1
|
Fawzy MH, Moustafa YM, Khodeer DM, Saeed NM, El-Sayed NM. Doxepin as OCT2 inhibitor ameliorates inflammatory response and modulates PI3K/Akt signaling associated with cisplatin-induced nephrotoxicity in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03473-1. [PMID: 39400714 DOI: 10.1007/s00210-024-03473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Organic cationic transporter 2 (OCT2) was identified as the main transporter involved in the accumulation of cisplatin (CP) in the proximal tubular renal cells, resulting in nephrotoxicity. Doxepin (DOX) is a tricyclic agent with an inhibitory effect on OCT2. This study aimed to explore the possible mechanisms of the renoprotective role of DOX toward CP-induced nephrotoxicity. Rats were randomly divided into six groups: group 1, control; group 2, CP; groups 3, 4, and 5 were treated with graded doses of DOX (5, 10, and 20 mg/kg, respectively) intraperitoneally (ip) once daily for 10 consecutive days and group 6 was treated only with DOX (20 mg/kg). On the seventh day, a single injected dose of CP (10 mg/kg, ip) was given to the rats in groups 2-5. Seventy-two hours after CP injection, rats were sacrificed, and the kidneys were removed for histological and biochemical measurements. DOX ameliorated the CP-induced histopathological alterations. DOX significantly reduced the expression of OCT2, lipid peroxidation marker (MDA), and inflammatory cytokines, including TNF-α, IL-6, IL-1, IL-2, and IL-1β, and increased the activity of antioxidant enzymes. In addition, pre- and co-treatment with DOX significantly reduced the CP-mediated apoptotic effect by reducing the renal tissue expression of BAX and caspase-3 levels, upregulating the expression of Bcl-2, and modulating the phosphorylation of PI3K/Akt signaling cascade. DOX exerts a nephroprotective impact against CP-mediated nephrotoxicity via the inhibition of OCT2, suppression of inflammation, oxidative stress, and apoptotic markers, and modulation of PI3K/Akt signaling cascade.
Collapse
Affiliation(s)
- Mariam H Fawzy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo, Badr City, Egypt
| | - Dina M Khodeer
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Noha M Saeed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Norhan M El-Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
2
|
López-Bueno JA, Padrón-Monedero A, Díaz J, Navas-Martín MA, Linares C. Short-term impact of air pollution, noise and temperature on emergency hospital admissions in Madrid (Spain) due to liver and gallbladder diseases. ENVIRONMENTAL RESEARCH 2024; 249:118439. [PMID: 38346485 DOI: 10.1016/j.envres.2024.118439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Very few epidemiological studies have explored the environmental and meteorological risk factors that influence liver diseases and gallbladder disorders, and no studies have addressed the specific case of Spain. METHODS This is a retrospective ecological study conducted during 2013-2018. We analysed emergency admissions in the central area of the Region of Madrid for the following causes: Liver and gallbladder diseases (L&GB) (ICD-10: K70-K81); disorders of gallbladder (DGB) (ICD 10: K80-K81); liver disease (LD) (ICD 10: K70-K77); alcoholic liver disease (ALD) (ICD-10: K70); viral hepatitis (VH) (ICD10:B15-B19); and hepatic failure, not elsewhere classified (HFNS) (ICD-10: K72). Independent variables used: meteorological (maximum daily temperature (Tmax in ⁰C), minimum daily temperature (Tmin in ⁰C), and relative humidity (RH in %)); chemical air pollution (8-hO3, NO2, PM10, PM2.5 in μg/m3); and noise pollution (equivalent level of daily noise (Ld in dB(A)). Transformed variables: extreme heat in degrees (Theat); wet cold (WC); and high ozone. We fitted Poisson models, negative binomials and zero-inflated Poisson controlled for seasonality, day of the week, holidays, trend, and autoregressive trend. Based on these models, the percentage of cases attributable to statistically significant risk factors was then estimated. RESULTS In L&GB emergency admissions daily noise is related to 4.4% (CI95%: 0.8 7.9) of admissions; NO2 to 2.9% (CI95%: 0.1 5.7) and wet cold to 0.2% (CI95%: 0.8 7.9). Heat wave temperature was only related to ALD. In addition, the wet cold association with L&GB is also related to HFNS attributing 1.0% (CI95%: 0.3 1.8) of admissions for this cause. CONCLUSIONS Daily noise and NO2 are associated with more than 7% of urgent L&GB admissions. Both pollutants, are mainly emitted by road traffic. A reduction of traffic in cities would result in a reduction of emergency admissions due to this cause.
Collapse
Affiliation(s)
- J A López-Bueno
- Climate Change, Health and Urban Environment Reference Unit, National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - A Padrón-Monedero
- National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - J Díaz
- Climate Change, Health and Urban Environment Reference Unit, National School of Public Health, Carlos III Institute of Health, Madrid, Spain.
| | - M A Navas-Martín
- Climate Change, Health and Urban Environment Reference Unit, National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| | - C Linares
- Climate Change, Health and Urban Environment Reference Unit, National School of Public Health, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
3
|
Zhang B, Qu Q, Shu Y, Zhang Y, Zhang J, Sun J, Zhang C. Effect of Wearing Noise-Canceling Headphones on Delivery Process in Natural Childbirth Puerperae: A Single-Center Study. Noise Health 2024; 26:142-147. [PMID: 38904814 PMCID: PMC11530098 DOI: 10.4103/nah.nah_2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 06/22/2024] Open
Abstract
OBJECTIVE To investigate the effect of incorporating noise-canceling headphones into the delivery process for natural childbirth puerperae. METHODS We conducted a retrospective analysis of clinical data encompassing natural childbirth puerperae in the People's Hospital of Suzhou New District from January 2021 to February 2023. The implementation of routine noise reduction management was done from January 2021 to January 2022. During this interval, 69 natural childbirth puerperae were selected as subjects, with 7 excluded, resulting in 62 participants constituting the reference group. Subsequently, noise-canceling headphones were distributed to natural childbirth puerperae from February 2022 to February 2023. In this phase, 66 subjects were selected, and 6 were excluded, resulting in 60 participants forming the observation group. Following admission, both groups underwent corresponding nursing management. Emotional states, pain levels, and various indicators were systematically collected and meticulously compared. RESULTS The observation group exhibited significantly lower Hamilton Anxiety Rating Scale scores than the reference group before delivery and during the first stage of labor (P < 0.05). The observation group demonstrated significantly lower visual analog scale scores and substance P, nitric oxide, and prostaglandin E2 levels than the reference group during the first stage of labor (P < 0.001). During the second stage of labor, the visual analog) scale scores were significantly lower in the observation group than in the reference group (P < 0.05). The durations of first and second labor stages were significantly shorter in the observation group than in the reference group (P < 0.05). No significant difference existed in Apgar scores between the two groups (P > 0.05). CONCLUSION The utilization of noise-canceling headphones emerges as an effective intervention, alleviating anxiety, reducing pain during T1, and abbreviating total labor time in natural childbirth puerperae, suggesting its substantial clinical application value and potential as a beneficial addition to maternity care practices.
Collapse
Affiliation(s)
- Beibei Zhang
- Department of Obstetrics, The People’s Hospital of Suzhou New District, Suzhou 215011, Jiangsu, China
| | - Qinfang Qu
- Department of Obstetrics, The People’s Hospital of Suzhou New District, Suzhou 215011, Jiangsu, China
| | - Yan Shu
- Department of Obstetrics, The People’s Hospital of Suzhou New District, Suzhou 215011, Jiangsu, China
| | - Yun Zhang
- Department of Obstetrics, The People’s Hospital of Suzhou New District, Suzhou 215011, Jiangsu, China
| | - Jie Zhang
- Department of Obstetrics, The People’s Hospital of Suzhou New District, Suzhou 215011, Jiangsu, China
| | - Jia Sun
- Department of Obstetrics, The People’s Hospital of Suzhou New District, Suzhou 215011, Jiangsu, China
| | - Caixia Zhang
- Department of Obstetrics, The People’s Hospital of Suzhou New District, Suzhou 215011, Jiangsu, China
| |
Collapse
|
4
|
Gao X, Zhao T, Hao R, Zhang Z, Huang GB. Social defeat stress induces liver injury by modulating endoplasmic reticulum stress in C57BL/6J mice. Sci Rep 2024; 14:7137. [PMID: 38531904 DOI: 10.1038/s41598-024-57270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Social defeat stress is associated with endoplasmic reticulum (ER) stress, inflammation and apoptosis. ER stress is thought to contribute to many lifestyle diseases such as liver injury, cardiovascular dysfunction and depression. We investigated the expression of the ER stress markers RNA-dependent protein kinase-like ER kinase (PERK), eukaryotic translation initiation factor 2α (eIF2α) and C/EBP homologous protein (CHOP), as well as inflammatory and apoptotic factors, to assess how social defeat stress induces liver injury. Furthermore, we evaluated the effects of the ER stress inhibitor phenylbutyric acid (PBA) and ER stress inducer thapsigargin (TG) on liver injury. Adult mice were divided into the control, social defeat, social defeat + PBA, TG, PBA and TG + PBA groups. The social defeat and social defeat + PBA groups were simultaneously exposed to social defeat stress for 10 days. The social defeat + PBA, TG, PBA and TG + PBA groups were treated with PBA or TG via intraperitoneal injections. PBA was injected 1 h before the TG injection into the TG + PBA group. Liver samples from six groups of mice were analyzed by histological analysis and western blotting. Social defeat stress promoted ER stress, increased the expression of inflammatory factors and induced apoptosis in the liver of socially defeated mice, which was reversed by PBA. Moreover, ER stress induces TG-induced liver injury by initiating ER stress. Social defeat stress initiates ER stress, promotes the expression of inflammatory and apoptotic factors, and induces liver injury. PBA suppresses liver injury caused by social defeat stress and TG treatment.
Collapse
Affiliation(s)
- XiaoLei Gao
- School of Nursing, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Tong Zhao
- Department of Psychiatry, QuZhou Third Municipal Hospital, QuZhou, China
| | - Ran Hao
- Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - ZhaoHui Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Guang-Biao Huang
- Department of Psychiatry, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, No. 2088, Tiaoxi East Road, Huzhou, 313000, China.
| |
Collapse
|
5
|
Wang H, Chai Y, Xu Y, Wang Y, Li J, Zhang R, Bao J. Long-term music stimulating alleviated the inflammatory responses caused by acute noise stress on the immune organs of broilers by NF-κB signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116131. [PMID: 38412629 DOI: 10.1016/j.ecoenv.2024.116131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
As an environmental enrichment, music can positively influence the immune function, while noise has an adverse effect on the physical and mental health of humans and animals. However, whether music-enriched environments mitigate noise-induced acute stress remains unclear. To investigate the anti-inflammatory effects of music on the immune organs of broiler chickens under conditions of early-life acute noise stress, 140 one-day-old white feather broilers (AA) were randomly divided into four groups: control (C), the music stimulation (M) group, the acute noise stimulation (N) group, the acute noise stimulation followed by music (NM) group. At 14 days of age, the N and NM groups received 120 dB noise stimulation for 10 min for one week. After acute noise stimulation, the NM group and M group were subjected to continuous music stimulation for 14 days (6 h per day, 60 dB). At 28 days of age, the body temperature of the chicks, the histopathological changes, quantification of ROS-positive density and apoptosis positivity in tissues of spleen, thymus, and bursa of Fabricius (BF) were measured. The results showed that acute noise stimulation led to an increase in the number and area of splenic microsomes and the cortex/medulla ratio of the detected immune organs. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) of immune tissues of broilers in N group were decreased compared to the broilers in C group, while the mRNA levels of malondialdehyde (MDA), TNF-α, IL-1, and IL-1β increased. In addition, the gene and protein expression levels of IKK, NF-κB, and IFN-γ of three immune organs from broilers in the N group were increased. Compared to the C and N group, chickens from the NM group showed a decrease in the number and area of splenic follicles, an increase in the activities of SOD and GSH-Px, and a decrease in the expression levels of MDA, TNF-α, IL-1, and IL-1β. Therefore, a music-enriched environment can attenuate oxidative stress induced by acute noise stimulation, inhibiting the activation of the NF-κB signaling pathway and consequently alleviating the inflammatory response in immune organs.
Collapse
Affiliation(s)
- Haowen Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yiwen Chai
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yandong Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yulai Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| |
Collapse
|
6
|
Yang L, Gutierrez DE, Guthrie OW. Systemic health effects of noise exposure. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:21-54. [PMID: 37957800 DOI: 10.1080/10937404.2023.2280837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Noise, any unwanted sound, is pervasive and impacts large populations worldwide. Investigators suggested that noise exposure not only induces auditory damage but also produces various organ system dysfunctions. Although previous reviews primarily focused on noise-induced cardiovascular and cerebral dysfunctions, this narrow focus has unintentionally led the research community to disregard the importance of other vital organs. Indeed, limited studies revealed that noise exposure impacts other organs including the liver, kidneys, pancreas, lung, and gastrointestinal tract. Therefore, the aim of this review was to examine the effects of noise on both the extensively studied organs, the brain and heart, but also determine noise impact on other vital organs. The goal was to illustrate a comprehensive understanding of the systemic effects of noise. These systemic effects may guide future clinical research and epidemiological endpoints, emphasizing the importance of considering noise exposure history in diagnosing various systemic diseases.
Collapse
Affiliation(s)
- Li Yang
- Cell & Molecular Pathology Laboratory, Communication Sciences and Disorders, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Daniel E Gutierrez
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| | - O'neil W Guthrie
- Cell & Molecular Pathology Laboratory, Communication Sciences and Disorders, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
7
|
Luo J, Yan Z, Shen Y, Liu D, Su M, Yang J, Xie J, Gao H, Yang J, Liu A. Exposure to low-intensity noise exacerbates nonalcoholic fatty liver disease by activating hypothalamus pituitary adrenal axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167395. [PMID: 37774888 DOI: 10.1016/j.scitotenv.2023.167395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/15/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
Noise exposure induces metabolic disorders, in a latent, chronic and complex way. However, there is no direct evidence elucidating the relationship between low-intensity noise exposure and nonalcoholic fatty liver disease (NAFLD). Male mice (n = 5) on high-fat diet (HFD) were exposed to an average of 75 dB SPL noise for 3 months to reveal the effect of noise exposure on NAFLD, where the potential mechanisms were explored. In vivo (n = 5) and in vitro models challenged with dexamethasone (DEX) were used to verify the role of hypothalamus pituitary adrenal (HPA) axis activation in hepatic lipid metabolism. Typical chronic-restraint stress (CRS, n = 8) was used to explore the role of depression in modifying activity of HPA axis. Finally, animal experiment (n = 8) was repeated to validate the roles of depression and HPA axis activation in NAFLD development. Chronic low-intensity noise exposure exacerbated NAFLD in mice on HFD characterized by hepatocyte steatosis, modified lipid metabolism and inflammation level. Plasma ACTH in H + N group was 1.5-fold higher than that in HFD group. Transcription of glucocorticoid receptor target genes was increased by chronic low-intensity noise exposure in HFD-treated mice. Excessive glucocorticoids mimicking HPA axis activation induced NAFLD in vivo and in vitro. Plasma ACTH increase and lipid storage also occurred in depressive mice stressed by CRS. More interestingly, the same noise exposure simultaneously induced depression in mice, disrupted the HPA axis homeostasis and exacerbated NAFLD in a repeated experiment. Thus, three-month exposure to 75 dB SPL noise was sufficient to exacerbate NAFLD progress in mice, where activation of HPA axis played a critical role. Depression played an intermediate role and contributed to HPA axis activation up-stream of the exacerbation.
Collapse
Affiliation(s)
- Jia Luo
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Zheng Yan
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yao Shen
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Denong Liu
- Zhejiang Key Laboratory of Pathophysiology, Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Mingli Su
- Department of Gastroenterology, Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, China
| | - Jie Yang
- Department of Gastroenterology, Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, China
| | - Jiarong Xie
- Department of Gastroenterology, First Affiliated Hospital, Ningbo University, Ningbo 315010, China
| | - Hui Gao
- Department of Gastroenterology, First Affiliated Hospital, Ningbo University, Ningbo 315010, China
| | - Julin Yang
- Ningbo College of Health Sciences, Ningbo 315100, China
| | - Aiming Liu
- Zhejiang Key Laboratory of Pathophysiology, Department of Physiology and Pharmacology, Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
8
|
Li N, Zhang X, Cui Y, Wu H, Yu Y, Yu S. Dysregulations of metabolites and gut microbes and their associations in rats with noise induced hearing loss. Front Microbiol 2023; 14:1229407. [PMID: 37601356 PMCID: PMC10436299 DOI: 10.3389/fmicb.2023.1229407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Background Noise exposure could lead to hearing loss and disorders of various organs. Recent studies have reported the close relations of environmental noise exposure to the metabolomics dysregulations and gut microbiota disturbance in the exposers. However, the associations between gut microbial homeostasis and the body metabolism during noise-induced hearing loss (NIHL) were unclear. To get a full understanding of their synergy in noise-associated diseases, it is essential to uncover their impacts and associations under exposure conditions. Methods With ten male rats with background noise exposure (≤ 40 dB) as controls (Ctr group), 20 age- and weight-matched male rats were exposed to 95 dB Sound pressure level (SPL) (LN group, n = 10) or 105 dB SPL noise (HN group, n = 10) for 30 days with 4 h/d. The auditory brainstem response (ABR) of the rats and their serum biochemical parameters were detected to investigate their hearing status and the potential effects of noise exposure on other organs. Metabolomics (UPLC/Q-TOF-MS) and microbiome (16S rDNA gene sequencing) analyses were performed on samples from the rats. Multivariate analyses and functional enrichments were applied to identify the dysregulated metabolites and gut microbes as well as their associated pathways. Pearson correlation analysis was performed to investigate the associations of the dysregulations of microbiota and the metabolites. Results NIHL rat models were constructed. Many biochemical parameters were altered by noise exposure. The gut microbiota constitution and serum metabolic profiles of the noise-exposed rats were also dysregulated. Through metabolomics analysis, 34 and 36 differential metabolites as well as their associated pathways were identified in LN and HN groups, respectively. Comparing with the control rats, six and 14 florae were shown to be significantly dysregulated in the LN group and HN group, respectively. Further association analysis showed significant correlations between differential metabolites and differential microbiota. Conclusion There were cochlea injuries and abnormalities of biochemical parameters in the rats with NIHL. Noise exposure could also disrupt the metabolic profiles and the homeostatic balance of gut microbes of the host as well as their correlations. The dysregulated metabolites and microbiota might provide new clues for prevention of noise-related disorders.
Collapse
Affiliation(s)
- Ningning Li
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| | - Xiuzhi Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| | - Yanan Cui
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Wu
- Henan Institute for Occupational Health, Zhengzhou, Henan, China
| | - Yue Yu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shanfa Yu
- School of Public Health, Henan Medical College, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Administration of an Acidic Sphingomyelinase (ASMase) Inhibitor, Imipramine, Reduces Hypoglycemia-Induced Hippocampal Neuronal Death. Cells 2022; 11:cells11040667. [PMID: 35203316 PMCID: PMC8869983 DOI: 10.3390/cells11040667] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/12/2022] [Indexed: 01/27/2023] Open
Abstract
Severe hypoglycemia (below 35 mg/dL) appears most often in diabetes patients who continuously inject insulin. To rapidly cease the hypoglycemic state in this study, glucose reperfusion was conducted, which can induce a secondary neuronal death cascade following hypoglycemia. Acid sphingomyelinase (ASMase) hydrolyzes sphingomyelin into ceramide and phosphorylcholine. ASMase activity can be influenced by cations, pH, redox, lipids, and other proteins in the cells, and there are many changes in these factors in hypoglycemia. Thus, we expect that ASMase is activated excessively after hypoglycemia. Ceramide is known to cause free radical production, excessive inflammation, calcium dysregulation, and lysosomal injury, resulting in apoptosis and the necrosis of neurons. Imipramine is mainly used in the treatment of depression and certain anxiety disorders, and it is particularly known as an ASMase inhibitor. We hypothesized that imipramine could decrease hippocampal neuronal death by reducing ceramide via the inhibition of ASMase after hypoglycemia. In the present study, we confirmed that the administration of imipramine significantly reduced hypoglycemia-induced neuronal death and improved cognitive function. Therefore, we suggest that imipramine may be a promising therapeutic tool for preventing hypoglycemia-induced neuronal death.
Collapse
|
10
|
Jiang J, Shi Y, Cao J, Lu Y, Sun G, Yang J. Role of ASM/Cer/TXNIP signaling module in the NLRP3 inflammasome activation. Lipids Health Dis 2021; 20:19. [PMID: 33612104 PMCID: PMC7897379 DOI: 10.1186/s12944-021-01446-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/08/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND This study aimed to explore the effects of ceramide (Cer) on NLRP3 inflammasome activation and their underlying mechanisms. METHODS Lipopolysaccharide (LPS)/adenosine triphosphate (ATP)-induced NLRP3 inflammasome activation in J774A.1 cells and THP-1 macrophages was used as an in vitro model of inflammation. Western blotting and real-time PCR (RT-PCR) were used to detect the protein and mRNA levels, respectively. IL-1β and IL-18 levels were measured by ELISA. ASM assay kit and immunofluorescence were used to detect ASM activity and Cer content. RESULTS Imipramine, a well-known inhibitor of ASM, significantly inhibited LPS/ATP-induced activity of ASM and the consequent accumulation of Cer. Additionally, imipramine suppressed the LPS/ATP-induced expression of thioredoxin interacting protein (TXNIP), NLRP3, caspase-1, IL-1β, and IL-18 at the protein and mRNA level. Interestingly verapamil, a TXNIP inhibitor, suppressed LPS/ATP-induced activation of TXNIP/NLRP3 inflammasome but did not affect LPS/ATP-induced ASM activation and Cer formation. TXNIP siRNA and verapamil inhibited C2-Cer-induced upregulation of TXNIP and activation of the NLRP3 inflammasome. In addition, the pretreatment of cells with sulfo-N-succinimidyl oleate (SSO), an irreversible inhibitor of the scavenger receptor CD36, blocked Cer-induced upregulation of nuclear factor-κB (NF-κB) activity, TXNIP expression, and NLRP3 inflammasome activation. Inhibition of NF-κB activation by SN50 prevented Cer-induced upregulation of TXNIP and activation of the NLRP3 inflammasome but did not affect CD36 expression. CONCLUSION This study demonstrated that the ASM/Cer/TXNIP signaling pathway is involved in NLRP3 inflammasome activation. The results documented that the CD36-dependent NF-κB-TXNIP signaling pathway plays an essential role in the Cer-induced activation of NLRP3 inflammasomes in macrophages.
Collapse
Affiliation(s)
- Jianjun Jiang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Yining Shi
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China
| | - Jiyu Cao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Youjin Lu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
| | - Jin Yang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China.
| |
Collapse
|
11
|
Meng X, Zhang X, Su Y, Gu Z, Xie X, Chang Y, Bao J. Hyperbaric oxygen treatment mitigates liver damage in mice with noise exposure. Clin Exp Pharmacol Physiol 2020; 47:1564-1574. [PMID: 32347967 DOI: 10.1111/1440-1681.13330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/08/2020] [Accepted: 04/23/2020] [Indexed: 11/28/2022]
Abstract
Noise exposure relates to various pathological disorders including liver damage, preventive measures of which are being demanded. Hyperbaric oxygen treatment (HBOT), as a non-invasive procedure, exerts convincing therapeutic potency on multiple liver diseases. The efficacy of HBOT in mitigating noise induced liver damage (NILD) and associated mechanisms would be elucidated here. Mice were subject to broad band noise (20-20k Hz, 90-110 dB) for 5 days by 3 hours/day. HBOT with 2.5 atmosphere absolute (ata) was employed before noise exposure. Morphology of liver tissue was examined by hematoxylin-eosin (HE) staining. Oil Red O (ORO), transferase-mediated dUTP nick end labelling (TUNEL) test and western blot were utilized to detect lipid accumulation, apoptotic cells and protein expression, respectively. Ceramide (Cer) level was assayed by immunohistochemistry (IHC) analysis. With noise exposure, conspicuous structural derangement and lipid deposition occurred in liver tissue of mice, which was alleviated significantly by the application of HBOT. Meanwhile, HBOT reduced the proportion of apoptotic hepatocytes, restraining the superoxide production in noise exposed mice. In view of underlying mechanisms, noise enhanced the acid sphingomyelinase (ASM) protein expression and the Cer generation in liver tissue of mice which was reversed substantially by HBOT. Altogether, HBOT ameliorates the structural and functional derangement of liver by neutralizing the ASM/Cer pathway in noise exposed mice.
Collapse
Affiliation(s)
- Xingxing Meng
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, China
| | - Xi Zhang
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, China
| | - Yuting Su
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, China
| | - Zhenghui Gu
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, China
| | - Xiaoping Xie
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, China
| | - Yaoming Chang
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, China
| | - Junxiang Bao
- Department of Aerospace Hygiene, Fourth Military Medical University, Xi'an, China
| |
Collapse
|