1
|
Andersen SB, Taghavi I, Kjer HM, Søgaard SB, Gundlach C, Dahl VA, Nielsen MB, Dahl AB, Jensen JA, Sørensen CM. Evaluation of 2D super-resolution ultrasound imaging of the rat renal vasculature using ex vivo micro-computed tomography. Sci Rep 2021; 11:24335. [PMID: 34934089 PMCID: PMC8692475 DOI: 10.1038/s41598-021-03726-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/08/2021] [Indexed: 11/29/2022] Open
Abstract
Super-resolution ultrasound imaging (SRUS) enables in vivo microvascular imaging of deeper-lying tissues and organs, such as the kidneys or liver. The technique allows new insights into microvascular anatomy and physiology and the development of disease-related microvascular abnormalities. However, the microvascular anatomy is intricate and challenging to depict with the currently available imaging techniques, and validation of the microvascular structures of deeper-lying organs obtained with SRUS remains difficult. Our study aimed to directly compare the vascular anatomy in two in vivo 2D SRUS images of a Sprague-Dawley rat kidney with ex vivo μCT of the same kidney. Co-registering the SRUS images to the μCT volume revealed visually very similar vascular features of vessels ranging from ~ 100 to 1300 μm in diameter and illustrated a high level of vessel branching complexity captured in the 2D SRUS images. Additionally, it was shown that it is difficult to use μCT data of a whole rat kidney specimen to validate the super-resolution capability of our ultrasound scans, i.e., validating the actual microvasculature of the rat kidney. Lastly, by comparing the two imaging modalities, fundamental challenges for 2D SRUS were demonstrated, including the complexity of projecting a 3D vessel network into 2D. These challenges should be considered when interpreting clinical or preclinical SRUS data in future studies.
Collapse
Affiliation(s)
- Sofie Bech Andersen
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
- Department of Radiology, Rigshospitalet, 2100, Copenhagen, Denmark.
| | - Iman Taghavi
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Hans Martin Kjer
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Stinne Byrholdt Søgaard
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Radiology, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Carsten Gundlach
- Department of Physics, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Vedrana Andersen Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Michael Bachmann Nielsen
- Department of Radiology, Rigshospitalet, 2100, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Anders Bjorholm Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | | |
Collapse
|
2
|
Keklikoglou K, Arvanitidis C, Chatzigeorgiou G, Chatzinikolaou E, Karagiannidis E, Koletsa T, Magoulas A, Makris K, Mavrothalassitis G, Papanagnou ED, Papazoglou AS, Pavloudi C, Trougakos IP, Vasileiadou K, Vogiatzi A. Micro-CT for Biological and Biomedical Studies: A Comparison of Imaging Techniques. J Imaging 2021; 7:jimaging7090172. [PMID: 34564098 PMCID: PMC8470083 DOI: 10.3390/jimaging7090172] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Several imaging techniques are used in biological and biomedical studies. Micro-computed tomography (micro-CT) is a non-destructive imaging technique that allows the rapid digitisation of internal and external structures of a sample in three dimensions and with great resolution. In this review, the strengths and weaknesses of some common imaging techniques applied in biological and biomedical fields, such as optical microscopy, confocal laser scanning microscopy, and scanning electron microscopy, are presented and compared with the micro-CT technique through five use cases. Finally, the ability of micro-CT to create non-destructively 3D anatomical and morphological data in sub-micron resolution and the necessity to develop complementary methods with other imaging techniques, in order to overcome limitations caused by each technique, is emphasised.
Collapse
Affiliation(s)
- Kleoniki Keklikoglou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
- Biology Department, University of Crete, 70013 Heraklion, Crete, Greece
- Correspondence:
| | - Christos Arvanitidis
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
- LifeWatch ERIC, 41071 Seville, Spain
| | - Georgios Chatzigeorgiou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
| | - Eva Chatzinikolaou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
| | - Efstratios Karagiannidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.S.P.)
| | - Triantafyllia Koletsa
- Department of Pathology, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Antonios Magoulas
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
| | - Konstantinos Makris
- Medical School, University of Crete, 71003 Heraklion, Crete, Greece; (K.M.); (G.M.); (A.V.)
| | - George Mavrothalassitis
- Medical School, University of Crete, 71003 Heraklion, Crete, Greece; (K.M.); (G.M.); (A.V.)
- IMBB, FORTH, 70013 Heraklion, Crete, Greece
| | - Eleni-Dimitra Papanagnou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (E.-D.P.); (I.P.T.)
| | - Andreas S. Papazoglou
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.S.P.)
| | - Christina Pavloudi
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (E.-D.P.); (I.P.T.)
| | - Katerina Vasileiadou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
| | - Angeliki Vogiatzi
- Medical School, University of Crete, 71003 Heraklion, Crete, Greece; (K.M.); (G.M.); (A.V.)
| |
Collapse
|
3
|
Apelt K, Bijkerk R, Lebrin F, Rabelink TJ. Imaging the Renal Microcirculation in Cell Therapy. Cells 2021; 10:cells10051087. [PMID: 34063200 PMCID: PMC8147454 DOI: 10.3390/cells10051087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Renal microvascular rarefaction plays a pivotal role in progressive kidney disease. Therefore, modalities to visualize the microcirculation of the kidney will increase our understanding of disease mechanisms and consequently may provide new approaches for evaluating cell-based therapy. At the moment, however, clinical practice is lacking non-invasive, safe, and efficient imaging modalities to monitor renal microvascular changes over time in patients suffering from renal disease. To emphasize the importance, we summarize current knowledge of the renal microcirculation and discussed the involvement in progressive kidney disease. Moreover, an overview of available imaging techniques to uncover renal microvascular morphology, function, and behavior is presented with the associated benefits and limitations. Ultimately, the necessity to assess and investigate renal disease based on in vivo readouts with a resolution up to capillary level may provide a paradigm shift for diagnosis and therapy in the field of nephrology.
Collapse
Affiliation(s)
- Katerina Apelt
- Department of Internal Medicine-Nephrology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (K.A.); (R.B.); (F.L.)
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine-Nephrology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (K.A.); (R.B.); (F.L.)
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Franck Lebrin
- Department of Internal Medicine-Nephrology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (K.A.); (R.B.); (F.L.)
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
- Physics for Medicine Paris, Inserm, CNRS, ESPCI Paris, Paris Sciences et Lettres University, 75005 Paris, France
| | - Ton J. Rabelink
- Department of Internal Medicine-Nephrology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands; (K.A.); (R.B.); (F.L.)
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
4
|
Feng H, Xu Y, Luo S, Dang H, Liu K, Sun WQ. Evaluation and preservation of vascular architectures in decellularized whole rat kidneys. Cryobiology 2020; 95:72-79. [PMID: 32526236 DOI: 10.1016/j.cryobiol.2020.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/22/2023]
Abstract
Organ transplantation is the gold standard treatment for end-stage organ failure. Due to the severe shortage of transplantable organs, only a tiny fraction of patients may receive timely organ transplantation every year. Decellularization-recellularization technology using allogeneic and xenogeneic organs is currently conceived to be a promising solution to generate functionally transplantable organs in vitro. This approach, however, still faces tremendous technological challenges, one of them being the ability to evaluate and preserve the integrity of vascular architectures upon decellularization and cryostorage of the whole organ matrices so that the off-the-shelf organ grafts are available on demand for clinical applications. In the present study, we report a Micro-CT imaging method for evaluating the integrity of vasculature of the decellularized whole organ scaffolds with/without freezing/thawing. The method uses radiopaque Microfil perfusion and x-ray fluoroscopy to acquire high-resolution angiography of the organ matrix. The whole rat kidney is decellularized using a new multistep perfusion protocol with the combined use of Triton X-100 and DNase. The decellularized kidney matrix is then cryopreserved after the pretreatment with different cryoprotectant solutions. The reconstructed tomographic images from Micro-CT confirm various structural alterations in the vasculature of the whole decellularized kidney matrix with/without frozen storage. The freezing damage to the vascular architectures can be reduced by perfusing cryoprotectant solutions into the whole kidney matrix. Ice-free cryopreservation with the vitrification solution VS83 can successfully preserve the integrity of the whole kidney matrix's vasculature after frozen storage.
Collapse
Affiliation(s)
- Haikao Feng
- Institute of Bio-thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yi Xu
- Institute of Bio-thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Sichang Luo
- Institute of Bio-thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hangyu Dang
- Institute of Bio-thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ke Liu
- Institute of Bio-thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wendell Q Sun
- Institute of Bio-thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
5
|
Gardiner BS, Smith DW, Lee C, Ngo JP, Evans RG. Renal oxygenation: From data to insight. Acta Physiol (Oxf) 2020; 228:e13450. [PMID: 32012449 DOI: 10.1111/apha.13450] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 12/14/2022]
Abstract
Computational models have made a major contribution to the field of physiology. As the complexity of our understanding of biological systems expands, the need for computational methods only increases. But collaboration between experimental physiologists and computational modellers (ie theoretical physiologists) is not easy. One of the major challenges is to break down the barriers created by differences in vocabulary and approach between the two disciplines. In this review, we have two major aims. Firstly, we wish to contribute to the effort to break down these barriers and so encourage more interdisciplinary collaboration. So, we begin with a "primer" on the ways in which computational models can help us understand physiology and pathophysiology. Second, we aim to provide an update of recent efforts in one specific area of physiology, renal oxygenation. This work is shedding new light on the causes and consequences of renal hypoxia. But as importantly, computational modelling is providing direction for experimental physiologists working in the field of renal oxygenation by: (a) generating new hypotheses that can be tested in experimental studies, (b) allowing experiments that are technically unfeasible to be simulated in silico, or variables that cannot be measured experimentally to be estimated, and (c) providing a means by which the quality of experimental data can be assessed. Critically, based on our experience, we strongly believe that experimental and theoretical physiology should not be seen as separate exercises. Rather, they should be integrated to permit an iterative process between modelling and experimentation.
Collapse
Affiliation(s)
- Bruce S. Gardiner
- College of Science Health, Engineering and Education Murdoch University Perth Australia
- Faculty of Engineering and Mathematical Sciences The University of Western Australia Perth Australia
| | - David W. Smith
- Faculty of Engineering and Mathematical Sciences The University of Western Australia Perth Australia
| | - Chang‐Joon Lee
- College of Science Health, Engineering and Education Murdoch University Perth Australia
- Faculty of Engineering and Mathematical Sciences The University of Western Australia Perth Australia
| | - Jennifer P. Ngo
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Australia
- Department of Cardiac Physiology National Cerebral and Cardiovascular Research Center Osaka Japan
| | - Roger G. Evans
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Australia
| |
Collapse
|
6
|
Hall C, Lewis R. Synchrotron radiation biomedical imaging and radiotherapy: from the UK to the Antipodes. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180240. [PMID: 31030651 DOI: 10.1098/rsta.2018.0240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Although the general public might think of 'X-rays' as they are applied to imaging (radiography) and for the treatment of disease (radiotherapy), the use of synchrotron radiation (SR) X-ray beams in these areas of science was a minor activity 50 years ago. The largest gains in science from SR were seen to be in those areas where signals were weakest in laboratory instruments, such as X-ray diffraction and spectroscopy. As the qualities of SR X-rays were explored and more areas of science adopted SR-based methods, this situation changed. About 30 years ago, the clinical advantages of using SR X-ray beams for radiography, radiotherapy and clinical diagnostics started to be investigated. In the UK, a multi-disciplinary group, consisting of clinicians, medical physicists and other scientists working mainly with the Synchrotron Radiation Source (SRS) in Cheshire, started to investigate techniques for diagnosis and potentially a cure for certain cancers. This preliminary work influenced the design of new facilities being constructed around the world, in particular the Imaging and Medical Beam Line on the Australian Synchrotron in Melbourne. Two authors moved from the UK to Australia to participate in this exciting venture. The following is a personal view of some of the highlights of the early-year SRS work, following through to the current activities on the new facility in Australia. This article is part of the theme issue 'Fifty years of synchrotron science: achievements and opportunities'.
Collapse
Affiliation(s)
- Christopher Hall
- 1 ANSTO Australian Synchrotron , Clayton, Victoria 3168 , Australia
- 3 Department of Medical Imaging and Radiation Sciences, Monash University , Clayton, Victoria 3600 , Australia
| | - Robert Lewis
- 2 Scott Automation , Tullamarine, Victoria 3043 , Australia
- 3 Department of Medical Imaging and Radiation Sciences, Monash University , Clayton, Victoria 3600 , Australia
- 4 Department of Medical Imaging, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| |
Collapse
|
7
|
Comparison of Three-Dimensional Micro-CT Angiography of Cervical Spinal Cord between Two Contrast Agents. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:5215923. [PMID: 31110469 PMCID: PMC6487131 DOI: 10.1155/2019/5215923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/18/2019] [Accepted: 02/17/2019] [Indexed: 12/11/2022]
Abstract
Purpose Barium sulfate and lead oxide are commonly used for angiographic studies, but there is no report on the comparison of two contrast agents in angiography of cervical spinal cord. This study was aimed to compare the microvascular architecture of cervical spinal cord in rats after angiography with the barium sulfate agent to the lead oxide agent. Methods Twelve adult Sprague-Dawley rats were randomly divided into the barium sulfate group (n=6) and the lead oxide group (n=6). Each rat was perfused under the same protocol using either two contrast agents. The angiography was evaluated with the vascular number at different ranks. The cervical spinal cord samples were scanned using micro-CT with low resolution and high resolution. The microvascular parameters, including ratio of vascular volume to tissue volume (VV/TV), vascular number (V.N), diameter (V.Dm), separation (V.Sp), connectivity density (Conn.D), structure model index (SMI), percentage, and volume of vessels at different diameters were measured. Results The perfusion was better in the barium sulfate group, with more blood vessel trees of rank II and III visible compared to the lead oxide group. Low-resolution micro-CT analysis showed no difference in microvascular parameters except SMI between the two groups. High-resolution micro-CT analysis results showed that V.N and Conn.D of barium sulfate group were 60% and 290% more than those of the lead oxide group; however, V.Sp was 41% less than the lead oxide group. The percentage of vessels with diameter of 10 μm and 20 μm, and the volume of vessels with diameter of less than 100 μm was higher in the barium sulfate group than in the lead oxide group. The SMI index in the barium sulfate group was higher than that in the lead oxide group at both low resolution and high resolution. Conclusions Compared with lead oxide, barium sulfate is more suitable for perfusion of cervical spinal cord microvessels, and cheap and nontoxic with high resolution.
Collapse
|
8
|
Fan L, Wang S, He X, Gonzalez‐Fernandez E, Lechene C, Fan F, Roman RJ. Visualization of the intrarenal distribution of capillary blood flow. Physiol Rep 2019; 7:e14065. [PMID: 31008571 PMCID: PMC6475880 DOI: 10.14814/phy2.14065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 12/24/2022] Open
Abstract
This study describes a modified technique to fill the renal vasculature with a silicon rubber (Microfil) compound and obtain morphologic information about the intrarenal distribution of capillary blood flow under a variety of conditions. Kidneys and cremaster muscles of rats were perfused in vivo with Microfil using a perfusion pressure equal to the animal's mean arterial pressure at body temperature. Microfil did not alter arteriolar diameter or the pattern of flow in the microcirculation of the cremaster muscle. The modified protocol reproducibly filled the renal vasculature, including; glomerular, peritubular, and vasa recta capillaries. We compared the filling of the renal circulation in control rats with that seen in animals subjected to maneuvers reported to alter the intrarenal distribution of blood flow. Infusion of angiotensin II, hypotension, volume expansion, and mannitol- or furosemide-induced diuresis redistributed flow between renal cortical and medullary capillaries. The advantage of the current technique is that it provides anatomical information regarding the number, diameter, and branching patterns of capillaries in the postglomerular circulation critical in determining the intrarenal distribution of cortical and medullary blood flow.
Collapse
Affiliation(s)
- Letao Fan
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippi
| | - Shaoxun Wang
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippi
| | - Xiaochen He
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippi
| | | | - Claude Lechene
- Center of NanoimagingBrigham and Women's HospitalCambridgeMassachusetts
| | - Fan Fan
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippi
| | - Richard J. Roman
- Department of Pharmacology and ToxicologyUniversity of Mississippi Medical CenterJacksonMississippi
| |
Collapse
|
9
|
Khan Z, Ngo JP, Le B, Evans RG, Pearson JT, Gardiner BS, Smith DW. Three-dimensional morphometric analysis of the renal vasculature. Am J Physiol Renal Physiol 2018; 314:F715-F725. [DOI: 10.1152/ajprenal.00339.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vascular topology and morphology are critical in the regulation of blood flow and the transport of small solutes, including oxygen, carbon dioxide, nitric oxide, and hydrogen sulfide. Renal vascular morphology is particularly challenging, since many arterial walls are partially wrapped by the walls of veins. In the absence of a precise characterization of three-dimensional branching vascular geometry, accurate computational modeling of the intrarenal transport of small diffusible molecules is impossible. An enormous manual effort was required to achieve a relatively precise characterization of rat renal vascular geometry, highlighting the need for an automated method for analysis of branched vasculature morphology to allow characterization of the renal vascular geometry of other species, including humans. We present a semisupervised method for three-dimensional morphometric analysis of renal vasculature images generated by computed tomography. We derive quantitative vascular attributes important to mass transport between arteries, veins, and the renal tissue and present methods for their computation for a three-dimensional vascular geometry. To validate the algorithm, we compare automated vascular estimates with subjective manual measurements for a portion of rabbit kidney. Although increased image resolution can improve outcomes, our results demonstrate that the method can quantify the morphological characteristics of artery-vein pairs, comparing favorably with manual measurements. Similar to the rat, we show that rabbit artery-vein pairs become less intimate along the course of the renal vasculature, but the total wrapped mass transfer coefficient increases and then decreases. This new method will facilitate new quantitative physiological models describing the transport of small molecules within the kidney.
Collapse
Affiliation(s)
- Zohaib Khan
- School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, Australia
| | - Jennifer P. Ngo
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Bianca Le
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Roger G. Evans
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - James T. Pearson
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Bruce S. Gardiner
- School of Engineering and Information Technology, Murdoch University, Perth, Australia
| | - David W. Smith
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
10
|
Cupples WA. At last! Quantitative cortical vascular anatomy. Am J Physiol Renal Physiol 2018; 314:F928-F929. [DOI: 10.1152/ajprenal.00623.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- William A. Cupples
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|