1
|
Selim SM, El Fayoumi HM, El-Sayed NM, Mehanna ET, Hazem RM. Alogliptin attenuates STZ-induced diabetic nephropathy in rats through the modulation of autophagy, apoptosis, and inflammation pathways: Targeting NF-κB and AMPK/mTOR pathway. Life Sci 2025; 361:123307. [PMID: 39662777 DOI: 10.1016/j.lfs.2024.123307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/24/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
AIM Diabetic nephropathy (DN) is a type of microvascular complication that arises from diabetes mellitus and leads to further health issues. Most importantly, the prevalence of DN is steadily rising in developed countries. This research explored the therapeutic benefits of alogliptin, a dipeptidyl peptidase IV (DPP-4) inhibitor, on streptozotocin (STZ)-induced DN and its underlying mechanisms in rats. MAIN METHODS Ten rats were allocated to group 1, served as the normal group; and received saline. To develop diabetes, thirty rats were administered a single intraperitoneal dose of STZ (45 mg/kg). STZ-induced diabetic rats were randomly assigned to three groups: group 2 diabetic control; was given saline, groups 3 and 4 received alogliptin (10 mg/kg) and (20 mg/kg), respectively. The treatment began 8 weeks after diabetes onset and continued for four weeks. Histopathological alterations in the kidney were detected. Serum was collected to measure blood glucose levels (BGL), renal function, and lactate dehydrogenase (LDH). Tissue samples were collected to detect changes in oxidative stress (OS), inflammation, 5' adenosine monophosphate-activated protein kinase (AMPK), and the mammalian target of Rapamycin (mTOR) signaling pathways in addition to apoptotic and autophagy changes. KEY FINDINGS Alogliptin reduced STZ-induced histological changes in the kidney as well as OS, and inflammation. Alogliptin also ameliorated the AMPK/mTOR signaling pathways, enhanced autophagy, and reduced apoptosis. SIGNIFICANCE These results demonstrate that alogliptin ameliorates inflammation and OS and consequently modulates the AMPK/mTOR axis along with targeting autophagy and apoptosis, leading to the alleviation of DN.
Collapse
Affiliation(s)
- Salma M Selim
- Department of Pharmacology & Toxicology, Faculty of Dentistry, Sinai University, Kantara, Ismailia 41636, Egypt
| | - Hassan M El Fayoumi
- Department of Pharmacology & Toxicology, Faculty of Dentistry, Sinai University, Kantara, Ismailia 41636, Egypt
| | - Norhan M El-Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | - Reem M Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
2
|
Ma CY, Yu AC, Sheng XH, Wang XG, Xing K, Xiao LF, Lv XZ, Guo Y, Long C, Qi XL. Supplementing ageing male laying breeders with lycopene alleviates oxidative stress in testis and improves testosterone secretion. Theriogenology 2024; 230:220-232. [PMID: 39341034 DOI: 10.1016/j.theriogenology.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Reproductive performance is a crucial aspect of poultry production and is carefully controlled by endocrine, paracrine, and autocrine factors. This study aimed to investigate the effect of lycopene on testosterone synthesis in Leydig cells of laying breeder roosters, clarify the mechanism of lycopene improving Leydig cells function and promoting testosterone production, and explore the role of related signal transduction pathways in testosterone synthesis. RESULTS A total of 96 healthy 55-week-old breeding roosters were randomly assigned to one of five dietary treatments. They were provided with a corn-soybean meal-based diet containing different levels of lycopene: 0 mg/kg (control), 50 mg/kg, 100 mg/kg, or 200 mg/kg. The experiment lasted for 6 weeks. With the increase in lycopene levels, the testosterone content in the plasma was significantly higher than in the control group. Testicular Leydig cells were isolated and cultured from fresh testicular tissue of 45-wk-old to 60-wk-old breeding roosters. Various doses of lycopene were administered to Leydig cells, and subsequently, cells were collected for the detection of cell viability and testosterone content. The optimal concentration of lycopene to be added was determined, and changes in mRNA expression and protein levels of key proteins involved in testosterone synthesis were investigated. The results showed that lycopene treatment significantly increased testosterone secretion, mRNA expression, and protein levels of steroid-producing enzymes. Cells were collected to measure the activity of antioxidant enzymes, the mRNA transcription level of apoptotic factors, and the protein expression of apoptotic factors after treatment with lycopene. The results showed that lycopene significantly increased the activities of antioxidant enzymes, and the ability to inhibit oxygen radicals, and decreased the content of malondialdehyde. Apoptosis was inhibited by regulating the expression of apoptosis-inducing and anti-apoptosis factors. After that, the MAPK signaling pathway and downstream SF-1, Nrf2 gene, and protein expression levels were detected. The results showed that lycopene treatment significantly increased the gene and protein expression of JNK, SF-1, and Nrf2, and significantly decreased the gene and protein expression of p38. CONCLUSIONS Lycopene treatment could promote testosterone synthesis of testicular Leydig cells by activating MAPK-SF-1 (increasing steroid-producing enzyme level) and MAPK-Nrf2 pathways (resisting oxidative damage).
Collapse
Affiliation(s)
- Chun-Yu Ma
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Ao-Chuan Yu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xi-Hui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiang-Guo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Long-Fei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xue-Ze Lv
- Department of Livestock and Poultry Products Testing, Beijing General Station of Animal Husbandry, Beijing, 100107, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Xiao-Long Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
3
|
Martin LJ, Touaibia M. Prevention of Male Late-Onset Hypogonadism by Natural Polyphenolic Antioxidants. Nutrients 2024; 16:1815. [PMID: 38931170 PMCID: PMC11206339 DOI: 10.3390/nu16121815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Androgen production primarily occurs in Leydig cells located in the interstitial compartment of the testis. In aging males, testosterone is crucial for maintaining muscle mass and strength, bone density, sexual function, metabolic health, energy levels, cognitive function, as well as overall well-being. As men age, testosterone production by Leydig cells of the testes begins to decline at a rate of approximately 1% per year starting from their 30s. This review highlights recent findings concerning the use of natural polyphenolics compounds, such as flavonoids, resveratrol, and phenolic acids, to enhance testosterone production, thereby preventing age-related degenerative conditions associated with testosterone insufficiency. Interestingly, most of the natural polyphenolic antioxidants having beneficial effects on testosterone production tend to enhance the expression of the steroidogenic acute regulatory protein (Star) gene in Leydig cells. The STAR protein facilitates the entry of the steroid precursor cholesterol inside mitochondria, a rate-limiting step for androgen biosynthesis. Natural polyphenolic compounds can also improve the activities of steroidogenic enzymes, hypothalamus-pituitary gland axis signaling, and testosterone bioavailability. Thus, many polyphenolic compounds such as luteolin, quercetin, resveratrol, ferulic acid phenethyl ester or gigantol may be promising in delaying the initiation of late-onset hypogonadism accompanying aging in males.
Collapse
Affiliation(s)
- Luc J. Martin
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Mohamed Touaibia
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, NB E1A 3E9, Canada;
| |
Collapse
|
4
|
Raee P, Tan SC, Najafi S, Zandsalimi F, Low TY, Aghamiri S, Fazeli E, Aghapour M, Mofarahe ZS, Heidari MH, Fathabadi FF, Abdi F, Asouri M, Ahmadi AA, Ghanbarian H. Autophagy, a critical element in the aging male reproductive disorders and prostate cancer: a therapeutic point of view. Reprod Biol Endocrinol 2023; 21:88. [PMID: 37749573 PMCID: PMC10521554 DOI: 10.1186/s12958-023-01134-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/01/2023] [Indexed: 09/27/2023] Open
Abstract
Autophagy is a highly conserved, lysosome-dependent biological mechanism involved in the degradation and recycling of cellular components. There is growing evidence that autophagy is related to male reproductive biology, particularly spermatogenic and endocrinologic processes closely associated with male sexual and reproductive health. In recent decades, problems such as decreasing sperm count, erectile dysfunction, and infertility have worsened. In addition, reproductive health is closely related to overall health and comorbidity in aging men. In this review, we will outline the role of autophagy as a new player in aging male reproductive dysfunction and prostate cancer. We first provide an overview of the mechanisms of autophagy and its role in regulating male reproductive cells. We then focus on the link between autophagy and aging-related diseases. This is followed by a discussion of therapeutic strategies targeting autophagy before we end with limitations of current studies and suggestions for future developments in the field.
Collapse
Affiliation(s)
- Pourya Raee
- Student Research Committee, Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19395-4719, Iran
| | - Farshid Zandsalimi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Fazeli
- Mehr Fertility Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahyar Aghapour
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, Germany
| | - Zahra Shams Mofarahe
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Heidari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fadaei Fathabadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Abdi
- Department of Chemical Engineering, Science and Research branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Asouri
- North Research Center, Pasteur Institute of Iran, Amol, Iran
| | | | - Hossein Ghanbarian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 19395-4719, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Chen X, Ma J, Chen H. Induction of autophagy via the ROS-dependent AMPK/mTOR pathway protects deoxynivalenol exposure grass carp hepatocytes damage. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108687. [PMID: 36921881 DOI: 10.1016/j.fsi.2023.108687] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/04/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Deoxynivalenol (DON) is one of the most frequently found mycotoxin sources in feed and raw food products, endangering human and animal health. The mechanism of grass carp (Ctenopharyngodon idellus) liver cell (L8824) toxicity induced by DON is still unknown. The DON was administered to the L8824 cells in concentrations of 150, 200, and 250 ng/mL for 24 h. The results of this study suggested that DON could enable L8824 cells to significantly increase the levels of autophagy. Concurrently, DON could trigger autophagy through the AMPK-mTOR pathway, which upregulated the expression of p-AMPK and p-ULK1 while downregulating the expression of p-mTOR. In the meantime, DON treatment could alter the levels of expression of the related proteins in autophagy. Additionally, DON treatment dramatically reduced the activity of the antioxidant enzymes as well as increased the levels of oxidase, which increased the production of ROS in L8824 cells. This indicates that DON could induce oxidative stress. Furthermore, we discovered that DON exposure caused apoptosis, which is characterized by elevated levels of BAX, Caspase 9, Caspase 3, and decreased Bcl-2 levels. Next, it was investigated how oxidative stress affected DON-induced autophagy. The research revealed that the oxidative stress inhibitor (NAC) attenuated DON-induced autophagy. Additionally, the study also investigated how autophagy worked under the L8824 cells induced by DON. The ROS production, however, was enhanced by the addition of the autophagy inhibitor (3-MA). Additionally, co-treatment with the apoptosis inhibitor Z-VAD-FMK had no influence on autophagy. The combined findings showed that induction of autophagy via the ROS-dependent AMPK-mTOR pathway protects DON-induced L8824 cells from damage.
Collapse
Affiliation(s)
- Xin Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, 150030, PR China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, 150030, PR China
| | - Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin, 150030, PR China.
| |
Collapse
|
6
|
He L, Tong J. Resveratrol Protects Against Nicotine-Induced Apoptosis by Enhancing Autophagy in BEAS-2B Lung Epithelial Cells. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221109410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Background: Nicotine (Nic), the major component of tobacco products, can induce apoptosis in lung epithelial cells, and the resulting damage contributes to chronic obstructive pulmonary disease. Apoptosis is closely related to autophagy. Resveratrol (Res) can induce autophagy and inhibit apoptosis. Therefore, the present study investigated whether Nic induces apoptosis of lung epithelial cells by regulating autophagy and the effect of Res on apoptosis of Nic-exposed lung epithelial cells. Methods: The BEAS-2B lung epithelial cell line was used to study the harmful effects of Nic and the potential benefits of Res as well as the underlying mechanisms. Viability and apoptosis were examined using the Cell Counting Kit-8 and annexin V-propidium iodide staining, respectively. The expression of levels of apoptosis-related proteins, autophagy-related proteins, and members of the PI3K/Akt/mTOR pathway was measured by western blotting. Autophagic flux was detected via mRFP-GFP-LC3 double-labeled adenovirus transfection and transmission electron microscopy. Results: Nic significantly reduce the viability and increased the apoptosis of BEAS-2B cells in a concentration-dependent manner. Nic treatment also increased the numbers of autophagosomes in BEAS-2B cells and upregulated LC3II and p62 expression. Moreover, Res at concentration of 2, 10, and 50 μM protected BEAS-2B cells from Nic apoptosis, and the expression of LC3II increased further and p62 decreased in Res pretreatment group. Apart from this, Res reduced Akt and mTOR phosphorylation. Subsequently, upon inhibiting PI3K phosphorylation by PI3K inhibitors, BEAS-2B cell autophagy induced by Res was obviously abolished. Conclusions: Nic-induced BEAS-2B cell apoptosis by inhibiting the late-stage autophagic flux, but Res could protect BEAS-2B cells from the detrimental effects of nicotine by enhancing autophagy via the PI3K/Akt/mTOR pathway. These results will provide an experimental basis for the prevention and treatment of COPD.
Collapse
Affiliation(s)
- Li He
- Department of Critical Care Medicine, The Central Hospital of Dazhou, Dazhou, Sichuan, China
| | - Jin Tong
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Velázquez-Ulloa NA, Heres-Pulido ME, Santos-Cruz LF, Durán-Díaz A, Castañeda-Partida L, Browning A, Carmona-Alvarado C, Estrada-Guzmán JC, Ferderer G, Garfias M, Gómez-Loza B, Magaña-Acosta MJ, Perry HH, Dueñas-García IE. Complex interactions between nicotine and resveratrol in the Drosophila melanogaster wing spot test. Heliyon 2022; 8:e09744. [PMID: 35770151 PMCID: PMC9234589 DOI: 10.1016/j.heliyon.2022.e09744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/30/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022] Open
Abstract
Nicotine (NIC) and resveratrol (RES) are chemicals in tobacco and wine, respectively, that are widely consumed concurrently worldwide. NIC is an alkaloid known to be toxic, addictive and to produce oxidative stress, while RES is thought of as an antioxidant with putative health benefits. Oxidative stress can induce genotoxic damage, yet few studies have examined whether NIC is genotoxic in vivo. In vitro studies have shown that RES can ameliorate deleterious effects of NIC. However, RES has been reported to have both antioxidant and pro-oxidant effects, and an in vivo study reported that 0.011 mM RES was genotoxic. We used the Drosophila melanogaster wing spot test to determine whether NIC and RES, first individually and then in combination, were genotoxic and/or altered the cell division. We hypothesized that RES would modulate NIC’s effects. NIC was genotoxic in the standard (ST) cross in a concentration-independent manner, but not genotoxic in the high bioactivation (HB) cross. RES was not genotoxic in either the ST or HB cross at the concentrations tested. We discovered a complex interaction between NIC and RES. Depending on concentration, RES was protective of NIC’s genotoxic damage, RES had no interaction with NIC, or RES had an additive or synergistic effect, increasing NIC’s genotoxic damage. Most NIC, RES, and NIC/RES combinations tested altered the cell division in the ST and HB crosses. Because we used the ST and HB crosses, we demonstrated that genotoxicity and cell division alterations were modulated by the xenobiotic metabolism. These results provide evidence of NIC’s genotoxicity in vivo at specific concentrations. Moreover, NIC’s genotoxicity can be modulated by its interaction with RES in a complex manner, in which their interaction can lead to either increasing NIC’s damage or protecting against it. Nicotine was genotoxic at specific concentrations in the Drosophila wing spot test. Resveratrol protected against nicotine’s genotoxic effects at some concentrations. Resveratrol increased nicotine’s genotoxicity at specific concentrations. Nicotine and resveratrol have a complex interaction in vivo. Studying chemicals in combination in vivo may uncover unexpected interactions.
Collapse
Affiliation(s)
| | - M E Heres-Pulido
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L F Santos-Cruz
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - A Durán-Díaz
- Mathematics, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - L Castañeda-Partida
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - A Browning
- Biology Department, Lewis & Clark College, Portland, OR, USA
| | - C Carmona-Alvarado
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - J C Estrada-Guzmán
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - G Ferderer
- Biology Department, Lewis & Clark College, Portland, OR, USA
| | - M Garfias
- Biology Department, Lewis & Clark College, Portland, OR, USA.,Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - B Gómez-Loza
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| | - M J Magaña-Acosta
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico.,Department of Developmental Genetics & Molecular Physiology, Universidad Nacional Autónoma de México. Av Universidad, 2001, Col Chamilpa, Cuernavaca, Mexico
| | - H H Perry
- Biology Department, Lewis & Clark College, Portland, OR, USA
| | - I E Dueñas-García
- Genetic Toxicology Laboratory, Biology, FES Iztacala, Universidad Nacional Autónoma de Mexico (UNAM), Los Barrios N 1, Los Reyes Iztacala, C.P. 54090, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
8
|
Greifová H, Jambor T, Tokárová K, Knížatová N, Lukáč N. In Vitro Effect of Resveratrol Supplementation on Oxidative Balance and Intercellular Communication of Leydig Cells Subjected to Induced Oxidative Stress. Folia Biol (Praha) 2022. [DOI: 10.3409/fb_70-1.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many studies have revealed that oxidative stress is a primary factor in the pathogenesis of male reproductive system dysfunctions. The strong antioxidant and cytoprotective effects of resveratrol have previously been demonstrated, but its effect in the context of the male reproduction
remains unconvincing. To observe the biological activity of resveratrol in protecting the male reproductive function, hydrogen peroxide-induced oxidative stress in Leydig cells was used as a cell model. The aim of the present study was to examine if resveratrol could induce changes in the
gap junction intercellular communication (GJIC), nitric oxide production, total oxidant status (TOS) and total antioxidant capacity (TAC) in TM3 Leydig cells subjected to H2O2. The Leydig cells were exposed to a resveratrol treatment (5, 10, 20, 50 and 100 μM) in the
presence or absence of H2O2 (300/600 μM) during a 24 h in vitro culture. The cell lysates to assess TOS and TAC, NO production were quantified in a culture medium using the Griess method, and the Scrape Loading/Dye Transfer (SL/DT) technique was used for the
determination of GJIC in the exposed TM3 Leydig cells. Treatment with higher doses of resveratrol alone led to a significantly increased TOS (p<0.05 with 100 μM) and NO production (p<0.05 with 50 μM and 100 μM), but significantly reduced TAC (p<0.01 with 100 μM) and GJIC
(p<0.05 with 100 μM), while the SL/DT evaluation in the cells exposed to resveratrol at concentrations 5 μM (p<0.05) and 10 μM (p<0.01) revealed a significant stimulation of GJIC. The most potent cytoprotective or stimulatory effect of resveratrol in the cells co-exposed
to oxidative stress (300 μM H2O2) was observed at a concentration of 10 μM in the case of GJIC, which was manifested by a significant increase in the values (p<0.05) compared to the control group treated with H2O2 alone.
Collapse
Affiliation(s)
- Hana Greifová
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Tomáš Jambor
- BioFood Centre, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Katarína Tokárová
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Nikola Knížatová
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Norbert Lukáč
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
9
|
Autophagy modulation in resveratrol protective effects on steroidogenesis in high-fat diet-fed mice and H 2O 2-challenged TM3 cells. Mol Biol Rep 2022; 49:2973-2983. [PMID: 35000049 DOI: 10.1007/s11033-022-07120-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Autophagy dysregulation and oxidative stress play critical pathophysiological roles in developing obesity-related metabolic health disorders. This study aims to investigate how autophagy modulation is related to resveratrol (RSV) antioxidant activities and preventive effects on steroidogenesis decline associated with a high-fat diet (HFD) and oxidative damage. METHODS AND RESULTS Eight-week-old C57BL/6 J male mice were fed with HFD with or without supplement RSV (400 mg/kg/day) by gavage for 16 weeks. The control group was fed with a standard diet with no RSV or the same amount of RSV. Mouse Leydig cell line TM3 cell was used for in vitro studies. Oxidative stress was induced in TM3 cells with H2O2, followed by RSV treatment plus autophagy activator rapamycin or autophagy inhibitor 3-methyladenine, respectively. RSV supplement could upregulate proteins level of StAR and mitochondrial proteins COX4 and mtTFA, indicating the amelioration of steroidogenesis decline and mitochondrial dysfunction caused by HFD. Antioxidants such as GPx4 and SOD2 were improved by RSV as well. The observation of autophagosomes and the changes in expressions of LC3II/I, Beclin1, and Atg7 indicated that RSV could reverse the autophagy defect associated with HFD. 3-methyladenine inhibition of autophagy partially abolished RSV protection on mitochondrial function and steroidogenesis in H2O2-challenged TM3 cells. However, the combination use of rapamycin and RSV did not improve protection on Leydig cells against oxidative damage. CONCLUSIONS The stimulation of autophagy by RSV is closely linked to its antioxidant actions and positive impact on steroidogenesis in HFD mice. The findings suggest RSV is protective against obesity-related Leydig cell impairment.
Collapse
|
10
|
Contextualizing Autophagy during Gametogenesis and Preimplantation Embryonic Development. Int J Mol Sci 2021; 22:ijms22126313. [PMID: 34204653 PMCID: PMC8231133 DOI: 10.3390/ijms22126313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/05/2023] Open
Abstract
Mammals face environmental stressors throughout their lifespan, which may jeopardize cellular homeostasis. Hence, these organisms have acquired mechanisms to cope with stressors by sensing, repairing the damage, and reallocating resources to increase the odds of long-term survival. Autophagy is a pro-survival lysosome-mediated cytoplasm degradation pathway for organelle and macromolecule recycling. Furthermore, autophagy efflux increases, and this pathway becomes idiosyncratic depending upon developmental and environmental contexts. Mammalian germ cells and preimplantation embryos are attractive models for dissecting autophagy due to their metastable phenotypes during differentiation and exposure to varying environmental cues. The aim of this review is to explore autophagy during mammalian gametogenesis, fertilization and preimplantation embryonic development by contemplating its physiological role during development, under key stressors, and within the scope of assisted reproduction technologies.
Collapse
|
11
|
Pessina A, Di Vincenzo M, Maradonna F, Marchegiani F, Olivieri F, Randazzo B, Gioacchini G, Carnevali O. Polydatin Beneficial Effects in Zebrafish Larvae Undergoing Multiple Stress Types. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031116. [PMID: 33513921 PMCID: PMC7908490 DOI: 10.3390/ijerph18031116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Polydatin is a polyphenol, whose beneficial properties, including anti-inflammatory and antioxidant activity, have been largely demonstrated. At the same time, copper has an important role in the correct organism homeostasis and alteration of its concentration can induce oxidative stress. In this study, the efficacy of polydatin to counteract the stress induced by CuSO4 exposure or by caudal fin amputation was investigated in zebrafish larvae. The study revealed that polydatin can reduced the stress induced by a 2 h exposure to 10 µM CuSO4 by lowering the levels of il1b and cxcl8b.1 and reducing neutrophils migration in the head and along the lateral line. Similarly, polydatin administration reduced the number of neutrophils in the area of fin cut. In addition, polydatin upregulates the expression of sod1 mRNA and CAT activity, both involved in the antioxidant response. Most of the results obtained in this study support the working hypothesis that polydatin administration can modulate stress response and its action is more effective in mitigating the effects rather than in preventing chemical damages.
Collapse
Affiliation(s)
- Andrea Pessina
- Department of Life and Environmental Sciences, DiSVA, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.P.); (M.D.V.); (F.M.); (B.R.); (G.G.)
| | - Mariangela Di Vincenzo
- Department of Life and Environmental Sciences, DiSVA, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.P.); (M.D.V.); (F.M.); (B.R.); (G.G.)
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, DiSVA, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.P.); (M.D.V.); (F.M.); (B.R.); (G.G.)
| | - Francesca Marchegiani
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, 60100 Ancona, Italy; (F.M.); (F.O.)
| | - Fabiola Olivieri
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, 60100 Ancona, Italy; (F.M.); (F.O.)
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Basilio Randazzo
- Department of Life and Environmental Sciences, DiSVA, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.P.); (M.D.V.); (F.M.); (B.R.); (G.G.)
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, DiSVA, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.P.); (M.D.V.); (F.M.); (B.R.); (G.G.)
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, DiSVA, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.P.); (M.D.V.); (F.M.); (B.R.); (G.G.)
- Correspondence:
| |
Collapse
|
12
|
Arab HH, Gad AM, Reda E, Yahia R, Eid AH. Activation of autophagy by sitagliptin attenuates cadmium-induced testicular impairment in rats: Targeting AMPK/mTOR and Nrf2/HO-1 pathways. Life Sci 2021; 269:119031. [PMID: 33453244 DOI: 10.1016/j.lfs.2021.119031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 02/05/2023]
Abstract
AIMS Cadmium (Cd) is a prevalent environmental contaminant that incurs deleterious health effects, including testicular impairment. Sitagliptin, a selective dipeptidyl peptidase-4 (DPP-4) inhibitor, has demonstrated marked cardio-, hepato-, and reno-protective actions, however, its impact on Cd-triggered testicular dysfunction has not been formerly investigated. Hence, the present study aimed to explore the probable beneficial impact of sitagliptin against Cd-evoked testicular impairment which may add to its potential clinical utility. The underlying mechanisms pertaining to the balance between testicular autophagy and apoptosis were explored, including the AMPK/mTOR and Nrf2/HO-1 pathways. MATERIALS AND METHODS The testicular tissues were examined using histopathology, immunohistochemistry, Western blotting, and ELISA. Sitagliptin (10 mg/kg/day, by gavage) was administered for 4 consecutive weeks. KEY FINDINGS Sitagliptin attenuated the testicular impairment via improvement of the relative testicular weight, sperm count/motility, sperm abnormalities, and serum testosterone. Additionally, sitagliptin counteracted Cd-induced histologic aberrations/disrupted spermatogenesis. Interestingly, sitagliptin augmented the defective autophagy as demonstrated by upregulating Beclin 1 protein expression and lowering p62 SQSTM1 protein accumulation. These effects were mediated via the activation of testicular AMPK/mTOR pathway as proven by increasing p-AMPK (Ser485, Ser491)/total AMPK and diminishing p-mTOR (Ser2448)/total mTOR protein expression. Additionally, sitagliptin suppressed the testicular apoptotic events via downregulating Bax and upregulating Bcl-2 protein expression. In tandem, sitagliptin suppressed the oxidative stress through lowering lipid peroxides and activating Nrf2/HO-1 pathway via upregulating the protein expression of Nrf2, and the downstream effectors HO-1 and GPx. SIGNIFICANCE Sitagliptin attenuated Cd-induced testicular injury via boosting the autophagy/apoptosis ratio through activation of AMPK/mTOR and Nrf2/HO-1 pathways.
Collapse
Affiliation(s)
- Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Amany M Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El Ismailia, Egypt; Department of Pharmacology, Egyptian Drug Authority (EDA), formerly NODCAR, Giza, Egypt
| | - Enji Reda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El Ismailia, Egypt
| | - Rania Yahia
- Department of Pharmacology, Egyptian Drug Authority (EDA), formerly NODCAR, Giza, Egypt
| | - Ahmed H Eid
- Department of Pharmacology, Egyptian Drug Authority (EDA), formerly NODCAR, Giza, Egypt
| |
Collapse
|
13
|
Dong Y, Zhao J, Zhu Q, Liu H, Wang J, Lu W. Melatonin inhibits the apoptosis of rooster Leydig cells by suppressing oxidative stress via AKT-Nrf2 pathway activation. Free Radic Biol Med 2020; 160:1-12. [PMID: 32758663 DOI: 10.1016/j.freeradbiomed.2020.06.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
Oxidative stress has been described as a key driver of Leydig cell apoptosis. Melatonin has antioxidative and antiapoptotic effects, but the potential effects and mechanism of melatonin on oxidative stress and apoptosis in rooster Leydig cells remain unclear. Our results showed that melatonin biosynthetic enzymes and melatonin receptors were expressed in rooster Leydig cells and their expression were locally inhibited as rooster sexual maturation. We found that melatonin inhibited H2O2-induced apoptosis of rooster Leydig cell by activating the melatonin receptors Mel-1a and Mel-1b. Additionally, melatonin protects mitochondria from damage by reducing the level of oxidative stress in Leydig cells. Melatonin relieved H2O2-induced oxidative stress by significantly reducing intracellular ROS, MDA and 8-OHdG levels and increasing SOD and GSH-Px activities. Simultaneously, melatonin significantly reduced H2O2-induced depolarization of ΔΨm and decreased the release of Cytochrome C and Ca2+. We also observed that melatonin activated the Nrf2 pathway, while Nrf2 silencing abrogated the anti-oxidative and anti-apoptotic effects of melatonin in rooster Leydig cells. Furthermore, melatonin promoted the phosphorylation of AKT, while AKT inhibitor suppressed the Nrf2 pathway activated by melatonin and alleviated the inhibitory effects of melatonin on apoptosis and oxidative stress. In conclusion, melatonin could inhibit apoptosis in rooster Leydig cells by suppressing oxidative stress via activation of the AKT-Nrf2 pathway.
Collapse
Affiliation(s)
- Yangyunyi Dong
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Zhao
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Qingyu Zhu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hongyu Liu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jun Wang
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Wenfa Lu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
14
|
Greifová H, Jambor T, Tokárová K, Speváková I, Knížatová N, Lukáč N. Resveratrol attenuates hydrogen peroxide-induced oxidative stress in TM3 Leydig cells in vitro. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:585-595. [PMID: 32178576 DOI: 10.1080/10934529.2020.1717899] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
The objective of present study was to investigate in vitro protective potential of resveratrol in TM3 Leydig cells with induced oxidative stress using hydrogen peroxide (H2O2). Leydig cells experiencing oxidative stress exhibit reduced activities in androgens production, and become hypofunctional with age, which is also related to growing oxidative stress, while resveratrol has received growing attention as a cytoprotective agent. TM3 mouse Leydig cells were cultivated during 24 h in the presence of resveratrol (5, 10, 25, 50 and 100 μM) alone, or in combination with H2O2 (300/600 μM) to induce oxidative stress. Mitochondrial activity was evaluated using MTT test, triple assay was used in order to assess cell viability parameters, intracellular generation of superoxide was determined by the nitroblue-tetrazolium assay, and quantification of steroid hormones was performed by the enzyme- linked immunosorbent assay. Resveratrol alone treatment led to the most significantly improved values of all tested parameters in the cells of experimental group with addition of 10 μM of resveratrol in comparison to the control group. In the case of cells with induced oxidative stress (300 μM H2O2) resveratrol administration resulted in significantly increased (P < 0.05) metabolic activity, as well as cell membrane integrity at concentration 10 μM. Significantly improved (P < 0.001) lysosomal activity showed cells treated with 5 and 10 μM of resveratrol, and the level of both measured hormones was significantly higher (P < 0.05) in cells supplemented with 10 μM of resveratrol. Significant decline of superoxide radical production was observed in all experimental groups in comparison to the control exposed to H2O2 alone. With respect to cells exposed to higher concentration of H2O2 (600 μM), results showed positive effect of resveratrol only in biosynthesis of both androgens with significant increased values in experimental group treated with 5 μM (P < 0.05) and 10 μM (P < 0.01) of resveratrol, in addition, in the case of testosterone we recorded significant higher (P < 0.05) values in cells with addition of 25 and 50 μM resveratrol when compared to H2O2 control. More specific and systematic research focused especially on androgen biosynthesis is necessary related to the biological activity of resveratrol in male reproductive system due to inconsistent results of studies.
Collapse
Affiliation(s)
- Hana Greifová
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Tomáš Jambor
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Katarína Tokárová
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Ivana Speváková
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Nikola Knížatová
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Norbert Lukáč
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| |
Collapse
|
15
|
Zhang P, Li Y, Fu Y, Huang L, Liu B, Zhang L, Shao XM, Xiao D. Inhibition of Autophagy Signaling via 3-methyladenine Rescued Nicotine-Mediated Cardiac Pathological Effects and Heart Dysfunctions. Int J Biol Sci 2020; 16:1349-1362. [PMID: 32210724 PMCID: PMC7085229 DOI: 10.7150/ijbs.41275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
Rationale: Cigarette smoking is a well-established risk factor for myocardial infarction and sudden cardiac death. The deleterious effects are mainly due to nicotine, but the mechanisms involved and theranostics remain unclear. Thus, we tested the hypothesis that nicotine exposure increases the heart sensitivity to ischemia/reperfusion injury and dysfunction, which can be rescued by autophagy inhibitor. Methods: Nicotine or saline was administered to adult rats via subcutaneous osmotic minipumps in the absence or presence of an autophagy inhibitor, 3-methyladenine (3-MA). After 30 days of nicotine treatment, the rats underwent the cardiac ischemia/reperfusion (I/R) procedure and echocardiography analysis, and the heart tissues were isolated for molecular biological studies. Results: Nicotine exposure increased I/R-induced cardiac injury and cardiac dysfunction as compared to the control. The levels of autophagy-related proteins including LC3 II, P62, Beclin1, and Atg5 were upregulated in the reperfused hearts isolated from nicotine-treated group. In addition, nicotine enhanced cardiac and plasma ROS production, and increased the phosphorylation of GSK3β (ser9) in the left ventricle tissues. Treatment with 3-MA abolished nicotine-mediated increase in the levels of autophagy-related proteins and phosphorylation of GSK3β, but had no effect on ROS production. Of importance, 3-MA ameliorated the augmented I/R-induced cardiac injury and dysfunction in the nicotine-treated group as compared to the control. Conclusion: Our results demonstrate that nicotine exposure enhances autophagy signaling pathway, resulting in development of ischemic-sensitive phenotype of heart. It suggests a potentially novel therapeutic strategy of autophagy inhibition for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Peng Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA.,Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Yingjie Fu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lei Huang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Bailin Liu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Xuesi M Shao
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, California, USA
| | - Daliao Xiao
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
16
|
Chen X, Li C, Chen Y, Ni C, Chen X, Zhang L, Xu X, Chen M, Ma X, Zhan H, Xu A, Ge R, Guo X. Aflatoxin B1 impairs leydig cells through inhibiting AMPK/mTOR-mediated autophagy flux pathway. CHEMOSPHERE 2019; 233:261-272. [PMID: 31176127 DOI: 10.1016/j.chemosphere.2019.05.273] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/19/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Aflatoxin B1 (AFB1), a potential endocrine disrupter, has been shown to induce hepatotoxicity in animal models, but the effects of AFB1 on Leydig cell function are unclear. In this study, in vivo exposure to AFB1 at 15 and 150 μg/kg/day lowered serum testosterone (T), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) levels, reduced Leydig cell number, and down-regulated the expression of testosterone biosynthesis-related genes. In vitro study showed that AFB1 (10 μM) significantly increased ROS levels, and decreased T production in Leydig cells by suppressing certain T-biosynthesis gene expressions. Moreover, AFB1 induced Leydig cell apoptosis through lowering pAMPK/AMPK ratio and increasing pmTOR/mTOR ratio, and then further up-regulating autophagy and apoptosis proteins, LC3, BECLIN 1, and BAX, as well as down-regulating autophagy flux protein P62 and anti-apoptosis protein BCL-2. AFB1-induced toxicity in Leydig cells was characterized by inhibiting T-biosynthesis gene expression, reducing Leydig cell number, promoting ROS production, and inducing cell apoptosis via suppressing AMPK/mTOR-mediated autophagy flux pathway.
Collapse
Affiliation(s)
- Xianwu Chen
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chao Li
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yong Chen
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chaobo Ni
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiuxiu Chen
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linlei Zhang
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuni Xu
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min Chen
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyi Ma
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huilu Zhan
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Aoyu Xu
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Renshan Ge
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoling Guo
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
17
|
Li MY, Zhu XL, Zhao BX, Shi L, Wang W, Hu W, Qin SL, Chen BH, Zhou PH, Qiu B, Gao Y, Liu BL. Adrenomedullin alleviates the pyroptosis of Leydig cells by promoting autophagy via the ROS-AMPK-mTOR axis. Cell Death Dis 2019; 10:489. [PMID: 31222000 PMCID: PMC6586845 DOI: 10.1038/s41419-019-1728-5] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 01/03/2023]
Abstract
Adrenomedullin (ADM) exerts anti-oxidant, anti-inflammatory and anti-apoptotic effects in Leydig cells. However, the role and mechanism of ADM in the pyroptosis of Leydig cells are poorly understood. This study first showed the protective effects of ADM on the pyroptosis and biological functions of Leydig cells exposed to lipopolysaccharide (LPS) by promoting autophagy. Primary rat Leydig cells were treated with various concentrations of LPS and ADM, together with or without N-acetyl-L-cysteine (NAC) or 3-methyladenine (3-MA). Cell proliferation was detected through CCK-8 and BrdU incorporation assays, and ROS level was measured with the DCFDA assay. Real-time PCR, western blot, immunofluorescence, transmission electron microscopy, TUNEL and flow cytometry were performed to examine ADM's effect on the pyroptosis, autophagy and steroidogenic enzymes of Leydig cells and AMPK/mTOR signalling. Like NAC, ADM dose-dependently reduced LPS-induced cytotoxicity and ROS overproduction. ADM also dose-dependently ameliorated LPS-induced pyroptosis by reversing the increased expression of NLRP3, ASC, caspase-1, IL-1β, IL-18, GSDMD, caspase-3, caspase-7, TUNEL-positive and PI and active caspase-1 double-stained positive rate, DNA fragmentation and LDH concentration, which could be rescued via co-incubation with 3-MA. ADM dose-dependently increased autophagy in LPS-induced Leydig cells, as confirmed by the increased expression of LC3-I/II, Beclin-1 and ATG-5; decreased expression of p62 and autophagosomes formation; and increased LC3-II/LC3-I ratio. However, co-treatment with 3-MA evidently decreased autophagy. Furthermore, ADM dose-dependently rescued the expression of steroidogenic enzymes, including StAR, P450scc, 3β-HSD and CYP17, and testosterone production in LPS-induced Leydig cells. Like rapamycin, ADM dose-dependently enhanced AMPK phosphorylation but reduced mTOR phosphorylation in LPS-induced Leydig cells, which could be rescued via co-incubation with 3-MA. In addition, pyroptosis was further decreased, and autophagy was further promoted in LPS-induced Leydig cells upon co-treatment with ADM and rapamycin. ADM may protect the steroidogenic functions of Leydig cells against pyroptosis by activating autophagy via the ROS-AMPK-mTOR axis.
Collapse
Grants
- Hunan Natural Science Foundation, Hunan, China (Grant No.: 2019JJ40269), Health and Family Planning Research Project of Hunan Province, Changsha, China (Grant No.: B2017051)
- National Science Foundation of China, Beijing, China (Grant No.: 81401190)
- Social Development Foundation of Zhenjiang, Zhenjiang, China (Grant No.: SH2016031)
- National Science Foundation of China, Beijing, China (Grant No.: 81501921),Science and Technology Project of Wuhan, China (Grant No.: 2016060101010045)
- National Science Foundation of China, Beijing, China (Grant No.: 81602241)
- National Science Foundation of China, Beijing, China (Grant Nos.: 81471449,81871110 and 81671449),Guangdong Province Natural Science Foundation, Guangzhou, China (Grant No.: 2015A030313141), Guangdong Province Science and Technology Project, Guangzhou, China (Grant Nos.: 2016B030230001 and 2016A040403113), Key Scientific and Technological Program of Guangzhou City, Guangzhou, China (Grant No.: 201604020189)
Collapse
Affiliation(s)
- Ming-Yong Li
- Department of Urology, The First Affiliated Hospital of University of South China, No. 69 Chuan Shan Road, Hengyang, 421001, Hunan Province, China
| | - Xia-Lian Zhu
- Department of Hand Surgery, Affiliated Nanhua Hospital of University of South China, No. 336 Dong Feng South Road, Hengyang, 421002, Hunan Province, China
| | - Bi-Xia Zhao
- Department of Urology, Affiliated Nanhua Hospital of University of South China, No. 336 Dong Feng South Road, Hengyang, 421002, Hunan Province, China
| | - Lei Shi
- Department of Oncology, Renmin Hospital of Wuhan University, No. 238 Liberation Road, Wuhan, 430060, Hubei Province, China
| | - Wei Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Wei Hu
- Department of Andrology, The First Affiliated Hospital of University of South China, No. 69 Chuan Shan Road, Hengyang, 421001, Hunan Province, China.
| | - Song-Lin Qin
- Department of Andrology, The First Affiliated Hospital of University of South China, No. 69 Chuan Shan Road, Hengyang, 421001, Hunan Province, China.
| | - Bing-Hai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, No. 438 Liberation Road, Zhenjiang, 212000, Jiangsu Province, China.
| | - Pang-Hu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 238 Liberation Road, Wuhan, 430060, Hubei Province, China
| | - Bo Qiu
- Department of Orthopedics, Renmin Hospital of Wuhan University, No. 238 Liberation Road, Wuhan, 430060, Hubei Province, China
| | - Yong Gao
- Reproductive Medicine Centre, The First Affiliated Hospital of Sun Yat-sen University, No. 58 Second Zhongshan Road, Guangzhou, 510080, Guangdong Province, China
| | - Bo-Long Liu
- Department of Andrology, The First Affiliated Hospital of University of South China, No. 69 Chuan Shan Road, Hengyang, 421001, Hunan Province, China
| |
Collapse
|
18
|
Martin-Hidalgo D, Hurtado de Llera A, Calle-Guisado V, Gonzalez-Fernandez L, Garcia-Marin L, Bragado MJ. AMPK Function in Mammalian Spermatozoa. Int J Mol Sci 2018; 19:ijms19113293. [PMID: 30360525 PMCID: PMC6275045 DOI: 10.3390/ijms19113293] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 01/03/2023] Open
Abstract
AMP-activated protein kinase AMPK regulates cellular energy by controlling metabolism through the inhibition of anabolic pathways and the simultaneous stimulation of catabolic pathways. Given its central regulator role in cell metabolism, AMPK activity and its regulation have been the focus of relevant investigations, although only a few studies have focused on the AMPK function in the control of spermatozoa's ability to fertilize. This review summarizes the known cellular roles of AMPK that have been identified in mammalian spermatozoa. The involvement of AMPK activity is described in terms of the main physiological functions of mature spermatozoa, particularly in the regulation of suitable sperm motility adapted to the fluctuating extracellular medium, maintenance of the integrity of sperm membranes, and the mitochondrial membrane potential. In addition, the intracellular signaling pathways leading to AMPK activation in mammalian spermatozoa are reviewed. We also discuss the role of AMPK in assisted reproduction techniques, particularly during semen cryopreservation and preservation (at 17 °C). Finally, we reinforce the idea of AMPK as a key signaling kinase in spermatozoa that acts as an essential linker/bridge between metabolism energy and sperm's ability to fertilize.
Collapse
Affiliation(s)
- David Martin-Hidalgo
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 40050-313 Porto, Portugal.
| | - Ana Hurtado de Llera
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
- Hormones and Metabolism Research Group, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Violeta Calle-Guisado
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| | - Lauro Gonzalez-Fernandez
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| | - Luis Garcia-Marin
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| | - M Julia Bragado
- Research Group of Intracellular Signaling and Technology of Reproduction (SINTREP), Institute of Biotechnology in Agriculture and Livestock (INBIO G+C), University of Extremadura, 10003 Cáceres, Spain.
| |
Collapse
|
19
|
Xia G, Zhu T, Li X, Jin Y, Zhou J, Xiao J. ROS‑mediated autophagy through the AMPK signaling pathway protects INS‑1 cells from human islet amyloid polypeptide‑induced cytotoxicity. Mol Med Rep 2018; 18:2744-2752. [PMID: 30015901 PMCID: PMC6102651 DOI: 10.3892/mmr.2018.9248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 03/06/2018] [Indexed: 11/27/2022] Open
Abstract
Oligomerization of human islet amyloid polypeptide (hIAPP) is toxic and contributes to progressive reduction of β cell mass in patients with type 2 diabetes mellitus. Autophagy is a highly conserved homeostatic mechanism in eukaryotes. Previous studies have confirmed that hIAPP can promote autophagy in β cells, but the underlying molecular mechanism and cellular regulatory pathway of hIAPP-induced autophagy remains not fully elucidated. Accumulation of reactive oxygen species (ROS) causes hIAPP induced-β cell death. At present, little is known about the association between hIAPP-induced oxidative stress and autophagy in β cells. Therefore, the present study investigated the underlying molecular mechanism and regulatory pathway of hIAPP-induced autophagy. Transmission electron microscopy was used to observe the number of autophagosome in cells. Cell viability was determined by an MTT test. A 2′,7′-dichlorofluorescin diacetate assay was used to measure the relative levels of reactive ROS. Western blotting was used to detect expression of adenosine monophosphate-activated protein kinase (AMPK) and autophagic markers p62 and microtubule associated protein 1 light chain 3. The results demonstrated that hIAPP induces autophagy through ROS-mediated AMPK signaling pathway in INS-1 cells. Upregulation of autophagy by AMPK activator 5-aminoimidazole-4-carboxamide1-β-D-ribofuranoside decreased ROS and malondialdehyde generation, whereas inhibition of autophagy by 3-methyladenine and AMPK inhibitor compound C aggravated hIAPP-induced oxidative stress and toxicity in INS-1 cells. Taken together, the present study suggested that hIAPP induces autophagy via a ROS-mediated AMPK signaling pathway. Furthermore, autophagy serves as a cell-protective mechanism against hIAPP-induced toxicity and chemical promotion of autophagy through AMPK signaling pathway attenuates hIAPP induced cytotoxicity and oxidative stress in INS-1 cells.
Collapse
Affiliation(s)
- Guanghao Xia
- Department of Endocrinology and Metabolic Disease, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Tiehong Zhu
- Department of Endocrinology and Metabolic Disease, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xiaotong Li
- Department of Endocrinology and Metabolic Disease, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yujing Jin
- Department of Endocrinology and Metabolic Disease, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jing Zhou
- Department of Endocrinology and Metabolic Disease, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jinfeng Xiao
- Department of Endocrinology and Metabolic Disease, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|