1
|
Cervia D, Zecchini S, Pincigher L, Roux-Biejat P, Zalambani C, Catalani E, Arcari A, Del Quondam S, Brunetti K, Ottria R, Casati S, Vanetti C, Barbalace MC, Prata C, Malaguti M, Casati SR, Lociuro L, Giovarelli M, Mocciaro E, Falcone S, Fenizia C, Moscheni C, Hrelia S, De Palma C, Clementi E, Perrotta C. Oral administration of plumbagin is beneficial in in vivo models of Duchenne muscular dystrophy through control of redox signaling. Free Radic Biol Med 2024; 225:193-207. [PMID: 39326684 DOI: 10.1016/j.freeradbiomed.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease. Recently approved molecular/gene treatments do not solve the downstream inflammation-linked pathophysiological issues such that supportive therapies are required to improve therapeutic efficacy and patients' quality of life. Over the years, a plethora of bioactive natural compounds have been used for human healthcare. Among them, plumbagin, a plant-derived analog of vitamin K3, has shown interesting potential to counteract chronic inflammation with potential therapeutic significance. In this work we evaluated the effects of plumbagin on DMD by delivering it as an oral supplement within food to dystrophic mutant of the fruit fly Drosophila melanogaster and mdx mice. In both DMD models, plumbagin show no relevant adverse effect. In terms of efficacy plumbagin improved the climbing ability of the dystrophic flies and their muscle morphology also reducing oxidative stress in muscles. In mdx mice, plumbagin enhanced the running performance on the treadmill and the muscle strength along with muscle morphology. The molecular mechanism underpinning these actions was found to be the activation of nuclear factor erythroid 2-related factor 2 pathway, the re-establishment of redox homeostasis and the reduction of inflammation thus generating a more favorable environment for skeletal muscles regeneration after damage. Our data provide evidence that food supplementation with plumbagin modulates the main, evolutionary conserved, mechanistic pathophysiological hallmarks of dystrophy, thus improving muscle function in vivo; the use of plumbagin as a therapeutic in humans should thus be explored further.
Collapse
MESH Headings
- Naphthoquinones/administration & dosage
- Naphthoquinones/pharmacology
- Animals
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Mice
- Administration, Oral
- Mice, Inbred mdx
- Oxidation-Reduction/drug effects
- Signal Transduction/drug effects
- Disease Models, Animal
- Drosophila melanogaster
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Oxidative Stress/drug effects
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- Humans
- Male
Collapse
Affiliation(s)
- Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Luca Pincigher
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Paulina Roux-Biejat
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Chiara Zalambani
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Alessandro Arcari
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Kashi Brunetti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Roberta Ottria
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Sara Casati
- Department of Biomedical, Surgical, and Dental Science (DISBIOC), Università Degli Studi di Milano, Milano, 20133, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Department of Pathophysiology and Transplantation (DEPT), Università Degli Studi di Milano, Milano, 20122, Italy
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Silvia Rosanna Casati
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università Degli Studi di Milano, 20054, Segrate, Italy
| | - Laura Lociuro
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Emanuele Mocciaro
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milano, 20132, Italy
| | - Sestina Falcone
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, F-75013, France
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Department of Pathophysiology and Transplantation (DEPT), Università Degli Studi di Milano, Milano, 20122, Italy
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università Degli Studi di Milano, 20054, Segrate, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; IRCCS Eugenio Medea, Bosisio Parini, 23842, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy.
| |
Collapse
|
2
|
Hermes TDA, Fratini P, Nascimento BG, Ferreira LL, Petri G, Fonseca FLA, Carvalho AADS, Feder D. Trilobatin contributes to the improvement of myopathy in a mouse model of Duchenne muscular dystrophy. Int J Exp Pathol 2024; 105:75-85. [PMID: 38477495 PMCID: PMC10951423 DOI: 10.1111/iep.12502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) occurs due to genetic mutations that lead to a deficiency in dystrophin production and consequent progressive degeneration of skeletal muscle fibres, through oxidative stress and an exacerbated inflammatory process. The flavonoid trilobatin (TLB) demonstrates antioxidant and anti-inflammatory potential. Its high safety profile and effective action make it a potent therapy for the process of dystrophic muscle myonecrosis. Thus, we sought to investigate the action of TLB on damage in a DMD model, the mdx mouse. Eight-week-old male animals were treated with 160 mg/kg/day of trilobatin for 8 weeks. Control animals were treated with saline. Following treatment, muscle strength, serum creatine kinase (CK) levels, histopathology (necrotic myofibres, regenerated fibres/central nuclei, Feret's diameter and inflammatory area) and the levels of catalase and NF-κB (western blotting) of the quadriceps (QUA), diaphragm (DIA) and tibialis anterior (TA) muscles were measured. TLB was able to significantly increase muscle strength and reduce serum CK levels in dystrophic animals. The QUA of mdx mice showed a reduction in catalase and the number of fibres with a centralized nucleus after treatment with TLB. In the DIA of dystrophic animals, TLB reduced the necrotic myofibres, inflammatory area and NF-κB and increased the number of regenerated fibres and the total fibre diameter. In TA, TLB increased the number of regenerated fibres and reduced catalase levels in these animals. It is concluded that in the mdx experimental model, treatment with TLB was beneficial in the treatment of DMD.
Collapse
Affiliation(s)
- Túlio de Almeida Hermes
- Department of Anatomy, ICBFederal University of Alfenas (UNIFAL‐MG)AlfenasMinas GeraisBrazil
| | - Paula Fratini
- Department of PharmacologyCentro Universitário FMABC (FMABC)Santo AndréSao PauloBrazil
| | | | - Laís Leite Ferreira
- Department of Anatomy, ICBFederal University of Alfenas (UNIFAL‐MG)AlfenasMinas GeraisBrazil
| | - Giuliana Petri
- Department of PharmacologyCentro Universitário FMABC (FMABC)Santo AndréSao PauloBrazil
| | | | | | - David Feder
- Department of PharmacologyCentro Universitário FMABC (FMABC)Santo AndréSao PauloBrazil
| |
Collapse
|
3
|
Hermes TDA, Mâncio RD, Mizobutti DS, Macedo AB, Kido LA, Cagnon Quitete VHA, Minatel E. Cilostazol attenuates oxidative stress and apoptosis in the quadriceps muscle of the dystrophic mouse experimental model. Int J Exp Pathol 2023; 104:13-22. [PMID: 36565167 PMCID: PMC9845609 DOI: 10.1111/iep.12461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most severe and frequent form of muscular dystrophy. The mdx mouse is one of the most widely used experimental models to understand aspects of the biology of dystrophic skeletal muscles and the mechanisms of DMD. Oxidative stress and apoptosis are present in early stages of the disease in mdx mice. The high production of reactive oxygen species (ROS) causes activation of apoptotic death regulatory proteins due to DNA damage and breakdown of nuclear and mitochondrial membranes. The quadriceps (QUA) muscle of the mdx mouse is a good tool to study oxidative events. Previous studies have demonstrated that cilostazol exerts an anti-oxidant effect by decreasing the production of reactive oxygen species (ROS). The present study aimed to evaluate the ability of cilostazol to modulate oxidative stress and apoptosis in the QUA muscle of mdx mice. Fourteen-day-old mdx mice received cilostazol or saline for 14 days. C57BL/10 mice were used as a control. In the QUA muscle of mdx mice, cilostazol treatment decreased ROS production (-74%), the number of lipofuscin granules (-47%), lipid peroxidation (-11%), and the number of apoptotic cells (-66%). Thus cilostazol showed anti-oxidant and anti-apoptotic action in the QUA muscle of mdx mice.
Collapse
Affiliation(s)
- Túlio de Almeida Hermes
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
- Departament of Anatomy, Institute of Biomedical SciencesFederal University of Alfenas (UNIFAL‐MG)AlfenasBrazil
| | - Rafael Dias Mâncio
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
| | - Daniela Sayuri Mizobutti
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
| | - Aline Barbosa Macedo
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
| | - Larissa Akemi Kido
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
| | | | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of BiologyState University of Campinas (UNICAMP)São PauloBrazil
| |
Collapse
|
4
|
Saeed ZM, Khattab MI, Khorshid NE, Salem AE. Ellagic acid and cilostazol ameliorate amikacin-induced nephrotoxicity in rats by downregulating oxidative stress, inflammation, and apoptosis. PLoS One 2022; 17:e0271591. [PMID: 35849599 PMCID: PMC9292089 DOI: 10.1371/journal.pone.0271591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 07/04/2022] [Indexed: 01/24/2023] Open
Abstract
Amikacin (AK) has the largest spectrum of aminoglycosides. However, its use is constrained because of nephrotoxicity and ototoxicity. Ellagic acid (EA) is a polyphenol present in plants. It has antioxidant, anticarcinogenic, and antimutagenic characteristics. Cilostazol (CTZ) is a phosphodiesterase Ш inhibitor, it is a potent vasodilator and antiplatelet drug. CTZ has an inhibitory effect on reactive oxygen species and superoxide generation in addition to hydroxyl radicals scavenging action. This study determines whether EA and cilostazol have a protective effect against AK-induced nephrotoxicity. Forty-nine rats were divided into seven equal groups: control normal; AK 400 mg/kg; EA 10 mg/kg; CTZ 10 mg/kg; AK 400 mg/kg plus EA 10 mg/kg; AK 400 mg/kg plus CTZ 10 mg/kg; AK 400 mg/kg plus EA 10 mg/kg and CTZ 10 mg/kg. For seven days, drugs were administered using gavage one hour before intramuscular injection of AK. Twenty-four hours after the last AK dosage, blood samples were collected to determine blood urea nitrogen and creatinine levels. Kidneys were removed for histopathological examination and measurement of: malondialdehyde (MDA), catalase (CAT), decreased glutathione (GSH), superoxide dismutase (SOD), interleukin 6 (IL6), tumor necrosis factor-alpha (TNFα), nuclear factor kappa B (NFκB), and Bcl-2 associated x protein (BAX). AK caused kidney damage, inflammatory mediator elevation, and oxidative stress and apoptotic markers. Rats receiving EA or CTZ indicated significant improvement in kidney function, decrease in oxidative stress and inflammation through NF-kB down-regulation and BAX expression. The combination of EA and CTZ showed a synergistic effect. In conclusion, EA and CTZ might play a beneficial role in preventing nephrotoxicity induced by AK partially by inhibition of tissue inflammation and apoptosis.
Collapse
Affiliation(s)
- Zeinab Mahmoud Saeed
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- * E-mail:
| | - Monira Ismail Khattab
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nadia Esmat Khorshid
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amal Elsayed Salem
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Garegnani L, Hyland M, Roson Rodriguez P, Escobar Liquitay CM, Franco JV. Antioxidants to prevent respiratory decline in people with Duchenne muscular dystrophy and progressive respiratory decline. Cochrane Database Syst Rev 2021; 12:CD013720. [PMID: 34850383 PMCID: PMC8632644 DOI: 10.1002/14651858.cd013720.pub3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterised by progressive muscle weakness beginning in early childhood. Respiratory failure and weak cough develop in all patients as a consequence of muscle weakness leading to a risk of atelectasis, pneumonia, or the need for ventilatory support. There is no curative treatment for DMD. Corticosteroids are the only pharmacological intervention proven to delay the onset and progression of muscle weakness and thus respiratory decline in DMD. Antioxidant treatment has been proposed to try to reduce muscle weakness in general, and respiratory decline in particular. OBJECTIVES: To assess the effects of antioxidant agents on preventing respiratory decline in people with Duchenne muscular dystrophy during the respiratory decline phase of the condition. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, and two trials registers to 23 March 2021, together with reference checking, citation searching, and contact with study authors to identify additional studies. SELECTION CRITERIA We included randomised controlled trials (RCTs) and quasi-RCTs that met our inclusion criteria. We included male patients with a diagnosis of DMD who had respiratory decline evidenced by a forced vital capacity (FVC%) less than 80% but greater than 30% of predicted values, receiving any antioxidant agent compared with other therapies for the management of DMD or placebo. DATA COLLECTION AND ANALYSIS: Two review authors screened studies for eligibility, assessed risk of bias of studies, and extracted data. We used standard methods expected by Cochrane. We assessed the certainty of the evidence using the GRADE approach. The primary outcomes were FVC and hospitalisation due to respiratory infections. Secondary outcomes were quality of life, adverse events, change in muscle function, forced expiratory volume in the first second (FEV1), and peak expiratory flow (PEF). MAIN RESULTS: We included one study with 66 participants who were not co-treated with corticosteroids, which was the only study to contribute data to our main analysis. We also included a study that enrolled 255 participants treated with corticosteroids, which was only available as a press release without numerical results. The studies were parallel-group RCTs that assessed the effect of idebenone on respiratory function compared to placebo. The trial that contributed numerical data included patients with a mean (standard deviation) age of 14.3 (2.7) years at the time of inclusion, with a documented diagnosis of DMD or severe dystrophinopathy with clinical features consistent with typical DMD. The overall risk of bias across most outcomes was similar and judged as 'low'. Idebenone may result in a slightly less of a decline in FVC from baseline to one year compared to placebo (mean difference (MD) 3.28%, 95% confidence interval (CI) -0.41 to 6.97; 64 participants; low-certainty evidence), and probably has little or no effect on change in quality of life (MD -3.80, 95% CI -10.09 to 2.49; 63 participants; moderate-certainty evidence) (Pediatric Quality of Life Inventory (PedsQL), range 0 to 100, 0 = worst, 100 = best quality of life). As a related but secondary outcome, idebenone may result in less of a decline from baseline in FEV1 (MD 8.28%, 95% CI 0.89 to 15.67; 53 participants) and PEF (MD 6.27%, 95% CI 0.61 to 11.93; 1 trial, 64 participants) compared to placebo. Idebenone was associated with fewer serious adverse events (RR 0.42, 95% CI 0.09 to 2.04; 66 participants; low-certainty evidence) and little to no difference in non-serious adverse events (RR 1.00, 95% CI 0.88 to 1.13; 66 participants; low-certainty evidence) compared to placebo. Idebenone may result in little to no difference in change in arm muscle function (MD -2.45 N, 95% CI -8.60 to 3.70 for elbow flexors and MD -1.06 N, 95% CI -6.77 to 4.65 for elbow extensors; both 52 participants) compared to placebo. We found no studies evaluating the outcome hospitalisation due to respiratory infection. The second trial, involving 255 participants, for which data were available only as a press release without numerical data, was prematurely discontinued due to futility after an interim efficacy analysis based on FVC. There were no safety concerns. The certainty of the evidence was low for most outcomes due to imprecision and publication bias (the lack of a full report of the larger trial, which was prematurely terminated). AUTHORS' CONCLUSIONS Idebenone is the only antioxidant agent tested in RCTs for preventing respiratory decline in people with DMD for which evidence was available for assessment. Idebenone may result in slightly less of a decline in FVC and less of a decline in FEV1 and PEF, but probably has little to no measurable effect on change in quality of life. Idebenone is associated with fewer serious adverse events than placebo. Idebenone may result in little to no difference in change in muscle function. Discontinuation due to the futility of the SIDEROS trial and its expanded access programmes may indicate that idebenone research in this condition is no longer needed, but we await the trial data. Further research is needed to establish the effect of different antioxidant agents on preventing respiratory decline in people with DMD during the respiratory decline phase of the condition.
Collapse
Affiliation(s)
- Luis Garegnani
- Associate Cochrane Centre, Instituto Universitario Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Martin Hyland
- Paediatric Neurology Division - Paediatrics Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Roson Rodriguez
- Research Department, Instituto Universitario Hospital Italiano, Buenos Aires, Argentina
| | | | - Juan Va Franco
- Associate Cochrane Centre, Instituto Universitario Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Garegnani L, Hyland M, Roson Rodriguez P, Escobar Liquitay CME, Franco JV. Antioxidants to prevent respiratory decline in people with Duchenne muscular dystrophy and progressive respiratory decline. Cochrane Database Syst Rev 2021; 11:CD013720. [PMID: 34748221 PMCID: PMC8574769 DOI: 10.1002/14651858.cd013720.pub2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterised by progressive muscle weakness beginning in early childhood. Respiratory failure and weak cough develop in all patients as a consequence of muscle weakness leading to a risk of atelectasis, pneumonia, or the need for ventilatory support. There is no curative treatment for DMD. Corticosteroids are the only pharmacological intervention proven to delay the onset and progression of muscle weakness and thus respiratory decline in DMD. Antioxidant treatment has been proposed to try to reduce muscle weakness in general, and respiratory decline in particular. OBJECTIVES: To assess the effects of antioxidant agents on preventing respiratory decline in people with Duchenne muscular dystrophy during the respiratory decline phase of the condition. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, and two trials registers to 23 March 2021, together with reference checking, citation searching, and contact with study authors to identify additional studies. SELECTION CRITERIA We included randomised controlled trials (RCTs) and quasi-RCTs that met our inclusion criteria. We included male patients with a diagnosis of DMD who had respiratory decline evidenced by a forced vital capacity (FVC%) less than 80% but greater than 30% of predicted values, receiving any antioxidant agent compared with other therapies for the management of DMD or placebo. DATA COLLECTION AND ANALYSIS: Two review authors screened studies for eligibility, assessed risk of bias of studies, and extracted data. We used standard methods expected by Cochrane. We assessed the certainty of the evidence using the GRADE approach. The primary outcomes were FVC and hospitalisation due to respiratory infections. Secondary outcomes were quality of life, adverse events, change in muscle function, forced expiratory volume in the first second (FEV1), and peak expiratory flow (PEF). MAIN RESULTS: We included one study with 66 participants who were not co-treated with corticosteroids, which was the only study to contribute data to our main analysis. We also included a study that enrolled 255 participants treated with corticosteroids, which was only available as a press release without numerical results. The studies were parallel-group RCTs that assessed the effect of idebenone on respiratory function compared to placebo. The trial that contributed numerical data included patients with a mean (standard deviation) age of 14.3 (2.7) years at the time of inclusion, with a documented diagnosis of DMD or severe dystrophinopathy with clinical features consistent with typical DMD. The overall risk of bias across most outcomes was similar and judged as 'low'. Idebenone may result in a slightly less of a decline in FVC from baseline to one year compared to placebo (mean difference (MD) 3.28%, 95% confidence interval (CI) -0.41 to 6.97; 64 participants; low-certainty evidence), and probably has little or no effect on change in quality of life (MD -3.80, 95% CI -10.09 to 2.49; 63 participants; moderate-certainty evidence) (Pediatric Quality of Life Inventory (PedsQL), range 0 to 100, 0 = worst, 100 = best quality of life). As a related but secondary outcome, idebenone may result in less of a decline from baseline in FEV1 (MD 8.28%, 95% CI 0.89 to 15.67; 53 participants) and PEF (MD 6.27%, 95% CI 0.61 to 11.93; 1 trial, 64 participants) compared to placebo. Idebenone was associated with fewer serious adverse events (RR 0.42, 95% CI 0.09 to 2.04; 66 participants; low-certainty evidence) and little to no difference in non-serious adverse events (RR 1.00, 95% CI 0.88 to 1.13; 66 participants; low-certainty evidence) compared to placebo. Idebenone may result in little to no difference in change in arm muscle function (MD -2.45 N, 95% CI -8.60 to 3.70 for elbow flexors and MD -1.06 N, 95% CI -6.77 to 4.65 for elbow extensors; both 52 participants) compared to placebo. We found no studies evaluating the outcome hospitalisation due to respiratory infection. The second trial, involving 255 participants, for which data were available only as a press release without numerical data, was prematurely discontinued due to futility after an interim efficacy analysis based on FVC. There were no safety concerns. The certainty of the evidence was low for most outcomes due to imprecision and publication bias (the lack of a full report of the larger trial, which was prematurely terminated). AUTHORS' CONCLUSIONS Idebenone is the only antioxidant agent tested in RCTs for preventing respiratory decline in people with DMD for which evidence was available for assessment. Idebenone may result in slightly less of a decline in FVC and less of a decline in FEV1 and PEF, but probably has little to no measurable effect on change in quality of life. Idebenone is associated with fewer serious adverse events than placebo. Idebenone may result in little to no difference in change in muscle function. Discontinuation due to the futility of the SIDEROS trial and its expanded access programmes may indicate that idebenone research in this condition is no longer needed, but we await the trial data. Further research is needed to establish the effect of different antioxidant agents on preventing respiratory decline in people with DMD during the respiratory decline phase of the condition.
Collapse
Affiliation(s)
- Luis Garegnani
- Associate Cochrane Centre, Instituto Universitario Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Martin Hyland
- Paediatric Neurology Division - Paediatrics Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Roson Rodriguez
- Research Department, Instituto Universitario Hospital Italiano, Buenos Aires, Argentina
| | | | - Juan Va Franco
- Associate Cochrane Centre, Instituto Universitario Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
da Silva HNM, Covatti C, da Rocha GL, Mizobuti DS, Mâncio RD, Hermes TDA, Kido LA, Cagnon VHA, Pereira ECL, Minatel E. Oxidative Stress, Inflammation, and Activators of Mitochondrial Biogenesis: Tempol Targets in the Diaphragm Muscle of Exercise Trained- mdx Mice. Front Physiol 2021; 12:649793. [PMID: 33981250 PMCID: PMC8107395 DOI: 10.3389/fphys.2021.649793] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022] Open
Abstract
The mdx mouse phenotype aggravated by chronic exercise on a treadmill makes this murine model more reliable for the study of muscular dystrophy. Thus, to better assess the Tempol effect on dystrophic pathways, the analyses in this study were performed in the blood samples and diaphragm muscle from treadmill trained adult (7–11-weeks old) mdx animals. The mdx mice were divided into three groups: mdxSed, sedentary controls (n = 28); mdxEx, exercise-trained animals (n = 28); and mdxEx+T, exercise-trained animals with the Tempol treatment (n = 28). The results demonstrated that the Tempol treatment promoted muscle strength gain, prevented muscle damage, reduced the inflammatory process, oxidative stress, and angiogenesis regulator, and up regulated the activators of mitochondrial biogenesis. The main new findings of this study are that Tempol reduced the NF-κB and increased the PGC1-α and PPARδ levels in the exercise-trained-mdx mice, which are probably related to the ability of this antioxidant to scavenge excessive ROS. These results reinforce the use of Tempol as a potential therapeutic strategy in DMD.
Collapse
Affiliation(s)
| | - Caroline Covatti
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme Luiz da Rocha
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniela Sayuri Mizobuti
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Rafael Dias Mâncio
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Túlio de Almeida Hermes
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Larissa Akemi Kido
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Valéria Helena Alves Cagnon
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Elaine Cristina Leite Pereira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil.,Faculty of Ceilândia, University of Brasília (UnB), Brasília, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
8
|
Hermes TDA, Mizobuti DS, da Rocha GL, da Silva HNM, Covatti C, Pereira ECL, Ferretti R, Minatel E. Tempol improves redox status in mdx dystrophic diaphragm muscle. Int J Exp Pathol 2020; 101:289-297. [PMID: 33098599 DOI: 10.1111/iep.12376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/10/2020] [Accepted: 08/23/2020] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress is a critical element in relationship to the pathophysiology of Duchenne muscular dystrophy (DMD). In the mice the diaphragm (DIA) is most resembles the dystrophic human pathology. In this study we have evaluated the consequences of a synthetic antioxidant (tempol) on oxidative stress parameters in the DIA muscle of mdx mice. The mdx mice were separated into two groups: mdx, the control group receiving intraperitoneal (i.p.) injections of saline solution (100 µL), and mdxT, the treated group receiving i.p. injections of tempol (100 mg/kg). The tempol-treated group showed reduced oxidative stress markers, decreasing the dihydroethidium reaction (DHE) area; autofluorescent lipofuscin granules; and 4-hydroxynonenal (4-HNE)-protein adduct levels. DIA muscle of mdx mice. At the same time, the manganese-superoxide dismutase 2 (SOD2) levels were increased in the tempol-treated group. In addition, the tempol-treated group showed reduced levels of glutathione-disulphide reductase (GSR), glutathione peroxidase 1 (GPx1) and catalase (CAT) in immunoblots. The tempol-treated group has also shown lower relative gene expression of SOD1, CAT and GPx than the non-treated group. Our data demonstrated that tempol treatment reduced oxidant parameters and increased anti-oxidant SOD2 levels in the DIA muscle of mdx mice, which may contribute to the normalization of the redox homeostasis of dystrophic muscles.
Collapse
Affiliation(s)
- Túlio de Almeida Hermes
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniela Sayuri Mizobuti
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme Luiz da Rocha
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Caroline Covatti
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Elaine Cristina Leite Pereira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil.,Faculty of Ceilandia, University of Brasilia (UnB), Brasília, Brazil
| | - Renato Ferretti
- Department of Anatomy, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
9
|
Garegnani L, Hyland M, Roson Rodriguez P, Escobar Liquitay CM, Quinlivan R, Franco JVA. Antioxidants to prevent respiratory decline in people with Duchenne muscular dystrophy and progressive respiratory decline. Hippokratia 2020. [DOI: 10.1002/14651858.cd013720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Luis Garegnani
- Research Department; Instituto Universitario Hospital Italiano; Buenos Aires Argentina
| | - Martin Hyland
- Paediatric Neurology Division - Paediatrics Department; Hospital Italiano de Buenos Aires; Buenos Aires Argentina
| | - Pablo Roson Rodriguez
- Research Department; Instituto Universitario Hospital Italiano; Buenos Aires Argentina
| | | | - Rosaline Quinlivan
- MRC Centre for Neuromuscular Diseases and Dubowitz Neuromuscular Centre; UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery and Great Ormond Street; London UK
| | - Juan VA Franco
- Argentine Cochrane Centre; Instituto Universitario Hospital Italiano; Buenos Aires Argentina
| |
Collapse
|
10
|
Macedo AB, Mizobuti DS, Hermes TDA, Mâncio RD, Pertille A, Kido LA, Cagnon VHA, Minatel E. Photobiomodulation Therapy for Attenuating the Dystrophic Phenotype of Mdx Mice. Photochem Photobiol 2019; 96:200-207. [PMID: 31733143 DOI: 10.1111/php.13179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/17/2019] [Indexed: 11/28/2022]
Abstract
This study analyzed photobiomodulation therapy (PBMT) effects on regenerative, antioxidative, anti-inflammatory and angiogenic markers in the dystrophic skeletal muscle of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD), during the acute phase of dystrophy disease. The following groups were set up: Ctrl (control group of normal wild-type mice; C57BL/10); mdx (untreated mdx mice); mdxPred (mdx mice treated with prednisolone) and mdxLA (mdx mice treated with PBMT). The PBMT was carried out using an Aluminum Gallium Arsenide (AIGaAs; IBRAMED® laserpulse) diode, 830 nm wavelength, applied on the dystrophic quadriceps muscle. The mdxLA group showed a degenerative and regenerative area reduction simultaneously with a MyoD level increase, ROS production and inflammatory marker reduction and up-regulation in the VEGF factor. In addition, PBMT presented similar effects to prednisolone treatment in most of the parameters analyzed. In conclusion, our results indicate that PBMT in the parameters selected attenuated the dystrophic phenotype of mdx mice, improving skeletal muscle regeneration; reducing the oxidative stress and inflammatory process; and up-regulating the angiogenic marker.
Collapse
Affiliation(s)
- Aline Barbosa Macedo
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Daniela Sayuri Mizobuti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Tulio de Almeida Hermes
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rafael Dias Mâncio
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Adriana Pertille
- Graduate Program in Science of Human Movement, Universidade Metodista de Piracicaba (UNIMEP), Piracicaba, SP, Brazil
| | - Larissa Akemi Kido
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Valéria Helena Alves Cagnon
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Elaine Minatel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
11
|
Lee HR, Park KY, Jeong YJ, Heo TH. Comparative effectiveness of different antiplatelet agents at reducing TNF-driven inflammatory responses in a mouse model. Clin Exp Pharmacol Physiol 2019; 47:432-438. [PMID: 31713877 DOI: 10.1111/1440-1681.13211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/13/2019] [Accepted: 11/04/2019] [Indexed: 11/30/2022]
Abstract
Antiplatelet drugs are conventionally used as treatments because of their anti-coagulation functions. However, their pleiotropic effects are of great significance to the treatment of ischaemic cardiovascular diseases. Many studies have reported that an excessive amount of inflammation driven by tumour necrosis factor (TNF) is closely related to the prevalence of atherosclerosis. As the drug selection criteria and evaluation methods related to the anti-TNF activity of antiplatelet drugs remain limited, our investigation of these drugs should prove beneficial. In this study, we compared the anti-TNF activity of three antiplatelet agents, namely clopidogrel, sarpogrelate, and cilostazol, using the TNF-induced inflammatory mouse model. After the oral administration of these drugs, acute inflammation was induced via injection of lipopolysaccharide (LPS) or D-galactosamine (D-gal) and TNF. Serum TNF levels, and the mRNA and protein expression levels of TNF in mouse heart tissue, macrophage accumulation in aortic lesions, and mouse survival were analysed to compare the anti-TNF effects of the three antiplatelet agents. Of the three antiplatelet agents, cilostazol significantly reduced the different levels under the most effective observation. In addition, cilostazol was found to attenuate the TNF-stimulated phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) p65 in the aortic vascular smooth muscle cell line, MOVAS-1 and the D-gal plus TNF-challenged heart tissue of mouse. Therefore, cilostazol is the most ideal of the three antiplatelet drugs for the treatment of TNF-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Hae-Ri Lee
- Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Republic of Korea
| | - Kyung-Yeon Park
- Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Republic of Korea
| | - Young-Jin Jeong
- Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Republic of Korea
| | - Tae-Hwe Heo
- Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon-si, Republic of Korea
| |
Collapse
|
12
|
Hermes TDA, Kido LA, Macedo AB, Mizobuti DS, Moraes LHR, Somazz MC, Cagnon VHA, Minatel E. Sex influences diaphragm muscle response in exercised mdx mice. Cell Biol Int 2018; 42:1611-1621. [PMID: 30238549 DOI: 10.1002/cbin.11057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/16/2018] [Indexed: 12/26/2022]
Abstract
Physical exercise promotes increased muscle damage in the mdx mice, the experimental model of Duchenne muscular dystrophy. Studies suggest that the estrogen level in females makes them less susceptible to muscle injuries. The aim of this study was to characterize the diaphragm (DIA) muscle response to physical exercise in male and female mdx mice. The animals were divided into four groups: female sedentary mdx; male sedentary mdx; female mdx submitted to exercise; and male mdx mice submitted to exercise. Blood samples were used to determine creatine kinase (CK). Regenerated muscle fibers were indicated by the presence of central nucleus and also inflammation areas were determined in DIA muscle sections. The alpha and beta estrogen receptors (ER) were determined by means of immunohistochemistry evaluation in the dystrophic DIA muscle. Male mdx animals submitted to exercise showed increased CK levels and inflammatory area. The quantification of regenerated fibers was higher in male animals, submitted or not to physical exercise. Greater alpha and beta ER expression was verified in the females submitted to exercise in the DIA muscle than in the other experimental groups. Therefore, estrogen may have contributed to the prevention of increased inflammatory process and DIA injury in females submitted to exercise.
Collapse
Affiliation(s)
- Túlio de Almeida Hermes
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil.,Centro Regional Universitário de Espírito Santo do Pinhal (UNIPINHAL), Espírito Santo do Pinhal, São Paulo 13990-000, Brazil
| | - Larissa Akemi Kido
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | - Aline Barbosa Macedo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | - Daniela Sayuri Mizobuti
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | - Luiz Henrique Rapucci Moraes
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | - Marco Cesar Somazz
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil.,Centro Regional Universitário de Espírito Santo do Pinhal (UNIPINHAL), Espírito Santo do Pinhal, São Paulo 13990-000, Brazil
| | - Valéria Helena Alves Cagnon
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| |
Collapse
|
13
|
Tempol Supplementation Restores Diaphragm Force and Metabolic Enzyme Activities in mdx Mice. Antioxidants (Basel) 2017; 6:antiox6040101. [PMID: 29210997 PMCID: PMC5745511 DOI: 10.3390/antiox6040101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/19/2017] [Accepted: 11/28/2017] [Indexed: 12/29/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by striated muscle weakness, cardiomyopathy, and respiratory failure. Since oxidative stress is recognized as a secondary pathology in DMD, the efficacy of antioxidant intervention, using the superoxide scavenger tempol, was examined on functional and biochemical status of dystrophin-deficient diaphragm muscle. Diaphragm muscle function was assessed, ex vivo, in adult male wild-type and dystrophin-deficient mdx mice, with and without a 14-day antioxidant intervention. The enzymatic activities of muscle citrate synthase, phosphofructokinase, and lactate dehydrogenase were assessed using spectrophotometric assays. Dystrophic diaphragm displayed mechanical dysfunction and altered biochemical status. Chronic tempol supplementation in the drinking water increased diaphragm functional capacity and citrate synthase and lactate dehydrogenase enzymatic activities, restoring all values to wild-type levels. Chronic supplementation with tempol recovers force-generating capacity and metabolic enzyme activity in mdx diaphragm. These findings may have relevance in the search for therapeutic strategies in neuromuscular disease.
Collapse
|
14
|
Mâncio RD, Hermes TDA, Macedo AB, Mizobuti DS, Valduga AH, Rupcic IF, Minatel E. Vitamin E treatment decreases muscle injury in mdx mice. Nutrition 2017; 43-44:39-46. [DOI: 10.1016/j.nut.2017.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 01/19/2023]
|
15
|
Li J, Xiang X, Gong X, Shi Y, Yang J, Xu Z. Cilostazol protects mice against myocardium ischemic/reperfusion injury by activating a PPARγ/JAK2/STAT3 pathway. Biomed Pharmacother 2017; 94:995-1001. [PMID: 28810537 DOI: 10.1016/j.biopha.2017.07.143] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/20/2017] [Accepted: 07/27/2017] [Indexed: 02/06/2023] Open
Abstract
Myocardial ischemia/reperfusion (MIR) injury causes severe arrhythmias and a high lethality. The present study is designed to investigate the effect of cilostazol on MIR injury and the underlying mechaism. We measured the effects of cilostazol on heart function parameters in a mouse model of MIR. Proinflammatory cytokines and apoptosis proteins in the myocardium were examined to investigate the anti-inflammatory and anti-apoptosis ability of cilostazol. The participation of PPARγ/JAK2/STAT3 pathway was investigated. Results showed that the impairment of hemodynamic parameters caused by MIR was attenuated by cilostazol. The IL-6, IL-1β and TNF-a levels were all decreased by cilostazol. Cilostazol also significantly inhibited Bax and cleaved caspase-3 levels and restored the Bcl-2 levels. PPARγ, JAK2 and STAT3 were all activated by cilostazol. Treatment of inhibitors of them abolished the protective effects of cilostazol on cardiac function, myocardial inflammation and apoptosis. In summary, cilostazol alleviated the cardiac function impairment, myocardial inflammation and apoptosis induced by MIR. The results present a novel signaling mechanism that cilostazol protects MIR injury by activating a PPARγ/JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Jiangjin Li
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, PR China.
| | - Xiaoli Xiang
- Department of Nephrology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, PR China
| | - Xiaoxuan Gong
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, PR China
| | - Yafei Shi
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, PR China
| | - Jing Yang
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, PR China
| | - Zuo Xu
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, PR China
| |
Collapse
|
16
|
Mâncio RD, Hermes TDA, Macedo AB, Mizobuti DS, Rupcic IF, Minatel E. Dystrophic phenotype improvement in the diaphragm muscle of mdx mice by diacerhein. PLoS One 2017; 12:e0182449. [PMID: 28787441 PMCID: PMC5546703 DOI: 10.1371/journal.pone.0182449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/18/2017] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation and oxidative stress are striking features of Duchenne muscular dystrophy disease. Diacerhein is an anthraquinone, which exhibits anti-inflammatory and antioxidant properties. Based on their actions, the present study evaluated the effects of diacerhein against myonecrosis, oxidative stress and inflammatory response in the diaphragm muscle of mdx mice and compared these results to current treatment widely used in DMD patients, with a main focus on the impact of prednisone. The results demonstrated that diacerhein treatment prevented muscle damage indicated by a decrease in the IgG uptake by muscle fibers, lower CK levels in serum, reduction of fibers with central nuclei with a concomitant increase in fibers with peripheral nuclei. It also had an effect on the inflammatory process, decreasing the inflammatory area, macrophage staining and TNF-α and IL-1β content. Regarding oxidative stress, diacerhein treatment was effective in reducing the ROS and lipid peroxidation in the diaphragm muscle from mdx mice. Compared to prednisone treatment, our findings demonstrated that diacerhein treatment improved the dystrophic phenotype in the diaphragm muscle of mdx mice similar to that of glucocorticoid therapy. In this respect, this work suggests that diacerhein has a potential use as an alternative drug in dystrophinopathy treatment and recommends that its anti-inflammatory and antioxidants properties in the dystrophic muscle should be better understood.
Collapse
Affiliation(s)
- Rafael Dias Mâncio
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Túlio de Almeida Hermes
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Aline Barbosa Macedo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Daniela Sayuri Mizobuti
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ian Feller Rupcic
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- * E-mail:
| |
Collapse
|