1
|
Liang C, Malik S, He M, Groom L, Ture SK, O'Connor TN, Morrell CN, Dirksen RT. Compound heterozygous RYR1-RM mouse model reveals disease pathomechanisms and muscle adaptations to promote postnatal survival. FASEB J 2024; 38:e70120. [PMID: 39466056 DOI: 10.1096/fj.202401189r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
Pathogenic variants in the type I ryanodine receptor (RYR1) result in a wide range of muscle disorders referred to as RYR1-related myopathies (RYR1-RM). We developed the first RYR1-RM mouse model resulting from co-inheritance of two different RYR1 missense alleles (Ryr1TM/SC-ΔL mice). Ryr1TM/SC-ΔL mice exhibit a severe, early onset myopathy characterized by decreased body/muscle mass, muscle weakness, hypotrophy, reduced RYR1 expression, and unexpectedly, incomplete postnatal lethality with a plateau survival of ~50% at 12 weeks of age. Ryr1TM/SC-ΔL mice display reduced respiratory function, locomotor activity, and in vivo muscle strength. Extensor digitorum longus muscles from Ryr1TM/SC-ΔL mice exhibit decreased cross-sectional area of type IIb and type IIx fibers, as well as a reduction in number of type IIb fibers. Ex vivo functional analyses revealed reduced Ca2+ release and specific force production during electrically-evoked twitch stimulation. In spite of a ~threefold reduction in RYR1 expression in single muscle fibers from Ryr1TM/SC-ΔL mice at 4 weeks and 12 weeks of age, RYR1 Ca2+ leak was not different from that of fibers from control mice at either age. Proteomic analyses revealed alterations in protein synthesis, folding, and degradation pathways in the muscle of 4- and 12-week-old Ryr1TM/SC-ΔL mice, while proteins involved in the extracellular matrix, dystrophin-associated glycoprotein complex, and fatty acid metabolism were upregulated in Ryr1TM/SC-ΔL mice that survive to 12 weeks of age. These findings suggest that adaptations that optimize RYR1 expression/Ca2+ leak balance, sarcolemmal stability, and fatty acid biosynthesis provide Ryr1TM/SC-ΔL mice with an increased survival advantage during postnatal development.
Collapse
Affiliation(s)
- Chen Liang
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Miao He
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Sara K Ture
- Department of Medicine, Cardiovascular Research Institute, University of Rochester, Rochester, New York, USA
| | - Thomas N O'Connor
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Craig N Morrell
- Department of Medicine, Cardiovascular Research Institute, University of Rochester, Rochester, New York, USA
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
2
|
Villani KR, Zhong R, Henley-Beasley CS, Rastelli G, Harris E, Boncompagni S, Barton ER, Wei-LaPierre L. Loss of Calpain 3 dysregulates store-operated calcium entry and its exercise response in mice. FASEB J 2024; 38:e23825. [PMID: 39031532 PMCID: PMC11299996 DOI: 10.1096/fj.202400697r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Limb-Girdle Muscular Dystrophy R1/2A (LGMD R1/2A) is caused by mutations in the CAPN3 gene encoding Calpain 3, a skeletal-muscle specific, Ca2+-dependent protease. Localization of Calpain 3 within the triad suggests it contributes to Ca2+ homeostasis. Through live-cell Ca2+ measurements, muscle mechanics, immunofluorescence, and electron microscopy (EM) in Capn3 deficient (C3KO) and wild-type (WT) mice, we determined whether loss of Calpain 3 altered Store-Operated Calcium Entry (SOCE) activity. Direct Ca2+ influx measurements revealed loss of Capn3 elicits elevated resting SOCE and increased resting cytosolic Ca2+, supported by high incidence of calcium entry units (CEUs) observed by EM. C3KO and WT mice were subjected to a single bout of treadmill running to elicit SOCE. Within 1HR post-treadmill running, C3KO mice exhibited diminished force production in extensor digitorum longus muscles and a greater decay of Ca2+ transients in flexor digitorum brevis muscle fibers during repetitive stimulation. Striking evidence for impaired exercise-induced SOCE activation in C3KO mice included poor colocalization of key SOCE proteins, stromal-interacting molecule 1 (STIM1) and ORAI1, combined with disappearance of CEUs in C3KO muscles. These results demonstrate that Calpain 3 is a key regulator of SOCE in skeletal muscle and identify SOCE dysregulation as a contributing factor to LGMD R1/2A pathology.
Collapse
Affiliation(s)
- Katelyn R. Villani
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
| | - Renjia Zhong
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Department of Emergency Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - C. Spencer Henley-Beasley
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Myology Institute, University of Florida, FL, USA
| | - Giorgia Rastelli
- Center for Advanced Studies and Technology and Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti–Pescara, Chieti, Italy
| | - Erin Harris
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
| | - Simona Boncompagni
- Center for Advanced Studies and Technology and Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti–Pescara, Chieti, Italy
| | - Elisabeth R. Barton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Myology Institute, University of Florida, FL, USA
| | - Lan Wei-LaPierre
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Myology Institute, University of Florida, FL, USA
| |
Collapse
|
3
|
Villani KR, Zhong R, Henley-Beasley CS, Rastelli G, Boncompagni S, Barton ER, Wei-LaPierre L. Loss of calpain 3 dysregulates store-operated calcium entry and its exercise response in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575391. [PMID: 38293127 PMCID: PMC10827051 DOI: 10.1101/2024.01.12.575391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Limb-Girdle Muscular Dystrophy 2A (LGMD2A) is caused by mutations in the CAPN3 gene encoding Calpain 3, a skeletal-muscle specific, Ca2+-dependent protease. Localization of Calpain 3 within the triad suggests it contributes to Ca2+ homeostasis. Through live-cell Ca2+ measurements, muscle mechanics, immunofluorescence, and electron microscopy (EM) in Capn3 deficient (C3KO) and wildtype (WT) mice, we determined if loss of Calpain 3 altered Store-Operated Calcium Entry (SOCE) activity. Direct Ca2+ influx measurements revealed loss of Capn3 elicits elevated resting SOCE and increased resting cytosolic Ca2+, supported by high incidence of calcium entry units (CEUs) observed by EM. C3KO and WT mice were subjected to a single bout of treadmill running to elicit SOCE. Within 1HR post-treadmill running, C3KO mice exhibited diminished force production in extensor digitorum longus muscles and a greater decay of Ca2+ transients in flexor digitorum brevis muscle fibers during repetitive stimulation. Striking evidence for impaired exercise-induced SOCE activation in C3KO mice included poor colocalization of key SOCE proteins, stromal-interacting molecule 1 (STIM1) and ORAI1, combined with disappearance of CEUs in C3KO muscles. These results demonstrate that Calpain 3 is a key regulator of SOCE in skeletal muscle and identify SOCE dysregulation as a contributing factor to LGMD2A pathology.
Collapse
Affiliation(s)
- Katelyn R. Villani
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
| | - Renjia Zhong
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Department of Emergency Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - C. Spencer Henley-Beasley
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Myology Institute, University of Florida, FL, USA
| | - Giorgia Rastelli
- Center for Advanced Studies and Technology and Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti–Pescara, Chieti, Italy
| | - Simona Boncompagni
- Center for Advanced Studies and Technology and Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti–Pescara, Chieti, Italy
| | - Elisabeth R. Barton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Myology Institute, University of Florida, FL, USA
| | - Lan Wei-LaPierre
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA
- Myology Institute, University of Florida, FL, USA
| |
Collapse
|
4
|
Marabelli C, Santiago DJ, Priori SG. The Structural-Functional Crosstalk of the Calsequestrin System: Insights and Pathological Implications. Biomolecules 2023; 13:1693. [PMID: 38136565 PMCID: PMC10741413 DOI: 10.3390/biom13121693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Calsequestrin (CASQ) is a key intra-sarcoplasmic reticulum Ca2+-handling protein that plays a pivotal role in the contraction of cardiac and skeletal muscles. Its Ca2+-dependent polymerization dynamics shape the translation of electric excitation signals to the Ca2+-induced contraction of the actin-myosin architecture. Mutations in CASQ are linked to life-threatening pathological conditions, including tubular aggregate myopathy, malignant hyperthermia, and Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). The variability in the penetrance of these phenotypes and the lack of a clear understanding of the disease mechanisms associated with CASQ mutations pose a major challenge to the development of effective therapeutic strategies. In vitro studies have mainly focused on the polymerization and Ca2+-buffering properties of CASQ but have provided little insight into the complex interplay of structural and functional changes that underlie disease. In this review, the biochemical and structural natures of CASQ are explored in-depth, while emphasizing their direct and indirect consequences for muscle Ca2+ physiology. We propose a novel functional classification of CASQ pathological missense mutations based on the structural stability of the monomer, dimer, or linear polymer conformation. We also highlight emerging similarities between polymeric CASQ and polyelectrolyte systems, emphasizing the potential for the use of this paradigm to guide further research.
Collapse
Affiliation(s)
- Chiara Marabelli
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Laboratory of Molecular Cardiology, IRCCS ICS Maugeri, 27100 Pavia, Italy
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain;
| | - Demetrio J. Santiago
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain;
| | - Silvia G. Priori
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Laboratory of Molecular Cardiology, IRCCS ICS Maugeri, 27100 Pavia, Italy
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain;
| |
Collapse
|
5
|
Endo Y, Groom L, Celik A, Kraeva N, Lee CS, Jung SY, Gardner L, Shaw MA, Hamilton SL, Hopkins PM, Dirksen RT, Riazi S, Dowling JJ. Variants in ASPH cause exertional heat illness and are associated with malignant hyperthermia susceptibility. Nat Commun 2022; 13:3403. [PMID: 35697689 PMCID: PMC9192596 DOI: 10.1038/s41467-022-31088-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/31/2022] [Indexed: 01/24/2023] Open
Abstract
Exertional heat illness (EHI) and malignant hyperthermia (MH) are life threatening conditions associated with muscle breakdown in the setting of triggering factors including volatile anesthetics, exercise, and high environmental temperature. To identify new genetic variants that predispose to EHI and/or MH, we performed genomic sequencing on a cohort with EHI/MH and/or abnormal caffeine-halothane contracture test. In five individuals, we identified rare, pathogenic heterozygous variants in ASPH, a gene encoding junctin, a regulator of excitation-contraction coupling. We validated the pathogenicity of these variants using orthogonal pre-clinical models, CRISPR-edited C2C12 myotubes and transgenic zebrafish. In total, we demonstrate that ASPH variants represent a new cause of EHI and MH susceptibility.
Collapse
Affiliation(s)
- Yukari Endo
- grid.42327.300000 0004 0473 9646Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario Canada
| | - Linda Groom
- grid.16416.340000 0004 1936 9174Department of Physiology, University of Rochester, Rochester, NY USA
| | - Alper Celik
- grid.42327.300000 0004 0473 9646Centre for Computation Medicine, Hospital for Sick Children, Toronto, Ontario Canada
| | - Natalia Kraeva
- grid.417184.f0000 0001 0661 1177Malignant Hyperthermia Unit, Department of Anesthesia, Toronto General Hospital, Toronto, Ontario Canada
| | - Chang Seok Lee
- grid.39382.330000 0001 2160 926XDepartment of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX USA
| | - Sung Yun Jung
- grid.39382.330000 0001 2160 926XDepartment of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX USA
| | - Lois Gardner
- grid.9909.90000 0004 1936 8403Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Marie-Anne Shaw
- grid.9909.90000 0004 1936 8403Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Susan L. Hamilton
- grid.39382.330000 0001 2160 926XDepartment of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX USA
| | - Philip M. Hopkins
- grid.9909.90000 0004 1936 8403Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK ,grid.443984.60000 0000 8813 7132Malignant Hyperthermia Unit, St. James’s University Hospital, Leeds, UK
| | - Robert T. Dirksen
- grid.16416.340000 0004 1936 9174Department of Physiology, University of Rochester, Rochester, NY USA
| | - Sheila Riazi
- grid.417184.f0000 0001 0661 1177Malignant Hyperthermia Unit, Department of Anesthesia, Toronto General Hospital, Toronto, Ontario Canada
| | - James J. Dowling
- grid.42327.300000 0004 0473 9646Program for Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario Canada ,grid.42327.300000 0004 0473 9646Division of Neurology, Hospital for Sick Children, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Paediatrics, University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada
| |
Collapse
|
6
|
Rossi D, Pierantozzi E, Amadsun DO, Buonocore S, Rubino EM, Sorrentino V. The Sarcoplasmic Reticulum of Skeletal Muscle Cells: A Labyrinth of Membrane Contact Sites. Biomolecules 2022; 12:488. [PMID: 35454077 PMCID: PMC9026860 DOI: 10.3390/biom12040488] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022] Open
Abstract
The sarcoplasmic reticulum of skeletal muscle cells is a highly ordered structure consisting of an intricate network of tubules and cisternae specialized for regulating Ca2+ homeostasis in the context of muscle contraction. The sarcoplasmic reticulum contains several proteins, some of which support Ca2+ storage and release, while others regulate the formation and maintenance of this highly convoluted organelle and mediate the interaction with other components of the muscle fiber. In this review, some of the main issues concerning the biology of the sarcoplasmic reticulum will be described and discussed; particular attention will be addressed to the structure and function of the two domains of the sarcoplasmic reticulum supporting the excitation-contraction coupling and Ca2+-uptake mechanisms.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (E.P.); (D.O.A.); (S.B.); (E.M.R.); (V.S.)
| | | | | | | | | | | |
Collapse
|
7
|
The reduced contraction capacity of palatopharyngeal muscle in OSAHS is related to the decreased intra-cellular [Ca2+] mediated by low RyR1 and DHPRα1s expression. Sleep Breath 2022; 26:1791-1799. [DOI: 10.1007/s11325-022-02562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 11/27/2022]
|
8
|
Meyer P, Notarnicola C, Meli AC, Matecki S, Hugon G, Salvador J, Khalil M, Féasson L, Cances C, Cottalorda J, Desguerre I, Cuisset JM, Sabouraud P, Lacampagne A, Chevassus H, Rivier F, Carnac G. Skeletal Ryanodine Receptors Are Involved in Impaired Myogenic Differentiation in Duchenne Muscular Dystrophy Patients. Int J Mol Sci 2021; 22:12985. [PMID: 34884796 PMCID: PMC8657486 DOI: 10.3390/ijms222312985] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive muscle wasting following repeated muscle damage and inadequate regeneration. Impaired myogenesis and differentiation play a major role in DMD as well as intracellular calcium (Ca2+) mishandling. Ca2+ release from the sarcoplasmic reticulum is mostly mediated by the type 1 ryanodine receptor (RYR1) that is required for skeletal muscle differentiation in animals. The study objective was to determine whether altered RYR1-mediated Ca2+ release contributes to myogenic differentiation impairment in DMD patients. The comparison of primary cultured myoblasts from six boys with DMD and five healthy controls highlighted delayed myoblast differentiation in DMD. Silencing RYR1 expression using specific si-RNA in a healthy control induced a similar delayed differentiation. In DMD myotubes, resting intracellular Ca2+ concentration was increased, but RYR1-mediated Ca2+ release was not changed compared with control myotubes. Incubation with the RYR-calstabin interaction stabilizer S107 decreased resting Ca2+ concentration in DMD myotubes to control values and improved calstabin1 binding to the RYR1 complex. S107 also improved myogenic differentiation in DMD. Furthermore, intracellular Ca2+ concentration was correlated with endomysial fibrosis, which is the only myopathologic parameter associated with poor motor outcome in patients with DMD. This suggested a potential relationship between RYR1 dysfunction and motor impairment. Our study highlights RYR1-mediated Ca2+ leakage in human DMD myotubes and its key role in myogenic differentiation impairment. RYR1 stabilization may be an interesting adjunctive therapeutic strategy in DMD.
Collapse
Affiliation(s)
- Pierre Meyer
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
- Reference Centre for Neuromuscular Diseases AOC, Clinical Investigation Centre, Pediatric Neurology Department, Montpellier University Hospital, 34000 Montpellier, France
| | - Cécile Notarnicola
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Albano C. Meli
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Stefan Matecki
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Gérald Hugon
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Jérémy Salvador
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Mirna Khalil
- Clinical Investigation Center, Montpellier University Hospital, 34000 Montpellier, France; (M.K.); (H.C.)
| | - Léonard Féasson
- Myology Unit, Reference Center for Neuromuscular Diseases Euro-NmD, Inter-University Laboratory of Human Movement Sciences—EA7424, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| | - Claude Cances
- Reference Center for Neuromuscular Diseases AOC, Pediatric Neurology Department, Toulouse University Hospital, 3100 Toulouse, France;
- Pediatric Clinical Research Unit, Pediatric Multi-thematic Module CIC 1436, Toulouse Children’s Hospital, 31300 Toulouse, France
| | - Jérôme Cottalorda
- Pediatric Orthopedic and Plastic Surgery Department, Montpellier University Hospital, 34295 Montpellier, France;
| | - Isabelle Desguerre
- Reference Center for Neuromuscular Diseases Paris Nord-Ile-de-France-Est, Pediatric Neurology Department, Necker Enfant Malades University Hospital, Assistance Publique des Hôpitaux de Paris Centre, Paris University, 75019 Paris, France;
| | - Jean-Marie Cuisset
- Reference Center for Neuromuscular Diseases Nord-Ile-de-France-Est, Pediatric Neurology Department, Lille University Hospital, 59000 Lille, France;
| | - Pascal Sabouraud
- Reference Center for Neuromuscular Diseases Nord-Ile-de-France-Est, Pediatric Neurology Department, Reims University Hospital, 51100 Reims, France;
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| | - Hugues Chevassus
- Clinical Investigation Center, Montpellier University Hospital, 34000 Montpellier, France; (M.K.); (H.C.)
| | - François Rivier
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
- Reference Centre for Neuromuscular Diseases AOC, Clinical Investigation Centre, Pediatric Neurology Department, Montpellier University Hospital, 34000 Montpellier, France
| | - Gilles Carnac
- PhyMedExp, University of Montpellier, Inserm, CNRS, 34295 Montpellier, France; (C.N.); (A.C.M.); (S.M.); (G.H.); (J.S.); (A.L.); (F.R.); (G.C.)
| |
Collapse
|
9
|
Communications between Mitochondria and Endoplasmic Reticulum in the Regulation of Metabolic Homeostasis. Cells 2021; 10:cells10092195. [PMID: 34571844 PMCID: PMC8468463 DOI: 10.3390/cells10092195] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria associated membranes (MAM), which are the contact sites between endoplasmic reticulum (ER) and mitochondria, have emerged as an important hub for signaling molecules to integrate the cellular and organelle homeostasis, thus facilitating the adaptation of energy metabolism to nutrient status. This review explores the dynamic structural and functional features of the MAM and summarizes the various abnormalities leading to the impaired insulin sensitivity and metabolic diseases.
Collapse
|
10
|
Greve JM, Pinkham AM, Cowan JA. Human Aspartyl (Asparaginyl) Hydroxylase. A Multifaceted Enzyme with Broad Intra- and Extracellular Activity. Metallomics 2021; 13:6324587. [PMID: 34283245 DOI: 10.1093/mtomcs/mfab044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/29/2021] [Indexed: 01/12/2023]
Abstract
Human aspartyl (asparaginyl) β-hydroxylase (HAAH), a unique iron and 2-oxoglutarate dependent oxygenase, has shown increased importance as a suspected oncogenic protein. HAAH and its associated mRNA are upregulated in a wide variety of cancer types, however, the current role of HAAH in the malignant transformation of cells is unknown. HAAH is suspected to play an important role in NOTCH signaling via selective hydroxylation of aspartic acid and asparagine residues of epidermal growth factor (EGF)-like domains. HAAH hydroxylation also potentially mediates calcium signaling and oxygen sensing. In this review we summarize the current state of understanding of the biochemistry and chemical biology of this enzyme, identify key differences from other family members, outline its broader intra- and extracellular roles, and identify the most promising areas for future research efforts.
Collapse
Affiliation(s)
- Jenna M Greve
- Contribution from the Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Andrew M Pinkham
- Contribution from the Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - J A Cowan
- Contribution from the Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
11
|
Protasi F, Pietrangelo L, Boncompagni S. Improper Remodeling of Organelles Deputed to Ca 2+ Handling and Aerobic ATP Production Underlies Muscle Dysfunction in Ageing. Int J Mol Sci 2021; 22:6195. [PMID: 34201319 PMCID: PMC8228829 DOI: 10.3390/ijms22126195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/28/2022] Open
Abstract
Proper skeletal muscle function is controlled by intracellular Ca2+ concentration and by efficient production of energy (ATP), which, in turn, depend on: (a) the release and re-uptake of Ca2+ from sarcoplasmic-reticulum (SR) during excitation-contraction (EC) coupling, which controls the contraction and relaxation of sarcomeres; (b) the uptake of Ca2+ into the mitochondrial matrix, which stimulates aerobic ATP production; and finally (c) the entry of Ca2+ from the extracellular space via store-operated Ca2+ entry (SOCE), a mechanism that is important to limit/delay muscle fatigue. Abnormalities in Ca2+ handling underlie many physio-pathological conditions, including dysfunction in ageing. The specific focus of this review is to discuss the importance of the proper architecture of organelles and membrane systems involved in the mechanisms introduced above for the correct skeletal muscle function. We reviewed the existing literature about EC coupling, mitochondrial Ca2+ uptake, SOCE and about the structural membranes and organelles deputed to those functions and finally, we summarized the data collected in different, but complementary, projects studying changes caused by denervation and ageing to the structure and positioning of those organelles: a. denervation of muscle fibers-an event that contributes, to some degree, to muscle loss in ageing (known as sarcopenia)-causes misplacement and damage: (i) of membrane structures involved in EC coupling (calcium release units, CRUs) and (ii) of the mitochondrial network; b. sedentary ageing causes partial disarray/damage of CRUs and of calcium entry units (CEUs, structures involved in SOCE) and loss/misplacement of mitochondria; c. functional electrical stimulation (FES) and regular exercise promote the rescue/maintenance of the proper architecture of CRUs, CEUs, and of mitochondria in both denervation and ageing. All these structural changes were accompanied by related functional changes, i.e., loss/decay in function caused by denervation and ageing, and improved function following FES or exercise. These data suggest that the integrity and proper disposition of intracellular organelles deputed to Ca2+ handling and aerobic generation of ATP is challenged by inactivity (or reduced activity); modifications in the architecture of these intracellular membrane systems may contribute to muscle dysfunction in ageing and sarcopenia.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DNICS, Department of Neuroscience and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| |
Collapse
|
12
|
Truong KM, Pessah IN. Comparison of Chlorantraniliprole and Flubendiamide Activity Toward Wild-Type and Malignant Hyperthermia-Susceptible Ryanodine Receptors and Heat Stress Intolerance. Toxicol Sci 2019; 167:509-523. [PMID: 30329129 PMCID: PMC6358238 DOI: 10.1093/toxsci/kfy256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chlorantraniliprole (CP) and flubendiamide (FD) are widely used in agriculture globally to control lepidopteran pests. Both insecticides target ryanodine receptors (RyRs) and promote Ca2+ leak from sarcoplasmic reticulum (SR) within insect skeletal muscle yet are purportedly devoid of activity toward mammalian RyR1 and muscle. RyRs are ion channels that regulate intracellular Ca2+ release from SR during physiological excitation-contraction coupling. Mutations in RYR1 genes confer malignant hyperthermia susceptibility (MHS), a potentially lethal pharmacogenetic disorder in humans and animals. Compared with vehicle control, CP (10 µM) triggers a 65-fold higher rate of Ca2+ efflux from Ca2+-loaded mammalian WT-RyR1 SR vesicles, whereas FD (10 µM) produces negligible influence on Ca2+ leak. We, therefore, compared whether CP or FD differentially influence patterns of high-affinity [3H]ryanodine ([3H]Ry) binding to RyR1 isolated from muscle SR membranes prepared from adult C57BL/6J mice expressing WT, homozygous C-terminal MHS mutation T4826I, or heterozygous N-terminal MHS mutation R163C. Basal [3H]Ry binding differed among genotypes with rank order T4826I ≫R163C∼WT, regardless of [Ca2+] in the assay medium. Both CP and FD (0.01-100 µM) elicited concentration-dependent increase in [3H]Ry binding, although CP showed greater efficacy regardless of genotype or [Ca2+]. Exposure to CP (500 mg/kg; p.o) failed to shift intolerance to heat stress (38°C) characteristic of R163C and T4826I MHS mice, nor cause lethality in WT mice. Although nM-µM of either diamide is capable of differentially altering WT and MHS RyR1 conformation in vitro, human RyR1 mutations within putative diamide N- and C-terminal interaction domains do not alter heat stress intolerance (HSI) in vivo.
Collapse
Affiliation(s)
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616-5270
| |
Collapse
|
13
|
Sidorenko S, Klimanova E, Milovanova K, Lopina OD, Kapilevich LV, Chibalin AV, Orlov SN. Transcriptomic changes in C2C12 myotubes triggered by electrical stimulation: Role of Ca2+i-mediated and Ca2+i-independent signaling and elevated [Na+]i/[K+]i ratio. Cell Calcium 2018; 76:72-86. [DOI: 10.1016/j.ceca.2018.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 12/25/2022]
|
14
|
Role of STIM1/ORAI1-mediated store-operated Ca 2+ entry in skeletal muscle physiology and disease. Cell Calcium 2018; 76:101-115. [PMID: 30414508 DOI: 10.1016/j.ceca.2018.10.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 11/23/2022]
Abstract
Store-operated Ca2+ entry (SOCE) is a Ca2+ entry mechanism activated by depletion of intracellular Ca2+ stores. In skeletal muscle, SOCE is mediated by an interaction between stromal-interacting molecule-1 (STIM1), the Ca2+ sensor of the sarcoplasmic reticulum, and ORAI1, the Ca2+-release-activated-Ca2+ (CRAC) channel located in the transverse tubule membrane. This review focuses on the molecular mechanisms and physiological role of SOCE in skeletal muscle, as well as how alterations in STIM1/ORAI1-mediated SOCE contribute to muscle disease. Recent evidence indicates that SOCE plays an important role in both muscle development/growth and fatigue. The importance of SOCE in muscle is further underscored by the discovery that loss- and gain-of-function mutations in STIM1 and ORAI1 result in an eclectic array of disorders with clinical myopathy as central defining component. Despite differences in clinical phenotype, all STIM1/ORAI1 gain-of-function mutations-linked myopathies are characterized by the abnormal accumulation of intracellular membranes, known as tubular aggregates. Finally, dysfunctional STIM1/ORAI1-mediated SOCE also contributes to the pathogenesis of muscular dystrophy, malignant hyperthermia, and sarcopenia. The picture to emerge is that tight regulation of STIM1/ORAI1-dependent Ca2+ signaling is critical for optimal skeletal muscle development/function such that either aberrant increases or decreases in SOCE activity result in muscle dysfunction.
Collapse
|
15
|
Agrawal A, Suryakumar G, Rathor R. Role of defective Ca 2+ signaling in skeletal muscle weakness: Pharmacological implications. J Cell Commun Signal 2018; 12:645-659. [PMID: 29982883 DOI: 10.1007/s12079-018-0477-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/27/2018] [Indexed: 01/19/2023] Open
Abstract
The misbehaving attitude of Ca2+ signaling pathways could be the probable reason in many muscular disorders such as myopathies, systemic disorders like hypoxia, sepsis, cachexia, sarcopenia, heart failure, and dystrophy. The present review throws light upon the calcium flux regulating signaling channels like ryanodine receptor complex (RyR1), SERCA (Sarco-endoplasmic Reticulum Calcium ATPase), DHPR (Dihydropyridine Receptor) or Cav1.1 and Na+/Ca2+ exchange pump in detail and how remodelling of these channels contribute towards disturbed calcium homeostasis. Understanding these pathways will further provide an insight for establishing new therapeutic approaches for the prevention and treatment of muscle atrophy under stress conditions, targeting calcium ion channels and associated regulatory proteins.
Collapse
Affiliation(s)
- Akanksha Agrawal
- DRDO, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Geetha Suryakumar
- DRDO, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Richa Rathor
- DRDO, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
16
|
Heinz LP, Kopec W, de Groot BL, Fink RHA. In silico assessment of the conduction mechanism of the Ryanodine Receptor 1 reveals previously unknown exit pathways. Sci Rep 2018; 8:6886. [PMID: 29720700 PMCID: PMC5932038 DOI: 10.1038/s41598-018-25061-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/13/2018] [Indexed: 12/18/2022] Open
Abstract
The ryanodine receptor 1 is a large calcium ion channel found in mammalian skeletal muscle. The ion channel gained a lot of attention recently, after multiple independent authors published near-atomic cryo electron microscopy data. Taking advantage of the unprecedented quality of structural data, we performed molecular dynamics simulations on the entire ion channel as well as on a reduced model. We calculated potentials of mean force for Ba2+, Ca2+, Mg2+, K+, Na+ and Cl- ions using umbrella sampling to identify the key residues involved in ion permeation. We found two main binding sites for the cations, whereas the channel is strongly repulsive for chloride ions. Furthermore, the data is consistent with the model that the receptor achieves its ion selectivity by over-affinity for divalent cations in a calcium-block-like fashion. We reproduced the experimental conductance for potassium ions in permeation simulations with applied voltage. The analysis of the permeation paths shows that ions exit the pore via multiple pathways, which we suggest to be related to the experimental observation of different subconducting states.
Collapse
Affiliation(s)
- Leonard P Heinz
- Medical Biophysics Unit, Medical Faculty, Institute of Physiology and Pathophysiology, Heidelberg University, 69120, Heidelberg, Germany.
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| | - Wojciech Kopec
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Rainer H A Fink
- Medical Biophysics Unit, Medical Faculty, Institute of Physiology and Pathophysiology, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
17
|
Allard B. From excitation to intracellular Ca 2+ movements in skeletal muscle: Basic aspects and related clinical disorders. Neuromuscul Disord 2018; 28:394-401. [DOI: 10.1016/j.nmd.2018.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/19/2018] [Accepted: 03/05/2018] [Indexed: 01/18/2023]
|
18
|
Morales-Alamo D, Guerra B, Santana A, Martin-Rincon M, Gelabert-Rebato M, Dorado C, Calbet JAL. Skeletal Muscle Pyruvate Dehydrogenase Phosphorylation and Lactate Accumulation During Sprint Exercise in Normoxia and Severe Acute Hypoxia: Effects of Antioxidants. Front Physiol 2018; 9:188. [PMID: 29615918 PMCID: PMC5867337 DOI: 10.3389/fphys.2018.00188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 02/23/2018] [Indexed: 12/30/2022] Open
Abstract
Compared to normoxia, during sprint exercise in severe acute hypoxia the glycolytic rate is increased leading to greater lactate accumulation, acidification, and oxidative stress. To determine the role played by pyruvate dehydrogenase (PDH) activation and reactive nitrogen and oxygen species (RNOS) in muscle lactate accumulation, nine volunteers performed a single 30-s sprint (Wingate test) on four occasions: two after the ingestion of placebo and another two following the intake of antioxidants, while breathing either hypoxic gas (PIO2 = 75 mmHg) or room air (PIO2 = 143 mmHg). Vastus lateralis muscle biopsies were obtained before, immediately after, 30 and 120 min post-sprint. Antioxidants reduced the glycolytic rate without altering performance or VO2. Immediately after the sprints, Ser293- and Ser300-PDH-E1α phosphorylations were reduced to similar levels in all conditions (~66 and 91%, respectively). However, 30 min into recovery Ser293-PDH-E1α phosphorylation reached pre-exercise values while Ser300-PDH-E1α was still reduced by 44%. Thirty minutes after the sprint Ser293-PDH-E1α phosphorylation was greater with antioxidants, resulting in 74% higher muscle lactate concentration. Changes in Ser293 and Ser300-PDH-E1α phosphorylation from pre to immediately after the sprints were linearly related after placebo (r = 0.74, P < 0.001; n = 18), but not after antioxidants ingestion (r = 0.35, P = 0.15). In summary, lactate accumulation during sprint exercise in severe acute hypoxia is not caused by a reduced activation of the PDH. The ingestion of antioxidants is associated with increased PDH re-phosphorylation and slower elimination of muscle lactate during the recovery period. Ser293 re-phosphorylates at a faster rate than Ser300-PDH-E1α during the recovery period, suggesting slightly different regulatory mechanisms.
Collapse
Affiliation(s)
- David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain
| | - Borja Guerra
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain
| | - Alfredo Santana
- Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain.,Clinical Genetics Unit, Complejo Hospitalario Universitario Insular-Materno Infantil de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain
| | - Miriam Gelabert-Rebato
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain
| | - Cecilia Dorado
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain
| | - José A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
19
|
Kutchukian C, Szentesi P, Allard B, Trochet D, Beuvin M, Berthier C, Tourneur Y, Guicheney P, Csernoch L, Bitoun M, Jacquemond V. Impaired excitation-contraction coupling in muscle fibres from the dynamin2 R465W mouse model of centronuclear myopathy. J Physiol 2017; 595:7369-7382. [PMID: 29071728 DOI: 10.1113/jp274990] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/20/2017] [Indexed: 01/25/2023] Open
Abstract
KEY POINTS Dynamin 2 is a ubiquitously expressed protein involved in membrane trafficking processes. Mutations in the gene encoding dynamin 2 are responsible for a congenital myopathy associated with centrally located nuclei in the muscle fibres. Using muscle fibres from a mouse model of the most common mutation responsible for this disease in humans, we tested whether altered Ca2+ signalling and excitation-contraction coupling contribute to muscle weakness. The plasma membrane network that carries the electrical excitation is moderately perturbed in the diseased muscle fibres. The excitation-activated Ca2+ input fluxes across both the plasma membrane and the membrane of the sarcoplasmic reticulum are defective in the diseased fibres, which probably contributes to muscle weakness in patients. ABSTRACT Mutations in the gene encoding dynamin 2 (DNM2) are responsible for autosomal dominant centronuclear myopathy (AD-CNM). We studied the functional properties of Ca2+ signalling and excitation-contraction (EC) coupling in muscle fibres isolated from a knock-in (KI) mouse model of the disease, using confocal imaging and the voltage clamp technique. The transverse-tubule network organization appeared to be unaltered in the diseased fibres, although its density was reduced by ∼10% compared to that in control fibres. The density of Ca2+ current through CaV1.1 channels and the rate of voltage-activated sarcoplasmic reticulum Ca2+ release were reduced by ∼60% and 30%, respectively, in KI vs. control fibres. In addition, Ca2+ release in the KI fibres reached its peak value 10-50 ms later than in control ones. Activation of Ca2+ transients along the longitudinal axis of the fibres was more heterogeneous in the KI than in the control fibres, with the difference being exacerbated at intermediate membrane voltages. KI fibres exhibited spontaneous Ca2+ release events that were almost absent from control fibres. Overall, the results of the present study demonstrate that Ca2+ signalling and EC coupling exhibit a number of dysfunctions likely contributing to muscle weakness in DNM2-related AD-CNM.
Collapse
Affiliation(s)
- Candice Kutchukian
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, Villeurbanne, France
| | - Peter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bruno Allard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, Villeurbanne, France
| | - Delphine Trochet
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMR_S974, Institute of Myology, Paris, France
| | - Maud Beuvin
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMR_S974, Institute of Myology, Paris, France
| | - Christine Berthier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, Villeurbanne, France
| | - Yves Tourneur
- CarMeN, INSERM U1060, Faculté de Médecine Lyon Sud, Oullins, France.,UFPE Dept Nutrição, Av. Prof. Moraes Rego, Cidade Universitária, Recife, Brazil
| | - Pascale Guicheney
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMR_S1166, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Laszlo Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Marc Bitoun
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMR_S974, Institute of Myology, Paris, France
| | - Vincent Jacquemond
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, Villeurbanne, France
| |
Collapse
|
20
|
Morales-Alamo D, Guerra B, Ponce-González JG, Guadalupe-Grau A, Santana A, Martin-Rincon M, Gelabert-Rebato M, Cadefau JA, Cusso R, Dorado C, Calbet JAL. Skeletal muscle signaling, metabolism, and performance during sprint exercise in severe acute hypoxia after the ingestion of antioxidants. J Appl Physiol (1985) 2017; 123:1235-1245. [PMID: 28819003 DOI: 10.1152/japplphysiol.00384.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/19/2017] [Accepted: 08/06/2017] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to determine if reactive oxygen species (ROS) could play a role in blunting Thr172-AMP-activated protein kinase (AMPK)-α phosphorylation in human skeletal muscle after sprint exercise in hypoxia and to elucidate the potential signaling mechanisms responsible for this response. Nine volunteers performed a single 30-s sprint (Wingate test) in two occasions while breathing hypoxic gas ([Formula: see text] = 75 mmHg): one after the ingestion of placebo and another following the intake of antioxidants (α-lipoic acid, vitamin C, and vitamin E), with a randomized double-blind design. Vastus lateralis muscle biopsies were obtained before, immediately after, and 30- and 120-min postsprint. Compared with the control condition, the ingestion of antioxidants resulted in lower plasma carbonylated proteins, attenuated elevation of the AMP-to-ATP molar ratio, and reduced glycolytic rate (P < 0.05) without significant effects on performance or V̇o2 The ingestion of antioxidants did not alter the basal muscle signaling. Thr172-AMPKα and Thr184/187-transforming growth factor-β-activated kinase 1 (TAK1) phosphorylation were not increased after the sprint regardless of the ingestion of antioxidants. Thr286-CaMKII phosphorylation was increased after the sprint, but this response was blunted by the antioxidants. Ser485-AMPKα1/Ser491-AMPKα2 phosphorylation increased immediately after the sprints coincident with increased Akt phosphorylation. In summary, antioxidants attenuate the glycolytic response to sprint exercise in severe acute hypoxia and modify the muscle signaling response to exercise. Ser485-AMPKα1/Ser491-AMPKα2 phosphorylation, a known mechanism of Thr172-AMPKα phosphorylation inhibition, is increased immediately after sprint exercise in hypoxia, probably by a mechanism independent of ROS.NEW & NOTEWORTHY The glycolytic rate is increased during sprint exercise in severe acute hypoxia. This study showed that the ingestion of antioxidants before sprint exercise in severe acute hypoxia reduced the glycolytic rate and attenuated the increases of the AMP-to-ATP and the reduction of the NAD+-to-NADH.H+ ratios. This resulted in a modified muscle signaling response with a blunted Thr286-CaMKII but similar AMP-activated protein kinase phosphorylation responses in the sprints preceded by the ingestion of antioxidants.
Collapse
Affiliation(s)
- David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Borja Guerra
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | | | - Amelia Guadalupe-Grau
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Alfredo Santana
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,Genetic Unit, Chilhood Hospital-Materno Infantil de Las Palmas, Las Palmas de Gran Canaria, Spain; and
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Miriam Gelabert-Rebato
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Joan A Cadefau
- Department of Biomedicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Roser Cusso
- Department of Biomedicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Cecilia Dorado
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - José A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain; .,Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
21
|
Central activation, metabolites, and calcium handling during fatigue with repeated maximal isometric contractions in human muscle. Eur J Appl Physiol 2017; 117:1557-1571. [PMID: 28527013 DOI: 10.1007/s00421-017-3640-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/08/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE To determine the roles of calcium (Ca2+) handling by sarcoplasmic reticulum (SR) and central activation impairment (i.e., central fatigue) during fatigue with repeated maximal voluntary isometric contractions (MVC) in human muscles. METHODS Contractile performance was assessed during 3 min of repeated MVCs (7-s contraction, 3-s rest, n = 17). In ten participants, in vitro SR Ca2+-handling, metabolites, and fibre-type composition were quantified in biopsy samples from quadriceps muscle, along with plasma venous [K+]. In 11 participants, central fatigue was compared using tetanic stimulation superimposed on MVC in quadriceps and adductor pollicis muscles. RESULTS The decline of peak MVC force with fatigue was similar for both muscles. Fatigue resistance correlated directly with % type I fibre area in quadriceps (r = 0.77, P = 0.009). The maximal rate of ryanodine-induced Ca2+-release and Ca2+-uptake fell by 31 ± 26 and 28 ± 13%, respectively. The tetanic force depression was correlated with the combined reduction of ATP and PCr, and increase of lactate (r = 0.77, P = 0.009). Plasma venous [K+] increased from 4.0 ± 0.3 to 5.4 ± 0.8 mM over 1-3-min exercise. Central fatigue occurred during the early contractions in the quadriceps in 7 out of 17 participants (central activation ratio fell from 0.98 ± 0.05 to 0.86 ± 0.11 at 1 min), but dwindled at exercise cessation. Central fatigue was seldom apparent in adductor pollicis. CONCLUSIONS Fatigue with repeated MVC in human limb muscles mainly involves peripheral aspects which include impaired SR Ca2+-handling and we speculate that anaerobic metabolite changes are involved. A faster early force loss in quadriceps muscle with some participants is attributed to central fatigue.
Collapse
|
22
|
Dulhunty AF, Board PG, Beard NA, Casarotto MG. Physiology and Pharmacology of Ryanodine Receptor Calcium Release Channels. ADVANCES IN PHARMACOLOGY 2017; 79:287-324. [DOI: 10.1016/bs.apha.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Beam TA, Loudermilk EF, Kisor DF. Pharmacogenetics and pathophysiology of CACNA1S mutations in malignant hyperthermia. Physiol Genomics 2016; 49:81-87. [PMID: 28011884 DOI: 10.1152/physiolgenomics.00126.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/14/2016] [Indexed: 12/27/2022] Open
Abstract
A review of the pharmacogenetics (PGt) and pathophysiology of calcium voltage-gated channel subunit alpha1 S (CACNA1S) mutations in malignant hyperthermia susceptibility type 5 (MHS5; MIM #60188) is presented. Malignant hyperthermia (MH) is a life-threatening hypermetabolic state of skeletal muscle usually induced by volatile, halogenated anesthetics and/or the depolarizing neuromuscular blocker succinylcholine. In addition to ryanodine receptor 1 (RYR1) mutations, several CACNA1S mutations are known to be risk factors for increased susceptibility to MH (MHS). However, the presence of these pathogenic CACNA1S gene variations cannot be used to positively predict MH since the condition is genetically heterogeneous with variable expression and incomplete penetrance. At present, one or at most six CACNA1S mutations display significant linkage or association either to clinically diagnosed MH or to MHS as determined by contracture testing. Additional pathogenic variants in CACNA1S, either alone or in combination with genes affecting Ca2+ homeostasis, are likely to be discovered in association to MH as whole exome sequencing becomes more commonplace.
Collapse
Affiliation(s)
- Teresa A Beam
- Department of Pharmaceutical Sciences, Manchester University College of Pharmacy, Natural and Health Sciences, Fort Wayne, Indiana; and
| | - Emily F Loudermilk
- Department of Pharmaceutical and Biomedical Sciences, Ohio Northern University, College of Pharmacy, Ada, Ohio
| | - David F Kisor
- Department of Pharmaceutical Sciences, Manchester University College of Pharmacy, Natural and Health Sciences, Fort Wayne, Indiana; and
| |
Collapse
|