoding surveys need to be carefully conducted and screened for errors to ensure their accuracy.
Collapse
Affiliation(s)
- Elise M Furlan
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - Jenny Davis
- Research Institute for Environment and Livelihoods, College of Engineering, IT and Environment, Charles Darwin University, Casuarina, NT, Australia
| | - Richard P Duncan
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| |
Collapse
|