1
|
Hirata TDC, Dagli-Hernandez C, Genvigir FDV, Lauschke VM, Zhou Y, Hirata MH, Hirata RDC. Cardiovascular Pharmacogenomics: An Update on Clinical Studies of Antithrombotic Drugs in Brazilian Patients. Mol Diagn Ther 2021; 25:735-755. [PMID: 34357562 DOI: 10.1007/s40291-021-00549-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Anticoagulant and antiplatelet drugs effectively prevent thrombotic events in patients with cardiovascular diseases, ischemic stroke, peripheral vascular diseases, and other thromboembolic diseases. However, genetic and non-genetic factors affect the response to antithrombotic therapy and can increase the risk of adverse events. This narrative review discusses pharmacogenomic studies on antithrombotic drugs commonly prescribed in Brazil. Multiple Brazilian studies assessed the impact of pharmacokinetic (PK) and pharmacodynamic (PD) gene variants on warfarin response. The reduced function alleles CYP2C9*2 and CYP2C9*3, and VKORC1 rs9923231 (c.-1639G>A) are associated with increased sensitivity to warfarin and a low dose requirement to prevent bleeding episodes, whereas CYP4F2 rs2108622 (p.Val433Met) carriers have higher dose requirements (warfarin resistance). These deleterious variants and non-genetic factors (age, gender, body weight, co-administered drugs, food interactions, and others) account for up to 63% of the warfarin dose variability. Few pharmacogenomics studies have explored antiplatelet drugs in Brazilian cohorts, finding associations between CYP2C19*2, PON1 rs662 and ABCC3 rs757421 genotypes and platelet responsiveness or clopidogrel PK in subjects with coronary artery disease (CAD) or acute coronary syndrome (ACS), whereas ITGB3 contributes to aspirin PK but not platelet responsiveness in diabetic patients. Brazilian guidelines on anticoagulants and antiplatelets recommend the use of a platelet aggregation test or genotyping only in selected cases of ACS subjects without ST-segment elevation taking clopidogrel, and also suggest CYP2C9 and VKORC1 genotyping before starting warfarin therapy to assess the risk of bleeding episodes or warfarin resistance.
Collapse
Affiliation(s)
- Thiago Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 580, Sao Paulo, 05508-000, Brazil
| | - Carolina Dagli-Hernandez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 580, Sao Paulo, 05508-000, Brazil
| | - Fabiana Dalla Vecchia Genvigir
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 580, Sao Paulo, 05508-000, Brazil
| | - Volker Martin Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Solna, Sweden.,Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, 70376, Germany
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Solna, Sweden
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 580, Sao Paulo, 05508-000, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 580, Sao Paulo, 05508-000, Brazil.
| |
Collapse
|
2
|
Bruckmueller H, Cascorbi I. ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: what is our current understanding? Expert Opin Drug Metab Toxicol 2021; 17:369-396. [PMID: 33459081 DOI: 10.1080/17425255.2021.1876661] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Interindividual differences in drug response are a frequent clinical challenge partly due to variation in pharmacokinetics. ATP-binding cassette (ABC) transporters are crucial determinants of drug disposition. They are subject of gene regulation and drug-interaction; however, it is still under debate to which extend genetic variants in these transporters contribute to interindividual variability of a wide range of drugs. AREAS COVERED This review discusses the current literature on the impact of genetic variants in ABCB1, ABCG2 as well as ABCC1, ABCC2, and ABCC3 on pharmacokinetics and drug response. The aim was to evaluate if results from recent studies would increase the evidence for potential clinically relevant pharmacogenetic effects. EXPERT OPINION Although enormous efforts have been made to investigate effects of ABC transporter genotypes on drug pharmacokinetics and response, the majority of studies showed only weak if any associations. Despite few unique results, studies mostly failed to confirm earlier findings or still remained inconsistent. The impact of genetic variants on drug bioavailability is only minor and other factors regulating the transporter expression and function seem to be more critical. In our opinion, the findings on the so far investigated genetic variants in ABC efflux transporters are not suitable as predictive biomarkers.
Collapse
Affiliation(s)
- Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
3
|
Cui JJ, Wang LY, Tan ZR, Zhou HH, Zhan X, Yin JY. MASS SPECTROMETRY-BASED PERSONALIZED DRUG THERAPY. MASS SPECTROMETRY REVIEWS 2020; 39:523-552. [PMID: 31904155 DOI: 10.1002/mas.21620] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Personalized drug therapy aims to provide tailored treatment for individual patient. Mass spectrometry (MS) is revolutionarily involved in this area because MS is a rapid, customizable, cost-effective, and easy to be used high-throughput method with high sensitivity, specificity, and accuracy. It is driving the formation of a new field, MS-based personalized drug therapy, which currently mainly includes five subfields: therapeutic drug monitoring (TDM), pharmacogenomics (PGx), pharmacomicrobiomics, pharmacoepigenomics, and immunopeptidomics. Gas chromatography-MS (GC-MS) and liquid chromatography-MS (LC-MS) are considered as the gold standard for TDM, which can be used to optimize drug dosage. Matrix-assisted laser desorption ionization-time of flight-MS (MALDI-TOF-MS) significantly improves the capability of detecting biomacromolecule, and largely promotes the application of MS in PGx. It is becoming an indispensable tool for genotyping, which is used to discover and validate genetic biomarkers. In addition, MALDI-TOF-MS also plays important roles in identity of human microbiome whose diversity can explain interindividual differences of drug response. Pharmacoepigenetics is to study the role of epigenetic factors in individualized drug treatment. MS can be used to discover and validate pharmacoepigenetic markers (DNA methylation, histone modification, and noncoding RNA). For the emerging cancer immunotherapy, personalized cancer vaccine has effective immunotherapeutic activity in the clinic. MS-based immunopeptidomics can effectively discover and screen neoantigens. This article systematically reviewed MS-based personalized drug therapy in the above mentioned five subfields. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Jia-Jia Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Lei-Yun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Zhi-Rong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Xianquan Zhan
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
- Hunan Provincial Gynecological Cancer Diagnosis and Treatment Engineering Research Center, Changsha, Hunan, 410078, P. R. China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha, Hunan, 410078, P. R. China
| |
Collapse
|
4
|
Krupinski J, Carrera C, Muiño E, Torres N, Al-Baradie R, Cullell N, Fernandez-Cadenas I. DNA Methylation in Stroke. Update of Latest Advances. Comput Struct Biotechnol J 2017; 16:1-5. [PMID: 29321829 PMCID: PMC5751876 DOI: 10.1016/j.csbj.2017.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/24/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022] Open
Abstract
Epigenetic modifications are hereditable and modifiable factors that do not alter the DNA sequence. These epigenetic factors include DNA methylation, acetylation of histones and non-coding RNAs. Epigenetic factors have mainly been associated with cancer but also with other diseases and conditions such as diabetes or obesity. In addition, epigenetic modifications could play an important role in cardiovascular diseases, including stroke. We review the latest advances in stroke epigenetics, focusing on DNA methylation studies and the future perspectives in this field.
Collapse
Affiliation(s)
- Jerzy Krupinski
- Neurology Service, Hospital Universitari Mútua Terrassa, Terrasa, Barcelona, Spain
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - Caty Carrera
- Neurovascular Research Laboratory, Institut de Recerca, Universitat Autònoma de Barcelona, Hospital Vall d'Hebron, Barcelona, Spain
| | - Elena Muiño
- Stroke Pharmacogenomics and Genetics, Fundació Docència i Recerca Mutua Terrassa, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Nuria Torres
- Stroke Pharmacogenomics and Genetics, Fundació Docència i Recerca Mutua Terrassa, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Raid Al-Baradie
- Applied Medical Sciences College Majmaah University, Majmaah, Saudi Arabia
| | - Natalia Cullell
- Stroke Pharmacogenomics and Genetics, Fundació Docència i Recerca Mutua Terrassa, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Israel Fernandez-Cadenas
- Stroke Pharmacogenomics and Genetics, Fundació Docència i Recerca Mutua Terrassa, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain
- Stroke Pharmacogenomics and Genetics, Sant Pau Institute of Research, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Corresponding author at: Stroke Pharmacogenomics and Genetics, Fundació Docència i Recerca Mutua Terrassa, C/ Sant Antoni 19, 08221 Terrassa, Barcelona, Spain.
| |
Collapse
|
6
|
van der Schoor LWE, Verkade HJ, Kuipers F, Jonker JW. New insights in the biology of ABC transporters ABCC2 and ABCC3: impact on drug disposition. Expert Opin Drug Metab Toxicol 2014; 11:273-93. [PMID: 25380746 DOI: 10.1517/17425255.2015.981152] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION For the elimination of environmental chemicals and metabolic waste products, the body is equipped with a range of broad specificity transporters that are present in excretory organs as well as in several epithelial blood-tissue barriers. AREAS COVERED ABCC2 and ABCC3 (also known as MRP2 and MRP3) mediate the transport of various conjugated organic anions, including many drugs, toxicants and endogenous compounds. This review focuses on the physiology of these transporters, their roles in drug disposition and how they affect drug sensitivity and toxicity. It also examines how ABCC2 and ABCC3 are coordinately regulated at the transcriptional level by members of the nuclear receptor (NR) family of ligand-modulated transcription factors and how this can be therapeutically exploited. EXPERT OPINION Mutations in both ABCC2 and ABCC3 have been associated with changes in drug disposition, sensitivity and toxicity. A defect in ABCC2 is associated with Dubin-Johnson syndrome, a recessively inherited disorder characterized by conjugated hyperbilirubinemia. Pharmacological manipulation of the activity of these transporters can potentially improve the pharmacokinetics and thus therapeutic activity of substrate drugs but also affect the physiological function of these transporters and consequently ameliorate associated disease states.
Collapse
Affiliation(s)
- Lori W E van der Schoor
- University of Groningen, University Medical Center Groningen, Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics , Hanzeplein 1, 9713 GZ Groningen , The Netherlands
| | | | | | | |
Collapse
|
8
|
Bruhn O, Cascorbi I. Polymorphisms of the drug transporters ABCB1, ABCG2, ABCC2 and ABCC3 and their impact on drug bioavailability and clinical relevance. Expert Opin Drug Metab Toxicol 2014; 10:1337-54. [PMID: 25162314 DOI: 10.1517/17425255.2014.952630] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Human ATP-binding cassette (ABC) transporters act as translocators of numerous substrates across extracellular and intracellular membranes, thereby contributing to bioavailability and consequently therapy response. Genetic polymorphisms are considered as critical determinants of expression level or activity and subsequently response to selected drugs. AREAS COVERED Here the influence of polymorphisms of the prominent ABC transporters P-glycoprotein (MDR1, ABCB1), breast cancer resistance protein (BCRP, ABCG2) and the multidrug resistance-associated protein (MRP) 2 (ABCC2) as well as MRP3 (ABCC3) on the pharmacokinetic of drugs and associated consequences on therapy response and clinical outcome is discussed. EXPERT OPINION ABC transporter genetic variants were assumed to affect interindividual differences in pharmacokinetics and subsequently clinical response. However, decades of medical research have not yielded in distinct and unconfined reproducible outcomes. Despite some unique results, the majority were inconsistent and dependent on the analyzed cohort or study design. Therefore, variability of bioavailability and drug response may be attributed only by a small amount to polymorphisms in transporter genes, whereas transcriptional regulation or post-transcriptional modification seems to be more critical. In our opinion, currently identified genetic variants of ABC efflux transporters can give some hints on the role of transporters at interfaces but are less suitable as biomarkers to predict therapeutic outcome.
Collapse
Affiliation(s)
- Oliver Bruhn
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein , Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel , Germany +49 431 597 3500 ; +49 431 597 3522 ;
| | | |
Collapse
|