1
|
Sonobe T, Akiyama T, Pearson JT. Transporter-dependent uptake and metabolism of myocardial interstitial serotonin in the rat heart. J Physiol Sci 2022; 72:27. [DOI: 10.1186/s12576-022-00852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Abstract
AbstractTo investigate the roles of the serotonin (5-HT) transporter (SERT) and plasma membrane monoamine transporter (PMAT) in 5-HT uptake and its metabolism in the heart, we monitored myocardial interstitial levels of 5-HT and 5-HIAA, a metabolite of 5-HT by monoamine oxidase (MAO), in anesthetized rats using a microdialysis technique. Fluoxetine (SERT inhibitor), decynium-22 (PMAT inhibitor), or their mixture was locally administered by reverse-microdialysis for 60 min. Subsequently, pargyline (MAO inhibitor) was co-administered. Fluoxetine rapidly increased dialysate 5-HT concentration, while decynium-22 gradually increased it. The mixture induced a larger increase in dialysate 5-HT concentration compared to fluoxetine or decynium-22 alone. Fluoxetine increased dialysate 5-HIAA concentration, and this increase was abolished by pargyline. Decynium-22 and the mixture did not change dialysate 5-HIAA concentration, which were not affected by pargyline. Both SERT and PMAT regulate myocardial interstitial 5-HT levels by its uptake; however, 5-HT uptake via PMAT leads to 5-HT metabolism by MAO.
Collapse
|