1
|
Jiménez-Altayó F, Cabrera A, Bagán A, Giménez-Llort L, D’Ocon P, Pérez B, Pallàs M, Escolano C. An Imidazoline 2 Receptor Ligand Relaxes Mouse Aorta via Off-Target Mechanisms Resistant to Aging. Front Pharmacol 2022; 13:826837. [PMID: 35645795 PMCID: PMC9133327 DOI: 10.3389/fphar.2022.826837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Imidazoline receptors (IR) are classified into three receptor subtypes (I1R, I2R, and I3R) and previous studies showed that regulation of I2R signaling has neuroprotective potential. In order to know if I2R has a role in modulating vascular tone in health and disease, we evaluated the putative vasoactive effects of two recently synthesized I2R ligands, diethyl (1RS,3aSR,6aSR)-5-(3-chloro-4-fluorophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4-c]pyrrole -1-phosphonate (B06) and diethyl [(1-(3-chloro-4-fluorobenzyl)-5,5-dimethyl-4-phenyl-4,5-dihydro-1H-imidazol-4-yl]phosphonate] (MCR5). Thoracic aortas from Oncins France 1 (3- to 4-months-old) and C57BL/6 (3- to 4- and 16- to 17-months-old mice) were mounted in tissue baths to measure isometric tension. In young mice of both strains, MCR5 induced greater relaxations than either B06 or the high-affinity I2R selective ligand 2-(2-benzofuranyl)-2-imidazoline (2-BFI), which evoked marginal responses. MCR5 relaxations were independent of I2R, as IR ligands did not significantly affect them, involved activation of smooth muscle KATP channels and inhibition of L-type voltage-gated Ca2+ channels, and were only slightly modulated by endothelium-derived nitric oxide (negatively) and prostacyclin (positively). Notably, despite the presence of endothelial dysfunction in old mice, MCR5 relaxations were preserved. In conclusion, the present study provides evidence against a functional contribution of I2R in the modulation of vascular tone in the mouse aorta. Moreover, the I2R ligand MCR5 is an endothelium-independent vasodilator that acts largely via I2R-independent pathways and is resistant to aging. We propose MCR5 as a candidate drug for the management of vascular disease in the elderly.
Collapse
Affiliation(s)
- Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- *Correspondence: Francesc Jiménez-Altayó,
| | - Anna Cabrera
- Department of Pharmacology, Therapeutics and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrea Bagán
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pilar D’Ocon
- Department of Pharmacology, School of Medicine, Universidad de Valencia, Burjassot, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Belén Pérez
- Department of Pharmacology, Therapeutics and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Carmen Escolano
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| |
Collapse
|