1
|
O'Shaughnessy KA, Knights AM, Hawkins SJ, Hanley ME, Lunt P, Thompson RC, Firth LB. Metrics matter: Multiple diversity metrics at different spatial scales are needed to understand species diversity in urban environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:164958. [PMID: 37331387 DOI: 10.1016/j.scitotenv.2023.164958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Worldwide, natural habitats are being replaced by artificial structures due to urbanisation. Planning of such modifications should strive for environmental net gain that benefits biodiversity and ecosystems. Alpha (α) and gamma (γ) diversity are often used to assess 'impact' but are insensitive metrics. We test several diversity measures across two spatial scales to compare species diversity in natural and artificial habitats. We show γ-diversity indicates equivalency in biodiversity between natural and artificial habitats, but natural habitats support greater taxon (α) and functional richness. Within-site β-diversity was also greater in natural habitats, but among-site β-diversity was greater in artificial habitats, contradicting the commonly held view that urban ecosystems are more biologically homogenous than natural ecosystems. This study suggests artificial habitats may in fact provide novel habitat for biodiversity, challenges the applicability of the urban homogenisation concept and highlights a significant limitation of using just α-diversity (i.e., multiple metrics are needed and recommended) for assessing environmental net gain and attaining biodiversity conservation goals.
Collapse
Affiliation(s)
- Kathryn A O'Shaughnessy
- School of Geography, Earth and Environmental Science, University of Plymouth, Plymouth, United Kingdom; APEM Ltd, Heaton Mersey, Stockport, United Kingdom.
| | - Antony M Knights
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom.
| | - Stephen J Hawkins
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom; School of Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton, United Kingdom; The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, United Kingdom.
| | - Mick E Hanley
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom.
| | - Paul Lunt
- School of Geography, Earth and Environmental Science, University of Plymouth, Plymouth, United Kingdom.
| | - Richard C Thompson
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom.
| | - Louise B Firth
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom.
| |
Collapse
|
2
|
Aguilera MA, Castro A, Thiel M. Fast accumulation of anthropogenic litter on upgraded breakwaters: A persistent and hidden threat to coastal habitats. MARINE POLLUTION BULLETIN 2023; 188:114731. [PMID: 36860020 DOI: 10.1016/j.marpolbul.2023.114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Breakwater construction is common on different coasts, and by means of their structural complexity these built infrastructures can trap anthropogenic litter. We investigated the temporal persistence of anthropogenic litter in breakwaters, and how fast litter accumulates on them. We sampled anthropogenic litter in old (>10 years since construction) breakwaters and in a recently upgraded one (5 months) and on rocky shores located in a coastal conurbation, in central Chile (33°S). We found breakwaters had much higher litter densities than rocky habitats, and this pattern was persistent through time (~5 years). Also, a recently upgraded breakwater had similar composition and densities of litter items as older breakwaters. Therefore, litter accumulation on breakwaters is a very fast process related to their topographic structure and to the willingness of people to dispose of anthropogenic litter in the infrastructure. Redesigning the breakwater structure is required to reduce litter accumulation on the coast and their impacts.
Collapse
Affiliation(s)
- Moisés A Aguilera
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Diagonal Las Torres, 2640, Peñalolén, Santiago, Chile.
| | - Andrés Castro
- Escuela de Biología Marina, Facultad de Ciencias y de Recursos Naturales, Universidad de Valparaíso, Av. Borgoño 16344, Reñaca, Viña del Mar, Chile
| | - Martin Thiel
- Departamento de Biología Marina, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile; Center for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile; Center for Advanced Studies in Arid Systems (CEAZA), Coquimbo, Chile
| |
Collapse
|
3
|
Saengsupavanich C, Ariffin EH, Yun LS, Pereira DA. Environmental impact of submerged and emerged breakwaters. Heliyon 2022; 8:e12626. [PMID: 36619456 PMCID: PMC9813723 DOI: 10.1016/j.heliyon.2022.e12626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Coastlines are constantly threatened by erosion. Effective coastal defense structures with the least environmental impacts are increasingly required. Submerged and emerged breakwaters have been implemented globally, while positively or negatively creating impacts on the environment. One of the most significant concerns in applying breakwaters is how to minimize their undesirable consequences on the environment. Thus, a thorough understanding of how submerged and emerged breakwaters affect the surrounding environment must be achieved. This article critically reviews and summarizes their environmental impacts on beach morphology, hydrodynamics, ecology, tourism, and recreation, as well as other notable impacts. This is a review article that may help coastal practitioners to manage coastal erosion with breakwaters more sustainably.
Collapse
Affiliation(s)
- Cherdvong Saengsupavanich
- Faculty of International Maritime Studies, Kasetsart University, Sri Racha Campus, 199 Moo 6 Sukhumvit Rd., Tungsukla, Sri Racha, Chonburi, 20230, Thailand
- Corresponding author.
| | - Effi Helmy Ariffin
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Lee Shin Yun
- Faculty of International Maritime Studies, Kasetsart University, Sri Racha Campus, 199 Moo 6 Sukhumvit Rd., Tungsukla, Sri Racha, Chonburi, 20230, Thailand
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Dunstan Anthony Pereira
- Coastal Management & Oceanography Research Centre, National Water Research Institute of Malaysia, Ministry of Natural Resources, Environment and Climate Change, 43300, Seri Kembangan, Selangor, Malaysia
| |
Collapse
|
4
|
Influence of ocean warming and acidification on habitat-forming coralline algae and their associated molluscan assemblages. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Kelaher BP, Coleman MA. Spatial extent of desalination discharge impacts to habitat-forming species on temperate reefs. MARINE POLLUTION BULLETIN 2022; 175:113368. [PMID: 35114545 DOI: 10.1016/j.marpolbul.2022.113368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Outlet infrastructure and hypersaline discharge from large-scale desalination operations have the potential to impact marine environments. Here, we present the results of a six-year M-BACI assessment of the impacts of desalination discharge outlet construction and hypersaline effluent on the cover of habitat-forming species on temperate reefs. The construction of the desalination outlet caused a decrease in the cover of Ecklonia radiata (kelp) and an increase in the cover of algal turfs up to 55 m from the outlet. Following the commencement of discharging of hypersaline brine, the impact to E. radiata and algal turfs persisted, but decreased in spatial extent to be less than 25 m from the outlet. Hypersaline discharge was also associated with a significant decline in the cover of sponges in outlet compared to reference sites. Overall, our results demonstrate that the water security benefits from large-scale desalination may sometimes be appropriately balanced against the associated ecological consequences.
Collapse
Affiliation(s)
- Brendan P Kelaher
- National Marine Science Centre and Marine Ecology Research Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW 2450, Australia.
| | - Melinda A Coleman
- National Marine Science Centre and Marine Ecology Research Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW 2450, Australia; New South Wales Fisheries, Department of Primary Industries, PO Box 4321, Coffs Harbour, NSW 2450, Australia
| |
Collapse
|