1
|
El-Ganainy SO, Soliman OA, Ghazy AA, Allam M, Elbahnasi AI, Mansour AM, Gowayed MA. Intranasal Oxytocin Attenuates Cognitive Impairment, β-Amyloid Burden and Tau Deposition in Female Rats with Alzheimer's Disease: Interplay of ERK1/2/GSK3β/Caspase-3. Neurochem Res 2022; 47:2345-2356. [PMID: 35596040 PMCID: PMC9352611 DOI: 10.1007/s11064-022-03624-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022]
Abstract
Oxytocin is a neuropeptide hormone that plays an important role in social bonding and behavior. Recent studies indicate that oxytocin could be involved in the regulation of neurological disorders. However, its role in modulating cognition in Alzheimer’s disease (AD) has never been explored. Hence, the present study aims to investigate the potential of chronic intranasal oxytocin in halting memory impairment & AD pathology in aluminum chloride-induced AD in female rats. Morris water maze was used to assess cognitive dysfunction in two-time points throughout the treatment period. In addition, neuroprotective effects of oxytocin were examined by assessing hippocampal acetylcholinesterase activity, β-amyloid 1–42 protein, and Tau levels. In addition, ERK1/2, GSK3β, and caspase-3 levels were assessed as chief neurobiochemical mediators in AD. Hippocampi histopathological changes were also evaluated. These findings were compared to the standard drug galantamine alone and combined with oxytocin. Results showed that oxytocin restored cognitive functions and improved animals’ behavior in the Morris test. This was accompanied by a significant decline in acetylcholinesterase activity, 1–42 β-amyloid and Tau proteins levels. Hippocampal ERK1/2 and GSK3β were also reduced, exceeding galantamine effects, thus attenuating AD pathological hallmarks formation. Determination of caspase-3 revealed low cytoplasmic positivity, indicating the ceasing of neuronal death. Histopathological examination confirmed these findings, showing restored hippocampal cells structure. Combined galantamine and oxytocin treatment showed even better biochemical and histopathological profiles. It can be thus concluded that oxytocin possesses promising neuroprotective potential in AD mediated via restoring cognition and suppressing β-amyloid, Tau accumulation, and neuronal death.
Collapse
Affiliation(s)
- Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Omar A Soliman
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Aya A Ghazy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Maram Allam
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Aya I Elbahnasi
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Amira M Mansour
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
2
|
Chen ZY, Xie DF, Liu ZY, Zhong YQ, Zeng JY, Chen Z, Chen XL. Identification of the significant pathways of Banxia Houpu decoction in the treatment of depression based on network pharmacology. PLoS One 2020; 15:e0239843. [PMID: 32997725 PMCID: PMC7527207 DOI: 10.1371/journal.pone.0239843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/14/2020] [Indexed: 01/05/2023] Open
Abstract
Banxia Houpu decoction (BXHPD) has been used to treat depression in clinical practice for centuries. However, the pharmacological mechanisms of BXHPD still remain unclear. Network Pharmacology (NP) approach was used to explore the potential molecular mechanisms of BXHPD in treating depression. Potential active compounds of BXHPD were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform Database. STRING database was used to build a interaction network between the active compounds and target genes associated with depression. The topological features of nodes were visualized and calculated. Significant pathways and biological functions were identified using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. A total of 44 active compounds were obtained from BXHPD, and 121 potential target genes were considered to be therapeutically relevant. Pathway analysis indicated that MAPK signaling pathway, ErbB signaling pathway, HIF-1 signaling pathway and PI3K-Akt pathway were significant pathways in depression. They were mainly involved in promoting nerve growth and nutrition and alleviating neuroinflammatory conditions. The result provided some potential ways for modern medicine in the treatment of depression.
Collapse
Affiliation(s)
- Zi-ying Chen
- Shenzhen Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan-feng Xie
- Shenzhen Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi-yuan Liu
- Shenzhen Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong-qi Zhong
- Shenzhen Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing-yan Zeng
- Shenzhen Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zheng Chen
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- * E-mail: (XLC); (ZC)
| | - Xin-lin Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
- * E-mail: (XLC); (ZC)
| |
Collapse
|
3
|
Mustoe A, Taylor JH, French JA. Oxytocin structure and function in New World monkeys: from pharmacology to behavior. Integr Zool 2018; 13:634-654. [PMID: 29436774 PMCID: PMC6089668 DOI: 10.1111/1749-4877.12318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxytocin (OT) is a hypothalamic nonapeptide that mediates a host of physiological and behavioral processes including reproductive physiology and social attachments. While the OT sequence structure is highly conserved among mammals, New World monkeys (NWMs) represent an unusual "hot spot" in OT structure variability among mammals. At least 6 distinct OT ligand variants among NWMs exist, yet it is currently unclear whether these evolved structural changes result in meaningful functional consequences. NWMs offer a new area to explore how these modifications to OT and its canonical G-protein coupled OT receptor (OTR) may mediate specific cellular, physiological and behavioral outcomes. In this review, we highlight relationships between OT ligand and OTR structural variability, specifically examining coevolution between OT ligands, OTRs, and physiological and behavioral phenotypes across NWMs. We consider whether these evolved modifications to the OT structure alter pharmacological profiles at human and marmoset OTRs, including changes to receptor binding, intracellular signaling and receptor internalization. Finally, we evaluate whether exogenous manipulation using OT variants in marmoset monkeys differentially enhance or impair behavioral processes involved in social relationships between pairmates, opposite-sex strangers, and parents and their offspring. Overall, it appears that changes to OT ligands in NWMs result in important changes ranging from cellular signaling to broad measures of social behavior.
Collapse
Affiliation(s)
- Aaryn Mustoe
- Program in Neuroscience and Behavior, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Jack H Taylor
- Program in Neuroscience and Behavior, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Jeffrey A French
- Program in Neuroscience and Behavior, University of Nebraska at Omaha, Omaha, Nebraska, USA
| |
Collapse
|
4
|
Lau T, Bigio B, Zelli D, McEwen BS, Nasca C. Stress-induced structural plasticity of medial amygdala stellate neurons and rapid prevention by a candidate antidepressant. Mol Psychiatry 2017; 22:227-234. [PMID: 27240534 PMCID: PMC5133196 DOI: 10.1038/mp.2016.68] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/27/2016] [Accepted: 03/02/2016] [Indexed: 12/18/2022]
Abstract
The adult brain is capable of adapting to internal and external stressors by undergoing structural plasticity, and failure to be resilient and preserve normal structure and function is likely to contribute to depression and anxiety disorders. Although the hippocampus has provided the gateway for understanding stress effects on the brain, less is known about the amygdala, a key brain area involved in the neural circuitry of fear and anxiety. Here, in mice more vulnerable to stressors, we demonstrate structural plasticity within the medial and basolateral regions of the amygdala in response to prolonged 21-day chronic restraint stress (CRS). Three days before the end of CRS, treatment with the putative, rapidly acting antidepressant, acetyl-l-carnitine (LAC) in the drinking water opposed the direction of these changes. Behaviorally, the LAC treatment during the last part of CRS enhanced resilience, opposing the effects of CRS, as shown by an increased social interaction and reduced passive behavior in a forced swim test. Furthermore, CRS mice treated with LAC show resilience of the CRS-induced structural remodeling of medial amygdala (MeA) stellate neurons. Within the basolateral amygdala (BLA), LAC did not reduce, but slightly enhanced, the CRS-increased length and number of intersections of pyramidal neurons. No structural changes were observed in MeA bipolar neurons, BLA stellate neurons or in lateral amygdala stellate neurons. Our findings identify MeA stellate neurons as an important component in the responses to stress and LAC action and show that LAC can promote structural plasticity of the MeA. This may be useful as a model for increasing resilience to stressors in at-risk populations.
Collapse
Affiliation(s)
- T. Lau
- Laboratory of Neuroendocrinology, The Rockefeller University, New York; 10065, USA
| | - B. Bigio
- The Rockefeller University, Center for Clinical & Translational Science, New York, USA
| | - D. Zelli
- Laboratory of Neuroendocrinology, The Rockefeller University, New York; 10065, USA
| | - BS. McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York; 10065, USA
| | - C. Nasca
- Laboratory of Neuroendocrinology, The Rockefeller University, New York; 10065, USA
| |
Collapse
|
5
|
Oxytocin is involved in the proconvulsant effects of Sildenafil: Possible role of CREB. Toxicol Lett 2016; 256:44-52. [DOI: 10.1016/j.toxlet.2016.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 05/11/2016] [Accepted: 05/18/2016] [Indexed: 01/24/2023]
|
6
|
Yuan L, Liu S, Bai X, Gao Y, Liu G, Wang X, Liu D, Li T, Hao A, Wang Z. Oxytocin inhibits lipopolysaccharide-induced inflammation in microglial cells and attenuates microglial activation in lipopolysaccharide-treated mice. J Neuroinflammation 2016; 13:77. [PMID: 27075756 PMCID: PMC4831099 DOI: 10.1186/s12974-016-0541-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/06/2016] [Indexed: 12/21/2022] Open
Abstract
Background Overactivated microglia is involved in various kinds of neurodegenerative diseases. Suppression of microglial overactivation has emerged as a novel strategy for treatment of neuroinflammation-based neurodegeneration. In the current study, anti-inflammatory effects of oxytocin (OT), which is a highly conserved nonapeptide with hormone and neurotransmitter properties, were investigated in vitro and in vivo. Methods BV-2 cells and primary microglia were pre-treated with OT (0.1, 1, and 10 μM) for 2 h followed by LPS treatment (500 ng/ml); microglial activation and pro-inflammatory mediators were measured by Western blot, RT-PCR, and immunofluorescence. The MAPK and NF-κB pathway proteins were assessed by Western blot. The intracellular calcium concentration ([Ca2+]i) was determined using Fluo2-/AM assay. Intranasal application of OT was pre-treated in BALB/C mice (adult male) followed by injected intraperitoneally with LPS (5 mg/kg). The effect of OT on LPS-induced microglial activation and pro-inflammatory mediators was measured by Western blot, RT-PCR, and immunofluorescence in vivo. Results Using the BV-2 microglial cell line and primary microglia, we found that OT pre-treatment significantly inhibited LPS-induced microglial activation and reduced subsequent release of pro-inflammatory factors. In addition, OT inhibited phosphorylation of ERK and p38 but not JNK MAPK in LPS-induced microglia. OT remarkably reduced the elevation of [Ca2+]i in LPS-stimulated BV-2 cells. Furthermore, a systemic LPS-treated acute inflammation murine brain model was used to study the suppressive effects of OT against neuroinflammation in vivo. We found that pre-treatment with OT showed marked attenuation of microglial activation and pro-inflammatory factor levels. Conclusions Taken together, the present study demonstrated that OT possesses anti-neuroinflammatory activity and might serve as a potential therapeutic agent for treating neuroinflammatory diseases.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Physiology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Song Liu
- Department of Physiology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Xuemei Bai
- Department of Physiology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yan Gao
- Department of Physiology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Guangheng Liu
- Department of Physiology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Xueer Wang
- Department of Physiology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Dexiang Liu
- Department of Medical Psychology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Tong Li
- Department of Physiology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Aijun Hao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Zhen Wang
- Department of Physiology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China. .,Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
7
|
Vitamin D interacts with Esr1 and Igf1 to regulate molecular pathways relevant to Alzheimer's disease. Mol Neurodegener 2016; 11:22. [PMID: 26932723 PMCID: PMC4774101 DOI: 10.1186/s13024-016-0087-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/23/2016] [Indexed: 01/05/2023] Open
Abstract
Background Increasing evidence suggests a potential therapeutic benefit of vitamin D supplementation against Alzheimer’s disease (AD). Although studies have shown improvements in cognitive performance and decreases in markers of the pathology after chronic treatment, the mechanisms by which vitamin D acts on brain cells are multiple and remain to be thoroughly studied. We analyzed the molecular changes observed after 5 months of vitamin D3 supplementation in the brains of transgenic 5xFAD (Tg) mice, a recognized mouse model of AD, and their wild type (Wt) littermates. We first performed a kinematic behavioural examination at 4, 6 and 8 months of age (M4, M6 and M8) followed by a histologic assessment of AD markers. We then performed a comparative transcriptomic analysis of mRNA regulation in the neocortex and hippocampus of 9 months old (M9) female mice. Results Transcriptomic analysis of the hippocampus and neocortex of both Wt and Tg mice at M9, following 5 months of vitamin D3 treatment, reveals a large panel of dysregulated pathways related to i) immune and inflammatory response, ii) neurotransmitter activity, iii) endothelial and vascular processes and iv) hormonal alterations. The differentially expressed genes are not all direct targets of the vitamin D-VDR pathway and it appears that vitamin D action engages in the crosstalk with estrogen and insulin signaling. The misexpression of the large number of genes observed in this study translates into improved learning and memory performance and a decrease in amyloid plaques and astrogliosis in Tg animals. Conclusions This study underlies the multiplicity of action of this potent neurosteroid in an aging and AD-like brain. The classical and non-classical actions of vitamin D3 can act in an additive and possibly synergistic manner to induce neuroprotective activities in a context-specific way. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0087-2) contains supplementary material, which is available to authorized users.
Collapse
|