1
|
Kuo A, Imam MZ, Li R, Lin L, Raboczyj A, Bohmer AE, Nicholson JR, Corradini L, Smith MT. J-2156, a small molecule somatostatin type 4 receptor agonist, alleviated hindpaw hypersensitivity in the streptozotocin-induced rat model of painful diabetic neuropathy but with a 2-fold decrease in potency at an advanced stage in the model, mimicking morphine. Front Pharmacol 2024; 15:1346801. [PMID: 38318132 PMCID: PMC10839067 DOI: 10.3389/fphar.2024.1346801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
There is a large unmet need for novel pain-killers to improve relief of painful diabetic neuropathy (PDN). Herein, we assessed the efficacy of the somatostatin type 4 (SST4) receptor agonist, J-2156, for relief of PDN in rats. Diabetes was induced with streptozotocin (STZ; 70 mg/kg) and bilateral hindpaw hypersensitivity was fully developed by 8-week post-STZ. In the intervals, 8-12-weeks (morphine-sensitive phase; Phase 1) and 16-18-weeks (morphine-hyposensitive phase; Phase 2) post-STZ, rats received a single dose of intraperitoneal (i.p.) J-2156 (10, 20, 30 mg/kg), gabapentin (100 mg/kg i.p.), subcutaneous morphine (1 mg/kg) or vehicle. Hindpaw withdrawal thresholds (PWTs) were assessed using von Frey filaments pre-dose and at regular intervals over 3-h post-dose. In Phase 1, J-2156 at 30 mg/kg evoked significant anti-allodynia in the hindpaws with maximal effect at 1.5 h compared with 1 h for gabapentin and morphine. The durations of action for all three compounds were greater than 3 h. The corresponding mean (±SEM) extent and duration of anti-allodynia (ΔPWT AUC) for gabapentin did not differ significantly from that for J-2156 (30 mg/kg) or morphine. However, in Phase 2, the ΔPWT AUC for morphine was reduced to approximately 25% of that in Phase 1, mirroring our previous work. Similarly, the mean (±SEM) ΔPWT AUC for J-2156 (30 mg/kg) in Phase 2 was approximately 45% of that for Phase 1 whereas for gabapentin the mean (±SEM) ΔPWT AUCs did not differ significantly (p > 0.05) between the two phases. Our findings further describe the preclinical pain relief profile of J-2156 and complement previous work in rat models of inflammatory pain, neuropathic pain and low back pain. SST4 receptor agonists hold promise as novel therapeutics for the relief of PDN, a type of peripheral neuropathic pain that is often intractable to relief with clinically used drug treatment options.
Collapse
Affiliation(s)
- A. Kuo
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - M. Z. Imam
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - R. Li
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - L. Lin
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - A. Raboczyj
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - A. E. Bohmer
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| | - J. R. Nicholson
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - L. Corradini
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - M. T. Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
2
|
Bielewicz J, Kamieniak M, Szymoniuk M, Litak J, Czyżewski W, Kamieniak P. Diagnosis and Management of Neuropathic Pain in Spine Diseases. J Clin Med 2023; 12:jcm12041380. [PMID: 36835916 PMCID: PMC9961043 DOI: 10.3390/jcm12041380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Neuropathic pain is generally defined as a non-physiological pain experience caused by damage to the nervous system. It can occur spontaneously, as a reaction to a given stimulus, or independently of its action, leading to unusual pain sensations usually referred to as firing, burning or throbbing. In the course of spine disorders, pain symptoms commonly occur. According to available epidemiological studies, a neuropathic component of pain is often present in patients with spinal diseases, with a frequency ranging from 36% to 55% of patients. Distinguishing between chronic nociceptive pain and neuropathic pain very often remains a challenge. Consequently, neuropathic pain is often underdiagnosed in patients with spinal diseases. In reference to current guidelines for the treatment of neuropathic pain, gabapentin, serotonin and norepinephrine reuptake inhibitors and tricyclic antidepressants constitute first-line therapeutic agents. However, long-term pharmacologic treatment often leads to developing tolerance and resistance to used medications. Therefore, in recent years, a plethora of therapeutic methods for neuropathic pain have been developed and investigated to improve clinical outcomes. In this review, we briefly summarized current knowledge about the pathophysiology and diagnosis of neuropathic pain. Moreover, we described the most effective treatment approaches for neuropathic pain and discussed their relevance in the treatment of spinal pain.
Collapse
Affiliation(s)
- Joanna Bielewicz
- Department of Neurology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Maciej Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Michał Szymoniuk
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Correspondence:
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Wojciech Czyżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Didactics and Medical Simulation, Medical University of Lublin, Chodźki 4, 20-093 Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| |
Collapse
|
3
|
Raisian D, Erfanparast A, Tamaddonfard E, Soltanalinejad-Taghiabad F. Medial prefrontal cortex nitric oxide modulates neuropathic pain behavior through mu opioid receptors in rats. Korean J Pain 2022; 35:413-422. [PMID: 36175340 PMCID: PMC9530686 DOI: 10.3344/kjp.2022.35.4.413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/14/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background The neocortex, including the medial prefrontal cortex (mPFC), contains many neurons expressing nitric oxide synthase (NOS). In addition, increasing evidence shows that the nitric oxide (NO) and opioid systems interact in the brain. However, there have been no studies on the interaction of the opioid and NO systems in the mPFC. The objective of this study was to investigate the effects of administrating L-arginine (L-Arg, a precursor of NO) and N(gamma)-nitro-L-arginine methyl ester (L-NAME, an inhibitor of NOS) into the mPFC for neuropathic pain in rats. Also, we used selective opioid receptor antagonists to clarify the possible participation of the opioid mechanism. Methods Complete transection of the peroneal and tibial branches of the sciatic nerve was applied to induce neuropathic pain, and seven days later, the mPFC was cannulated bilaterally. The paw withdrawal threshold fifty percent (50% PWT) was recorded on the 14th day. Results Microinjection of L-Arg (2.87, 11.5 and 45.92 nmol per 0.25 µL) increased 50% PWT. L-NAME (17.15 nmol per 0.25 µL) and naloxonazine (an antagonist of mu opioid receptors, 1.54 nmol per 0.25 µL) inhibited anti-allodynia induced by L-Arg (45.92 nmol per 0.25 µL). Naltrindole (a delta opioid receptor antagonist, 2.45 nmol per 0.25 µL) and nor-binaltorphimine (a kappa opioid receptor antagonist, 1.36 nmol per 0.25 µL) were unable to prevent L-Arg (45.92 nmol per 0.25 µL)-induced antiallodynia. Conclusions Our results indicate that the NO system in the mPFC regulates neuropathic pain. Mu opioid receptors of this area might participate in pain relief caused by L-Arg.
Collapse
Affiliation(s)
- Dorsa Raisian
- DVM Graduate, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Amir Erfanparast
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Esmaeal Tamaddonfard
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | |
Collapse
|
4
|
Huang L, Wyse BD, Williams CM, Smith MT. Nitric oxide modulates μ-opioid receptor function in vitro. Clin Exp Pharmacol Physiol 2019; 46:676-685. [PMID: 30933370 DOI: 10.1111/1440-1681.13091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/02/2019] [Accepted: 03/27/2019] [Indexed: 01/10/2023]
Abstract
Painful diabetic neuropathy (PDN) is a type of peripheral neuropathic pain that develops as a consequence of prolonged hyperglycaemia-induced injury to the long nerves. Apart from pain, PDN is also characterized by morphine hyposensitivity. Intriguingly, in streptozotocin (STZ)-induced diabetic rats exhibiting marked morphine hyposensitivity, dietary administration of the nitric oxide (NO) precursor, L-arginine at 1 g/d, progressively rescued morphine efficacy and potency over an 8-week treatment period. In earlier work, single bolus doses of the furoxan nitric oxide (NO) donor, PRG150 (3-methylfuroxan-4-carbaldehyde), evoked dose-dependent pain relief in STZ-diabetic rats but the efficacious doses were 3-4 orders of magnitude higher in advanced diabetes than that required in early STZ diabetes. Together, these findings suggested a role for NO in the modulation of μ-opioid (MOP) receptor signalling. Therefore, the present study was designed to assess a role for NO released from PRG150, in modulating MOP receptor function in vitro. Here, we show an absolute requirement for the MOP receptor, but not the δ-opioid (DOP) or the κ-opioid (KOP) receptor, to transduce the cellular effects of PRG150 on forskolin-stimulated cAMP responses in vitro. PRG150 did not interact with the classical naloxone-sensitive binding site of the MOP receptor, and its effects on cAMP responses in HEK-MOP cells were also naloxone-insensitive. Nevertheless, the inhibitory effects of PRG150 on forskolin-stimulated cAMP responses in HEK-MOP cells were dependent upon pertussis toxin (PTX)-sensitive Gi/o proteins as well as membrane lipid rafts and src kinase. Together, our findings implicate a role for NO in modulating MOP receptor function in vivo.
Collapse
Affiliation(s)
- Lillian Huang
- School of Pharmacy, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Bruce D Wyse
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Horton A, Schiefer IT. Pharmacokinetics and pharmacodynamics of nitric oxide mimetic agents. Nitric Oxide 2019; 84:69-78. [PMID: 30641123 DOI: 10.1016/j.niox.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
Drug discovery focusing on NO mimetics has been hamstrung due to its unconventional nature. Central to these challenges is the fact that direct measurement of molecular NO in biological systems is exceedingly difficulty. Hence, drug development of NO mimetics must rely upon measurement of the NO donating specie (i.e., a prodrug) and a downstream marker of efficacy without directly measuring the molecule, NO, that is responsible for biological effect. The focus of this review is to catalog in vivo attempts to monitor the pharmacokinetics (PK) of the NO donating specie and the pharmacodynamic (PD) readout of NO bioactivity.
Collapse
Affiliation(s)
- Austin Horton
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, USA
| | - Isaac T Schiefer
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, USA.
| |
Collapse
|