1
|
Moinet M, Rogers L, Biggs P, Marshall J, Muirhead R, Devane M, Stott R, Cookson A. High-resolution genomic analysis to investigate the impact of the invasive brushtail possum (Trichosurus vulpecula) and other wildlife on microbial water quality assessments. PLoS One 2024; 19:e0295529. [PMID: 38236841 PMCID: PMC10796070 DOI: 10.1371/journal.pone.0295529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/21/2023] [Indexed: 01/22/2024] Open
Abstract
Escherichia coli are routine indicators of fecal contamination in water quality assessments. Contrary to livestock and human activities, brushtail possums (Trichosurus vulpecula), common invasive marsupials in Aotearoa/New Zealand, have not been thoroughly studied as a source of fecal contamination in freshwater. To investigate their potential role, Escherichia spp. isolates (n = 420) were recovered from possum gut contents and feces and were compared to those from water, soil, sediment, and periphyton samples, and from birds and other introduced mammals collected within the Mākirikiri Reserve, Dannevirke. Isolates were characterized using E. coli-specific real-time PCR targeting the uidA gene, Sanger sequencing of a partial gnd PCR product to generate a gnd sequence type (gST), and for 101 isolates, whole genome sequencing. Escherichia populations from 106 animal and environmental sample enrichments were analyzed using gnd metabarcoding. The alpha diversity of Escherichia gSTs was significantly lower in possums and animals compared with aquatic environmental samples, and some gSTs were shared between sample types, e.g., gST535 (in 85% of samples) and gST258 (71%). Forty percent of isolates gnd-typed and 75% of reads obtained by metabarcoding had gSTs shared between possums, other animals, and the environment. Core-genome single nucleotide polymorphism (SNP) analysis showed limited variation between several animal and environmental isolates (<10 SNPs). Our data show at an unprecedented scale that Escherichia clones are shared between possums, other wildlife, water, and the wider environment. These findings support the potential role of possums as contributors to fecal contamination in Aotearoa/New Zealand freshwater. Our study deepens the current knowledge of Escherichia populations in under-sampled wildlife. It presents a successful application of high-resolution genomic methods for fecal source tracking, thereby broadening the analytical toolbox available to water quality managers. Phylogenetic analysis of isolates and profiling of Escherichia populations provided useful information on the source(s) of fecal contamination and suggest that comprehensive invasive species management strategies may assist in restoring not only ecosystem health but also water health where microbial water quality is compromised.
Collapse
Affiliation(s)
- Marie Moinet
- Hopkirk Research Institute, AgResearch, Palmerston North, New Zealand
| | - Lynn Rogers
- Hopkirk Research Institute, AgResearch, Palmerston North, New Zealand
| | - Patrick Biggs
- mEpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Jonathan Marshall
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand
| | | | - Megan Devane
- Institute of Environmental Science and Research Ltd. (ESR), Christchurch, New Zealand
| | - Rebecca Stott
- National Institute of Water and Atmospheric Research (NIWA), Hamilton, New Zealand
| | - Adrian Cookson
- Hopkirk Research Institute, AgResearch, Palmerston North, New Zealand
- mEpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
2
|
Fulham M, Webster B, Power M, Gray R. Implications of Escherichia coli community diversity in free-ranging Australian pinniped pups. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 104:105351. [PMID: 35985441 DOI: 10.1016/j.meegid.2022.105351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Escherichia coli is a widely studied bacterium, commonly used as an indicator of faecal contamination. Investigations into the structure and diversity of E. coli in free-ranging wildlife species has been limited. The objective of this study was to characterise intra-individual and inter-species E. coli phylotype and B2 sub-type diversity in free-ranging Australian pinniped pups, to determine whether a single E. coli colony is representative of the phylotype and B2 sub-type diversity in these hosts. Faecal samples were collected from free-ranging Australian fur seal (Arctocephalus pusillus doriferus), Australian sea lion (Neophoca cinerea) and long-nosed fur seal (Arctocephalus forsteri) pups from three breeding colonies between 2018 and 2021. Faecal swabs from thirty randomly selected pups (n = 10 from each species) were cultured and ten E. coli colonies were selected from each culture based on morphology and separation between colonies on agar plates. Molecular screening techniques were utilised to assign isolates to phylotypes and B2 sub-types. There was no significant difference (p > 0.05) in either intra-individual or inter-species E. coli phylotype and B2 sub-type diversity. The B2 phylotype was the most dominant, with 78% of isolates (n = 234) assigned to this phylotype. Host factors (species, weight [kg] and standard length [cm]) did not significantly affect phylotype diversity. The absence of intra-individual and inter-species differences in E. coli diversity at a phylotype level suggests that a single E. coli colony could be used as an indicator of overall diversity of E. coli at a phylotype level in A. p. doriferus, N. cinerea and A. forsteri pups. These findings can be used to simplify and improve the efficiency of sampling protocols for ongoing monitoring of human-associated E. coli phylotypes in free-ranging pinniped populations.
Collapse
Affiliation(s)
- Mariel Fulham
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia.
| | - Bridget Webster
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Michelle Power
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia.
| | - Rachael Gray
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
3
|
Gilbertson MLJ, Fountain-Jones NM, Malmberg JL, Gagne RB, Lee JS, Kraberger S, Kechejian S, Petch R, Chiu ES, Onorato D, Cunningham MW, Crooks KR, Funk WC, Carver S, VandeWoude S, VanderWaal K, Craft ME. Apathogenic proxies for transmission dynamics of a fatal virus. Front Vet Sci 2022; 9:940007. [PMID: 36157183 PMCID: PMC9493079 DOI: 10.3389/fvets.2022.940007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Identifying drivers of transmission-especially of emerging pathogens-is a formidable challenge for proactive disease management efforts. While close social interactions can be associated with microbial sharing between individuals, and thereby imply dynamics important for transmission, such associations can be obscured by the influences of factors such as shared diets or environments. Directly-transmitted viral agents, specifically those that are rapidly evolving such as many RNA viruses, can allow for high-resolution inference of transmission, and therefore hold promise for elucidating not only which individuals transmit to each other, but also drivers of those transmission events. Here, we tested a novel approach in the Florida panther, which is affected by several directly-transmitted feline retroviruses. We first inferred the transmission network for an apathogenic, directly-transmitted retrovirus, feline immunodeficiency virus (FIV), and then used exponential random graph models to determine drivers structuring this network. We then evaluated the utility of these drivers in predicting transmission of the analogously transmitted, pathogenic agent, feline leukemia virus (FeLV), and compared FIV-based predictions of outbreak dynamics against empirical FeLV outbreak data. FIV transmission was primarily driven by panther age class and distances between panther home range centroids. FIV-based modeling predicted FeLV dynamics similarly to common modeling approaches, but with evidence that FIV-based predictions captured the spatial structuring of the observed FeLV outbreak. While FIV-based predictions of FeLV transmission performed only marginally better than standard approaches, our results highlight the value of proactively identifying drivers of transmission-even based on analogously-transmitted, apathogenic agents-in order to predict transmission of emerging infectious agents. The identification of underlying drivers of transmission, such as through our workflow here, therefore holds promise for improving predictions of pathogen transmission in novel host populations, and could provide new strategies for proactive pathogen management in human and animal systems.
Collapse
Affiliation(s)
- Marie L. J. Gilbertson
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | | | - Jennifer L. Malmberg
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, United States
| | - Roderick B. Gagne
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Wildlife Futures Program, Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA, United States
| | - Justin S. Lee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - Sarah Kechejian
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Raegan Petch
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Elliott S. Chiu
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Dave Onorato
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Naples, FL, United States
| | - Mark W. Cunningham
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Gainesville, FL, United States
| | - Kevin R. Crooks
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, United States
| | - W. Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Meggan E. Craft
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
4
|
Foster-Nyarko E, Pallen MJ. The microbial ecology of Escherichia coli in the vertebrate gut. FEMS Microbiol Rev 2022; 46:fuac008. [PMID: 35134909 PMCID: PMC9075585 DOI: 10.1093/femsre/fuac008] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli has a rich history as biology's 'rock star', driving advances across many fields. In the wild, E. coli resides innocuously in the gut of humans and animals but is also a versatile pathogen commonly associated with intestinal and extraintestinal infections and antimicrobial resistance-including large foodborne outbreaks such as the one that swept across Europe in 2011, killing 54 individuals and causing approximately 4000 infections and 900 cases of haemolytic uraemic syndrome. Given that most E. coli are harmless gut colonizers, an important ecological question plaguing microbiologists is what makes E. coli an occasionally devastating pathogen? To address this question requires an enhanced understanding of the ecology of the organism as a commensal. Here, we review how our knowledge of the ecology and within-host diversity of this organism in the vertebrate gut has progressed in the 137 years since E. coli was first described. We also review current approaches to the study of within-host bacterial diversity. In closing, we discuss some of the outstanding questions yet to be addressed and prospects for future research.
Collapse
Affiliation(s)
- Ebenezer Foster-Nyarko
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Mark J Pallen
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, United Kingdom
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, United Kingdom
| |
Collapse
|
5
|
Martinson JNV, Walk ST. Escherichia coli Residency in the Gut of Healthy Human Adults. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0003-2020. [PMID: 32978935 PMCID: PMC7523338 DOI: 10.1128/ecosalplus.esp-0003-2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 12/22/2022]
Abstract
Escherichia coli is one of the most well-studied bacterial species, but several significant knowledge gaps remain regarding its ecology and natural history. Specifically, the most important factors influencing its life as a member of the healthy human gut microbiome are either underevaluated or currently unknown. Distinct E. coli population dynamics have been observed over the past century from a handful of temporal studies conducted in healthy human adults. Early studies using serology up to the most recent studies using genotyping and DNA sequencing approaches have all identified long-lived E. coli residents and short-lived transients. This review summarizes these discoveries and other studies that focused on the underlying mechanisms that lead to establishment and maintenance of E. coli residency in healthy human adults. Many fundamental knowledge gaps remain and are highlighted with the hope of facilitating future studies in this exciting research area.
Collapse
Affiliation(s)
| | - Seth T Walk
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717
| |
Collapse
|
6
|
Zhang Y, Zhou J, Dong Z, Li G, Wang J, Li Y, Wan D, Yang H, Yin Y. Effect of Dietary Copper on Intestinal Microbiota and Antimicrobial Resistance Profiles of Escherichia coli in Weaned Piglets. Front Microbiol 2019; 10:2808. [PMID: 31921011 PMCID: PMC6927916 DOI: 10.3389/fmicb.2019.02808] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
Copper is an essential microelement for animals, and not only it has been used as a feed additive at pharmacological doses in swine production to improve growth performance, but it also has an effect on intestinal microbes by enhancing host bacterial resistance. However, there are few reports on the effects of pharmacological doses of copper on intestinal microorganisms and the antimicrobial resistance profiles of pathogenic bacteria, such as Escherichia coli, in pigs. Therefore, this study aimed to investigate the effects of pharmacological doses of copper on the microbial communities in the hindgut and the antimicrobial resistance profiles of E. coli in weaned piglets. Twenty-four healthy weaned piglets aged 21 ± 1 days and with an average weight of 7.27 ± 0.46 kg were randomly divided into four groups. The control group was fed a basal diet, while the treatment groups were fed a basal diet supplemented with 20, 100, or 200 mg copper/kg feed, in the form of CuSO4. Anal swabs were collected at 0, 21, and 42 days of the trial, and E. coli was isolated. Meanwhile, the contents of the ileum and cecum from the control and 200 mg copper/kg feed groups were collected at 21 and 42 days for microbial community analysis and E. coli isolation. All isolated E. coli strains were used for antimicrobial resistance profile analysis. A pharmacological dose of copper did not significantly change the diversity, but significantly affected the composition, of microbial communities in the ileum and cecum. Moreover, it affected the microbial metabolic functions of energy metabolism, protein metabolism, and amino acid biosynthesis. Specifically, copper treatment increased the richness of E. coli in the hindgut and the rates of E. coli resistance to chloramphenicol and ciprofloxacin. Moreover, the rate of E. coli resistance to multiple drugs increased in the ileum of pigs fed a pharmacological dose of copper. Thus, a pharmacological dose of copper affected the composition of the microbial community, increased the antimicrobial resistance rates of intestinal E. coli, and was most likely harmful to the health of piglets at the early stage after weaning.
Collapse
Affiliation(s)
- Yiming Zhang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jian Zhou
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Zhenglin Dong
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Guanya Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Jingjing Wang
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yikun Li
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Dan Wan
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
7
|
Proboste T, Corvalan P, Clark N, Beyer HL, Goldizen AW, Seddon JM. Commensal bacterial sharing does not predict host social associations in kangaroos. J Anim Ecol 2019; 88:1696-1707. [PMID: 31297802 DOI: 10.1111/1365-2656.13064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/11/2019] [Indexed: 11/28/2022]
Abstract
Social network analysis has been postulated as a tool to study potential pathogen transmission in wildlife but is resource-intensive to quantify. Networks based on bacterial genotypes have been proposed as a cost-effective method for estimating social or transmission network based on the assumption that individuals in close contact will share commensal bacteria. However, the use of network analysis to study wild populations requires critical evaluation of the assumptions and parameters these models are founded on. We test (a) whether networks of commensal bacterial sharing are related to hosts' social associations and hence could act as a proxy for estimating transmission networks, (b) how the parameters chosen to define host associations and delineate bacterial genotypes impact inference and (c) whether these relationships change across time. We use stochastic simulations to evaluate how uncertainty in parameter choice affects network structure. We focused on a well-studied population of eastern grey kangaroos (Macropus giganteus), from Sundown National Park, Australia. Using natural markings, each individual was identified and its associations with other kangaroos recorded through direct field observations over 2 years to construct social networks. Faecal samples were collected, Escherichia coli was cultured and genotyped using BOX-PCR, and bacterial networks were constructed. Two individuals were connected in the bacterial network if they shared at least one E. coli genotype. We determined the capacity of bacterial networks to predict the observed social network structure in each year. We found little support for a relationship between social association and dyadic commensal bacterial similarity. Thresholds to determine host associations and similarity cut-off values used to define E. coli genotypes had important ramifications for inferring links between individuals. In fact, we found that inferences can show opposite patterns based on the chosen thresholds. Moreover, no similarity in overall bacterial network structure was detected between years. Although empirical disease transmission data are often unavailable in wildlife populations, both bacterial networks and social networks have limitations in representing the mode of transmission of a pathogen. Our results suggest that caution is needed when designing such studies and interpreting results.
Collapse
Affiliation(s)
- Tatiana Proboste
- School of Veterinary Science, The University of Queensland, Gatton, Qld, Australia.,School of Biological Sciences, The University of Queensland, Brisbane, Qld, Australia
| | - Paloma Corvalan
- School of Biological Sciences, The University of Queensland, Brisbane, Qld, Australia
| | - Nicholas Clark
- School of Veterinary Science, The University of Queensland, Gatton, Qld, Australia
| | - Hawthorne L Beyer
- School of Biological Sciences, The University of Queensland, Brisbane, Qld, Australia.,Centre for Biodiversity and Conservation Science, School of Biological Sciences, The University of Queensland, Brisbane, Qld, Australia
| | - Anne W Goldizen
- School of Biological Sciences, The University of Queensland, Brisbane, Qld, Australia
| | - Jennifer M Seddon
- School of Veterinary Science, The University of Queensland, Gatton, Qld, Australia
| |
Collapse
|
8
|
Gilbertson MLJ, Fountain-Jones NM, Craft ME. Incorporating genomic methods into contact networks to reveal new insights into animal behavior and infectious disease dynamics. BEHAVIOUR 2019; 155:759-791. [PMID: 31680698 DOI: 10.1163/1568539x-00003471] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Utilization of contact networks has provided opportunities for assessing the dynamic interplay between pathogen transmission and host behavior. Genomic techniques have, in their own right, provided new insight into complex questions in disease ecology, and the increasing accessibility of genomic approaches means more researchers may seek out these tools. The integration of network and genomic approaches provides opportunities to examine the interaction between behavior and pathogen transmission in new ways and with greater resolution. While a number of studies have begun to incorporate both contact network and genomic approaches, a great deal of work has yet to be done to better integrate these techniques. In this review, we give a broad overview of how network and genomic approaches have each been used to address questions regarding the interaction of social behavior and infectious disease, and then discuss current work and future horizons for the merging of these techniques.
Collapse
Affiliation(s)
- Marie L J Gilbertson
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Nicholas M Fountain-Jones
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
9
|
Day-to-Day Dynamics of Commensal Escherichia coli in Zimbabwean Cows Evidence Temporal Fluctuations within a Host-Specific Population Structure. Appl Environ Microbiol 2017; 83:AEM.00659-17. [PMID: 28411228 DOI: 10.1128/aem.00659-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/11/2017] [Indexed: 12/31/2022] Open
Abstract
To get insights into the temporal pattern of commensal Escherichia coli populations, we sampled the feces of four healthy cows from the same herd in the Hwange District of Zimbabwe daily over 25 days. The cows had not received antibiotic treatment during the previous 3 months. We performed viable E. coli counts and characterized the 326 isolates originating from the 98 stool samples at a clonal level, screened them for stx and eae genes, and tested them for their antibiotic susceptibilities. We observed that E. coli counts and dominant clones were different among cows, and very few clones were shared. No clone was shared by three or four cows. Clone richness and evenness were not different between cows. Within each host, the variability in the E. coli count was evidenced between days, and no clone was found to be dominant during the entire sampling period, suggesting the existence of clonal interference. Dominant clones tended to persist longer than subdominant ones and were mainly from phylogenetic groups A and B1. Five E. coli clones were found to contain both the stx1 and stx2 genes, representing 6.3% of the studied isolates. All cows harbored at least one Shiga toxin-producing E. coli (STEC) strain. Resistance to tetracycline, penicillins, trimethoprim, and sulfonamides was rare and observed in three clones that were shed at low levels in two cows. This study highlights the fact that the commensal E. coli population, including the STEC population, is host specific, is highly dynamic over a short time frame, and rarely carries antibiotic resistance determinants in the absence of antibiotic treatment.IMPORTANCE The literature about the dynamics of commensal Escherichia coli populations is very scarce. Over 25 days, we followed the total E. coli counts daily and characterized the sampled clones in the feces of four cows from the same herd living in the Hwange District of Zimbabwe. This study deals with the day-to-day dynamics of both quantitative and qualitative aspects of E. coli commensal populations, with a focus on both Shiga toxin-producing E. coli and antibiotic-resistant E. coli strains. We show that the structure of these commensal populations was highly specific to the host, even though the cows ate and roamed together, and was highly dynamic between days. Such data are of importance to understand the ecological forces that drive the dynamics of the emergence of E. coli clones of particular interest within the gastrointestinal tract and their transmission between hosts.
Collapse
|
10
|
Loong SK, Mahfodz NH, Che Mat Seri NAA, Mohamad Wali HA, Abd Gani SA, Wong PF, AbuBakar S. Genetic characterization of commensal Escherichia coli isolated from laboratory rodents. SPRINGERPLUS 2016; 5:1035. [PMID: 27462483 PMCID: PMC4940358 DOI: 10.1186/s40064-016-2745-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/02/2016] [Indexed: 01/20/2023]
Abstract
Background Escherichia coli, a commensal in the intestines of vertebrates, is capable of colonizing many different hosts and the environment. Commensal E. coli strains are believed to be the precursor of pathogenic strains by means of acquisition of antimicrobial resistant and virulence genes. Laboratory rodents are inherently susceptible to numerous known infectious agents, which could transfer virulence determinants to commensal E. coli. Hence, in this study, the genetic structure of commensal E. coli found in laboratory rodents and their antimicrobial resistance profiles were investigated. Results E. coli strains belonging to phylogroup A were the predominant strain obtained from the animals used in the study. Four novel sequence types (ST746, ST747, ST748 and ST749) were discovered using the multi locus sequence typing, together with one common ST357 in the gastrointestinal tract, liver and, the trachea and lung. Serotyping demonstrated that these commensal E. coli strains were non-Shiga toxin-producers. Phenotypic and genotypic analyses of extended spectrum beta lactamases were also negative. Conclusions These findings implied that the E. coli strains recovered from the laboratory rodents were truly commensal in nature. Further study is required to investigate the possible influence of gender on the susceptibility of hosts to E. coli colonization in laboratory rodents. Electronic supplementary material The online version of this article (doi:10.1186/s40064-016-2745-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shih Keng Loong
- Tropical Infectious Diseases Research and Education Centre, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Hidayana Mahfodz
- Tropical Infectious Diseases Research and Education Centre, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nurul Asma Anati Che Mat Seri
- Tropical Infectious Diseases Research and Education Centre, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Syahar Amir Abd Gani
- Animal Experimental Unit, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Animal Experimental Unit, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia ; Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Centre, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia ; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Social structure and Escherichia coli sharing in a group-living wild primate, Verreaux's sifaka. BMC Ecol 2016; 16:6. [PMID: 26868261 PMCID: PMC4751723 DOI: 10.1186/s12898-016-0059-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/28/2016] [Indexed: 12/05/2022] Open
Abstract
Background Epidemiological models often use information on host social contacts to predict the potential impact of infectious diseases on host populations and the efficiency of control measures. It can be difficult, however, to determine whether social contacts are actually meaningful predictors of transmission. We investigated the role of host social structure in the transmission of Escherichia coli in a wild population of primates, Verreaux’s sifakas (Propithecus verreauxi). Using multilocus sequence typing (MLST), we compared genetic similarities between E. coli isolates from different individuals and groups to infer transmission pathways. Results Correlation of social and transmission networks revealed that membership to the same group significantly predicted sharing of E. coli MLST sequence types (ST). Intergroup encounter rate and a measure of space-use sharing provided equally potent explanations for type sharing between social groups when closely related STs were taken into account, whereas animal age, sex and dispersal history had no influence. No antibiotic resistance was found, suggesting low rates of E. coli spillover from humans into this arboreal species. Conclusions We show that patterns of E. coli transmission reflect the social structure of this group-living lemur species. We discuss our results in the light of the species’ ecology and propose scent-marking, a type of social contact not considered in previous epidemiological studies, as a likely route of transmission between groups. However, further studies are needed to explicitly test this hypothesis and to further elucidate the relative roles of direct contact and environmental transmission in pathogen transfer. Electronic supplementary material The online version of this article (doi:10.1186/s12898-016-0059-y) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
White LA, Forester JD, Craft ME. Using contact networks to explore mechanisms of parasite transmission in wildlife. Biol Rev Camb Philos Soc 2015; 92:389-409. [DOI: 10.1111/brv.12236] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Lauren A. White
- Department of Ecology, Evolution and Behaviour University of Minnesota 140 Gortner Laboratory, 1479 Gortner Avenue St. Paul MN 55108 U.S.A
| | - James D. Forester
- Department of Fisheries, Wildlife and Conservation Biology University of Minnesota 135 Skok Hall, 2003 Upper Buford Circle St. Paul MN 55108 U.S.A
| | - Meggan E. Craft
- Department of Veterinary Population Medicine University of Minnesota 225 Veterinary Medical Center, 1365 Gortner Avenue St. Paul MN 55108 U.S.A
| |
Collapse
|
13
|
Gordon DM, O'Brien CL, Pavli P. Escherichia coli diversity in the lower intestinal tract of humans. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:642-648. [PMID: 26034010 DOI: 10.1111/1758-2229.12300] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/13/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
Previous studies examining the clonal diversity of Escherichia coli populations within humans have been based on faecal isolates. In this study E. coli were isolated from biopsies taken from the terminal ileum, ascending, transverse and descending colon, and rectum of 69 individuals. Multiple isolates from each biopsy were characterized using Rep-PCR. An average of 3.5 genotypes were recovered per host, and in hosts with two or more strains, the phylogroup membership of the second most abundant strain was significantly more likely to be the same as the dominant strain. There was no indication of a non-random distribution of E. coli phylogroups among the regions of the lower intestine. In hosts with multiple genotypes, as defined by Repetitive extragenic palindromic-PCR, genotypes were non-randomly distributed among gut regions in over half the individuals. The phylogroup membership of an individual's numerically dominant strain explained some of the variation in the extent to which strains within an individual were heterogeneously distributed, with most heterogeneity observed when the numerically dominant strain belonged to phylogroups E or F, and the least when the dominant strain belonged to phylogroup B2. The results of this study support previous studies on pigs that demonstrated faecal sampling underestimates the genotype diversity present within a host.
Collapse
Affiliation(s)
- David M Gordon
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Claire L O'Brien
- IBD Research Group, Canberra Hospital, Canberra, Australia
- Medical School, The Australian National University, Canberra, ACT, Australia
| | - Paul Pavli
- IBD Research Group, Canberra Hospital, Canberra, Australia
- Medical School, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
14
|
Blyton MDJ, Herawati N'A, O'Brien CL, Gordon DM. Host litter-associated gut dynamics affect Escherichia coli abundance and adhesion genotype in rats. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:583-589. [PMID: 25755078 DOI: 10.1111/1758-2229.12288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/25/2015] [Indexed: 06/04/2023]
Abstract
The probability of detecting Escherichia coli varies between host species with different diets and body sizes. An experimental study that mimicked the effect of different carnivore body masses found that digesta transit times influence E. coli abundance. In this study, we investigated how the host's gastrointestinal dynamics affected E. coli abundance and genotype in a system that reflected an herbivorous host. Forty rats from nine litters were fed a diet high in fermentable fibre. We found a small effect of fibre concentration on the difference between the liquid and particle digesta retention times. However, the rats' litter membership explained the majority of the retention time differences (79%). In turn, we found that as the difference between liquid and particle retention times increased, E. coli faecal cell densities decreased, while the likelihood that an animal's dominant E. coli strain possessed a gene involved in adhesion (agn43) increased. Thus, this experiment revealed an unanticipated high degree of association between the hosts' litter, their gastrointestinal dynamics and the E. coli genotypes. Furthermore, by comparing our findings to previous work, we show that the presence of fermentable fibre in the diet appears to change the relationship between the host's phenotype and E. coli.
Collapse
Affiliation(s)
- Michaela D J Blyton
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, 116 Daley Road, Acton, ACT, 2601, Australia
| | - Nur 'Aini Herawati
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, 116 Daley Road, Acton, ACT, 2601, Australia
- Rodent Laboratory, Indonesian Centre for Rice Research, Jl. Raya 9 Sukamandi, Subang, West Java, 41256, Indonesia
| | - Claire L O'Brien
- Department of Gastroenterology and Hepatology, The Canberra Hospital, Woden, ACT, 2607, Australia
- Medical School, The Australian National University, Acton, ACT, 2600, Australia
| | - David M Gordon
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, 116 Daley Road, Acton, ACT, 2601, Australia
| |
Collapse
|
15
|
Genetic Structure and Antimicrobial Resistance of Escherichia coli and Cryptic Clades in Birds with Diverse Human Associations. Appl Environ Microbiol 2015; 81:5123-33. [PMID: 26002899 DOI: 10.1128/aem.00861-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/13/2015] [Indexed: 11/20/2022] Open
Abstract
The manner and extent to which birds associate with humans may influence the genetic attributes and antimicrobial resistance of their commensal Escherichia communities through strain transmission and altered selection pressures. In this study, we determined whether the distribution of the different Escherichia coli phylogenetic groups and cryptic clades, the occurrence of 49 virulence associated genes, and/or the prevalence of resistance to 12 antimicrobials differed between four groups of birds from Australia with contrasting types of human association. We found that birds sampled in suburban and wilderness areas had similar Escherichia communities. The Escherichia communities of backyard domestic poultry were phylogenetically distinct from the Escherichia communities sourced from all other birds, with a large proportion (46%) of poultry strains belonging to phylogenetic group A and a significant minority (17%) belonging to the cryptic clades. Wild birds sampled from veterinary and wildlife rehabilitation centers (in-care birds) carried Escherichia isolates that possessed particular virulence-associated genes more often than Escherichia isolates from birds sampled in suburban and wilderness areas. The Escherichia isolates from both the backyard poultry and in-care birds were more likely to be multidrug resistant than the Escherichia isolates from wild birds. We also detected a multidrug-resistant E. coli strain circulating in a wildlife rehabilitation center, reinforcing the importance of adequate hygiene practices when handling and caring for wildlife. We suggest that the relatively high frequency of antimicrobial resistance in the in-care birds and backyard poultry is due primarily to the use of antimicrobials in these animals, and we recommend that the treatment protocols used for these birds be reviewed.
Collapse
|
16
|
Blyton MDJ, Cornall SJ, Kennedy K, Colligon P, Gordon DM. Sex-dependent competitive dominance of phylogenetic group B2 Escherichia coli strains within human hosts. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:605-610. [PMID: 25756113 DOI: 10.1111/1758-2229.12168] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Escherichia coli can be divided into several distinct phylogenetic groups that differ in their capacity to cause disease. However, what drives the relative abundance of these different phylogenetic groups in the commensal intestinal community of humans is poorly understood. This study investigated how host age and sex influences E. coli community structure in humans. Faecal samples were collected from 205 outpatients in Australia. Different strains within each sample were identified using rep-PCR profiles and their phylogenetic group membership was determined by quadruplex PCR. Female individuals carrying a dominant B2 strain were found to possess fewer strains than those carrying dominant A or B1 strains. Additionally, strains from the same phylogenetic group were more likely to co-occur in females. By contrast, strain diversity and phylogenetic group associations did not differ significantly from random in males. Host age was found to have a significant effect on the phylogenetic group of the dominant strain. Together these findings indicate that the distribution of the different phylogenetic groups within the human intestinal tract may be mediated by a complex interaction between the host environment and the competitive interactions between strains.
Collapse
|
17
|
Blyton MDJ, Banks SC, Peakall R, Lindenmayer DB, Gordon DM. Not all types of host contacts are equal when it comes to E. coli transmission. Ecol Lett 2014; 17:970-8. [PMID: 24861219 DOI: 10.1111/ele.12300] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/07/2014] [Accepted: 04/28/2014] [Indexed: 11/28/2022]
Abstract
The specific processes that facilitate pathogen transmission are poorly understood, particularly for wild animal populations. A major impediment for investigating transmission pathways is the need for simultaneous information on host contacts and pathogen transfer. In this study, we used commensal Escherichia coli strains as a model system for gastrointestinal pathogens. We combined strain-sharing information with detailed host contact data to investigate transmission routes in mountain brushtail possums. Despite E. coli being transmitted via the faecal-oral route, we revealed that, strain-sharing among possums was better explained by host contacts than spatial proximity. Furthermore, and unexpectedly, strain-sharing was more strongly associated with the duration of brief nocturnal associations than day-long den-sharing. Thus, the most cryptic and difficult associations to measure were the most relevant connections for the transmission of this symbiont. We predict that future studies that employ similar approaches will reveal the importance of previously overlooked associations as key transmission pathways.
Collapse
Affiliation(s)
- Michaela D J Blyton
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia; The Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 0200, Australia
| | | | | | | | | |
Collapse
|
18
|
Chiyo PI, Grieneisen LE, Wittemyer G, Moss CJ, Lee PC, Douglas-Hamilton I, Archie EA. The influence of social structure, habitat, and host traits on the transmission of Escherichia coli in wild elephants. PLoS One 2014; 9:e93408. [PMID: 24705319 PMCID: PMC3976290 DOI: 10.1371/journal.pone.0093408] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 03/05/2014] [Indexed: 11/18/2022] Open
Abstract
Social structure is proposed to influence the transmission of both directly and environmentally transmitted infectious agents. However in natural populations, many other factors also influence transmission, including variation in individual susceptibility and aspects of the environment that promote or inhibit exposure to infection. We used a population genetic approach to investigate the effects of social structure, environment, and host traits on the transmission of Escherichia coli infecting two populations of wild elephants: one in Amboseli National Park and another in Samburu National Reserve, Kenya. If E. coli transmission is strongly influenced by elephant social structure, E. coli infecting elephants from the same social group should be genetically more similar than E. coli sampled from members of different social groups. However, we found no support for this prediction. Instead, E. coli was panmictic across social groups, and transmission patterns were largely dominated by habitat and host traits. For instance, habitat overlap between elephant social groups predicted E. coli genetic similarity, but only in the relatively drier habitat of Samburu, and not in Amboseli, where the habitat contains large, permanent swamps. In terms of host traits, adult males were infected with more diverse haplotypes, and males were slightly more likely to harbor strains with higher pathogenic potential, as compared to adult females. In addition, elephants from similar birth cohorts were infected with genetically more similar E. coli than elephants more disparate in age. This age-structured transmission may be driven by temporal shifts in genetic structure of E. coli in the environment and the effects of age on bacterial colonization. Together, our results support the idea that, in elephants, social structure often will not exhibit strong effects on the transmission of generalist, fecal-oral transmitted bacteria. We discuss our results in the context of social, environmental, and host-related factors that influence transmission patterns.
Collapse
Affiliation(s)
- Patrick I. Chiyo
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Laura E. Grieneisen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - George Wittemyer
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, Colorado, United States of America
- Save the Elephants, Nairobi, Kenya
| | | | - Phyllis C. Lee
- Amboseli Trust for Elephants, Langata, Nairobi, Kenya
- Behaviour and Evolution Research Group, Department of Psychology, University of Stirling, Scotland, United Kingdom
| | | | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
19
|
Blyton MDJ, Banks SC, Peakall R, Gordon DM. Functional genotypes are associated with commensalEscherichia colistrain abundance within host individuals and populations. Mol Ecol 2013. [DOI: 10.1111/mec.12585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Blyton MDJ, Banks SC, Peakall R, Gordon DM. Functional genotypes are associated with commensal Escherichia coli strain abundance within-host individuals and populations. Mol Ecol 2013; 22:4112-22. [PMID: 23786329 DOI: 10.1111/mec.12364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 11/28/2022]
Abstract
The selective pressures that determine genotype abundance and distribution frequently vary between ecological levels. Thus, it is often unclear whether the same functional genotypes will become abundant at different levels and how selection acting at these different scales is linked. In this study, we examined whether particular functional genotypes, defined by the presence or absence of 34 genes, of commensal Escherichia coli strains were associated with within-host abundance and/or host population abundance in a wild population of 54 adult mountain brushtail possums (Trichosurus cunninghami). Our results revealed that there was a positive correlation between a strain's relative abundance within individuals and the strain's abundance in the host population. We also found that strain abundance at both ecological levels was predicted by the same group of functional genes (agn43, focH, micH47, iroN, ygiL, ompT, kspmT2 and K1) that had associated patterns of occurrence. We propose that direct selection on the same functional genes at both levels may in part be responsible for the observed correlation between the ecological levels. However, a potential link between abundance within the host and excretion rate may also contribute.
Collapse
Affiliation(s)
- Michaela D J Blyton
- Evolution, Ecology and Genetics Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia.
| | | | | | | |
Collapse
|
21
|
Johnston C, Byappanahalli MN, Gibson JM, Ufnar JA, Whitman RL, Stewart JR. Probabilistic analysis showing that a combination of Bacteroides and Methanobrevibacter source tracking markers is effective for identifying waters contaminated by human fecal pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13621-8. [PMID: 24182330 DOI: 10.1021/es403753k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Microbial source tracking assays to identify sources of waterborne contamination typically target genetic markers of host-specific microorganisms. However, no bacterial marker has been shown to be 100% host-specific, and cross-reactivity has been noted in studies evaluating known source samples. Using 485 challenge samples from 20 different human and animal fecal sources, this study evaluated microbial source tracking markers including the Bacteroides HF183 16S rRNA, M. smithii nifH, and Enterococcus esp gene targets that have been proposed as potential indicators of human fecal contamination. Bayes' Theorem was used to calculate the conditional probability that these markers or a combination of markers can correctly identify human sources of fecal pollution. All three human-associated markers were detected in 100% of the sewage samples analyzed. Bacteroides HF183 was the most effective marker for determining whether contamination was specifically from a human source, and greater than 98% certainty that contamination was from a human source was shown when both Bacteroides HF183 and M. smithii nifH markers were present. A high degree of certainty was attained even in cases where the prior probability of human fecal contamination was as low as 8.5%. The combination of Bacteroides HF183 and M. smithii nifH source tracking markers can help identify surface waters impacted by human fecal contamination, information useful for prioritizing restoration activities or assessing health risks from exposure to contaminated waters.
Collapse
Affiliation(s)
- Christopher Johnston
- Jardon and Howard Technologies Incorporated , Orlando, Florida 32826, United States
| | | | | | | | | | | |
Collapse
|