1
|
Zhang E, Wong SY, Czechowski P, Terauds A, Ray AE, Benaud N, Chelliah DS, Wilkins D, Montgomery K, Ferrari BC. Effects of increasing soil moisture on Antarctic desert microbial ecosystems. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14268. [PMID: 38622950 DOI: 10.1111/cobi.14268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 04/17/2024]
Abstract
Overgeneralization and a lack of baseline data for microorganisms in high-latitude environments have restricted the understanding of the microbial response to climate change, which is needed to establish Antarctic conservation frameworks. To bridge this gap, we examined over 17,000 sequence variants of bacteria and microeukarya across the hyperarid Vestfold Hills and Windmill Islands regions of eastern Antarctica. Using an extended gradient forest model, we quantified multispecies response to variations along 79 edaphic gradients to explore the effects of change and wind-driven dispersal on community dynamics under projected warming trends. We also analyzed a second set of soil community data from the Windmill Islands to test our predictions of major environmental tipping points. Soil moisture was the most robust predictor for shaping the regional soil microbiome; the highest rates of compositional turnover occurred at 10-12% soil moisture threshold for photoautotrophs, such as Cyanobacteria, Chlorophyta, and Ochrophyta. Dust profiles revealed a high dispersal propensity for Chlamydomonas, a microalga, and higher biomass was detected at trafficked research stations. This could signal the potential for algal blooms and increased nonendemic species dispersal as human activities increase in the region. Predicted increases in moisture availability on the Windmill Islands were accompanied by high photoautotroph abundances. Abundances of rare oligotrophic taxa, such as Eremiobacterota and Candidatus Dormibacterota, which play a crucial role in atmospheric chemosynthesis, declined over time. That photosynthetic taxa increased as soil moisture increased under a warming scenario suggests the potential for competition between primary production strategies and thus a more biotically driven ecosystem should the climate become milder. Better understanding of environmental triggers will aid conservation efforts, and it is crucial that long-term monitoring of our study sites be established for the protection of Antarctic desert ecosystems. Furthermore, the successful implementation of an improved gradient forest model presents an exciting opportunity to broaden its use on microbial systems globally.
Collapse
Affiliation(s)
- Eden Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Sin Yin Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul Czechowski
- Helmholtz Institute for Metabolic, Obesity and Vascular Research, Leipzig, Germany
| | - Aleks Terauds
- Environmental Stewardship Program, Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, Tasmania, Australia
| | - Angelique E Ray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Devan S Chelliah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel Wilkins
- Environmental Stewardship Program, Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, Tasmania, Australia
| | - Kate Montgomery
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Evolution and Ecology Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
de Pins B, Greenspoon L, Bar-On YM, Shamshoum M, Ben-Nissan R, Milshtein E, Davidi D, Sharon I, Mueller-Cajar O, Noor E, Milo R. A systematic exploration of bacterial form I rubisco maximal carboxylation rates. EMBO J 2024; 43:3072-3083. [PMID: 38806660 PMCID: PMC11251275 DOI: 10.1038/s44318-024-00119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Autotrophy is the basis for complex life on Earth. Central to this process is rubisco-the enzyme that catalyzes almost all carbon fixation on the planet. Yet, with only a small fraction of rubisco diversity kinetically characterized so far, the underlying biological factors driving the evolution of fast rubiscos in nature remain unclear. We conducted a high-throughput kinetic characterization of over 100 bacterial form I rubiscos, the most ubiquitous group of rubisco sequences in nature, to uncover the determinants of rubisco's carboxylation velocity. We show that the presence of a carboxysome CO2 concentrating mechanism correlates with faster rubiscos with a median fivefold higher rate. In contrast to prior studies, we find that rubiscos originating from α-cyanobacteria exhibit the highest carboxylation rates among form I enzymes (≈10 s-1 median versus <7 s-1 in other groups). Our study systematically reveals biological and environmental properties associated with kinetic variation across rubiscos from nature.
Collapse
Affiliation(s)
- Benoit de Pins
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Lior Greenspoon
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yinon M Bar-On
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Melina Shamshoum
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Roee Ben-Nissan
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Eliya Milshtein
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Dan Davidi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
- Aleph, Tel Aviv-Yafo, 6688210, Israel
| | - Itai Sharon
- Migal Galilee Research Institute, Kiryat Shmona, 11016, Israel
| | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Elad Noor
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ron Milo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
3
|
Wood C, Bruinink A, Trembath-Reichert E, Wilhelm MB, Vidal C, Balaban E, McKay CP, Swan R, Swan B, Goordial J. Active microbiota persist in dry permafrost and active layer from Elephant Head, Antarctica. ISME COMMUNICATIONS 2024; 4:ycad002. [PMID: 38304082 PMCID: PMC10833075 DOI: 10.1093/ismeco/ycad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/03/2023] [Accepted: 11/07/2023] [Indexed: 02/03/2024]
Abstract
Dry permafrost is a challenging environment for microbial life due to cold, dry, and often oligotrophic conditions. In 2016, Elephant Head, Antarctica, was confirmed as the second site on Earth to contain dry permafrost. It is geographically distinct from the McMurdo Dry Valleys where dry permafrost has been studied previously. Here, we present the first study of the microbial activity, diversity, and functional potential of Elephant Head dry permafrost. Microbial activity was measured using radiorespiration assays with radiolabeled acetate as a carbon source at 5, 0, and -5°C. Low, but detectable, rates of microbial activity were measured in some samples at 0 and -5°C. This is distinct from previous studies of McMurdo Dry Valley dry permafrost which concluded that dry permafrost represents a cold-arid limit to life on the planet. The isolation of cold-adapted organisms from these soils, including one capable of subzero growth, further supports that the Elephant Head dry active layer and dry permafrost harbor viable microbial life, which may be active in situ. Metagenomic, 16S rRNA gene, and internal transcribed spacer and amplicon sequencing identified similar microbial communities to other Antarctic and cold environments. The Elephant Head microbial community appears to be adapted for survival in cold, dry, and oligotrophic conditions based on the presence of cold adaptation and stress response genes in the metagenomes. Together, our results show that dry permafrost environments do not exclude active microbial life at subzero temperatures, suggesting that the cold, dry soils of Mars may also not be as inhospitable as previously thought.
Collapse
Affiliation(s)
- Claudia Wood
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Alyssa Bruinink
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Elizabeth Trembath-Reichert
- School of Earth and Space Exploration, Arizona State University, 781 Terrace Mall, Tempe, AZ 85287, United States
| | - Mary Beth Wilhelm
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, United States
| | - Chanel Vidal
- School of Earth and Space Exploration, Arizona State University, 781 Terrace Mall, Tempe, AZ 85287, United States
| | - Edward Balaban
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, United States
| | - Christopher P McKay
- Space Science & Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, United States
| | - Robert Swan
- 2041 Foundation, 130 Wescott Ct, Auburn, CA 95603, United States
| | - Barney Swan
- 2041 Foundation, 130 Wescott Ct, Auburn, CA 95603, United States
| | - Jackie Goordial
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
4
|
Dudko D, Holtmann D, Buchhaupt M. Methylotrophic bacteria with cobalamin-dependent mutases in primary metabolism as potential strains for vitamin B 12 production. Antonie Van Leeuwenhoek 2023; 116:207-220. [PMID: 36385348 PMCID: PMC9925536 DOI: 10.1007/s10482-022-01795-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
Several bacterial species are known for their ability to synthesize vitamin B12 but biotechnological vitamin B12 production today is restricted to Pseudomonas denitrificans and Propionibacterium freudenreichii. Nevertheless, the rising popularity of veganism leads to a growing demand for vitamin B12 and thereby interest in alternative strains which can be used as efficient vitamin B12 sources. In this work, we demonstrate that methylotrophic microorganisms which utilize the ethylmalonyl-CoA pathway containing B12-dependent enzymes are capable of active vitamin B12 production. Several bacteria with an essential function of the pathway were tested for vitamin B12 synthesis. Among the identified strains, Hyphomicrobium sp. DSM3646 demonstrated the highest vitamin B12 levels reaching up to 17.9 ± 5.05 µg per g dry cell weight. These relatively high vitamin B12 concentrations achieved in simple cultivation experiments were performed in a mineral methanol medium, which makes Hyphomicrobium sp. DSM3646 a new promising cobalamin-producing strain.
Collapse
Affiliation(s)
- Darya Dudko
- Microbial Biotechnology, DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
- Faculty Biology and Chemistry, Justus-Liebig-Universität Gießen, Ludwigstraße 23, 35390, Gießen, Germany
| | - Dirk Holtmann
- Microbial Biotechnology, DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr. 14, 35390, Gießen, Germany
| | - Markus Buchhaupt
- Microbial Biotechnology, DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Basaltic Lava Tube Hosts a Putative Novel Genus in the Family Solirubrobacteraceae. Microbiol Resour Announc 2022; 11:e0049922. [PMID: 36190248 PMCID: PMC9583782 DOI: 10.1128/mra.00499-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the draft genome sequence of a putative new genus and species, Siliceabacter maunaloa, in the family Solirubrobacteraceae. The members of this family of Actinobacteria are generally Gram positive and mesophilic. Found within a Hawaiian lava tube, this microbe illuminates the types of prokaryotes inhabiting secondary minerals in subsurface basaltic environments.
Collapse
|
6
|
Greening C, Grinter R. Microbial oxidation of atmospheric trace gases. Nat Rev Microbiol 2022; 20:513-528. [PMID: 35414013 DOI: 10.1038/s41579-022-00724-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 02/06/2023]
Abstract
The atmosphere has recently been recognized as a major source of energy sustaining life. Diverse aerobic bacteria oxidize the three most abundant reduced trace gases in the atmosphere, namely hydrogen (H2), carbon monoxide (CO) and methane (CH4). This Review describes the taxonomic distribution, physiological role and biochemical basis of microbial oxidation of these atmospheric trace gases, as well as the ecological, environmental, medical and astrobiological importance of this process. Most soil bacteria and some archaea can survive by using atmospheric H2 and CO as alternative energy sources, as illustrated through genetic studies on Mycobacterium cells and Streptomyces spores. Certain specialist bacteria can also grow on air alone, as confirmed by the landmark characterization of Methylocapsa gorgona, which grows by simultaneously consuming atmospheric CH4, H2 and CO. Bacteria use high-affinity lineages of metalloenzymes, namely hydrogenases, CO dehydrogenases and methane monooxygenases, to utilize atmospheric trace gases for aerobic respiration and carbon fixation. More broadly, trace gas oxidizers enhance the biodiversity and resilience of soil and marine ecosystems, drive primary productivity in extreme environments such as Antarctic desert soils and perform critical regulatory services by mitigating anthropogenic emissions of greenhouse gases and toxic pollutants.
Collapse
Affiliation(s)
- Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia. .,Securing Antarctica's Environmental Future, Monash University, Clayton, Victoria, Australia. .,Centre to Impact AMR, Monash University, Clayton, Victoria, Australia.
| | - Rhys Grinter
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
7
|
Zan ZY, Ge XF, Huang RR, Liu WZ. Pseudonocardia humida sp. nov., an Actinomycete Isolated from Mangrove Soil Showing Distinct Distribution Pattern of Biosynthetic Gene Clusters. Curr Microbiol 2022; 79:87. [PMID: 35129703 DOI: 10.1007/s00284-022-02784-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/24/2022] [Indexed: 11/03/2022]
Abstract
A novel actinomycete strain, designated S2-4T, was isolated from a mangrove soil sample, and a polyphasic approach was employed to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene indicated that strain S2-4T formed a unique clade next to that harboring Pseudonocardia dioxanivorans CB1190T, which shared the highest sequence similarity (98.20%) with the new isolate. Phylogenetic analysis based on core genes of genomic sequences displayed a different scenario, exhibiting closer phylogenetic relationship of strain S2-4T with several species with 16S rRNA gene sequence similarities ranging from 96.95 to 98.06%, which was confirmed by the phylogenetic tree reconstructed based on genomic sequences. Further, substantial differences between the genotypic properties of strain S2-4T and its closest neighbors, including digital DNA-DNA hybridization, average nucleotide identity, and distribution patterns of biosynthetic gene clusters (BGC), indicated the taxonomic position of strain S2-4T as a novel species of the genus Pseudonocardia. Accordingly, strain S2-4T was observed to show a different distribution pattern of a predicted BGC encoding ectoine by comparative genomic analysis, which could be strongly linked to its unique habitat distinct from where its close neighbors were isolated. The major cellular fatty acids were iso-C15:0, C21:0, and iso-C16:0. The predominant menaquinone was MK-8(H4). The polar lipids were composed of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidyl-N-monomethylethanolamine, phosphatidylcholine, phosphatidylinositol, phosphatidylinositol mannosides, and two unidentified glycolipids. Here, we propose a novel species of the genus Pseudonocardia: Pseudonocardia humida sp. nov. with the type strain S2-4T (= JCM 34291T = CGMCC 4.7706T).
Collapse
Affiliation(s)
- Zhen-Yu Zan
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road No. 2, Nanjing, 210023, People's Republic of China
| | - Xian-Feng Ge
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road No. 2, Nanjing, 210023, People's Republic of China
| | - Rui-Rui Huang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road No. 2, Nanjing, 210023, People's Republic of China
| | - Wen-Zheng Liu
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road No. 2, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
8
|
Ortiz M, Leung PM, Shelley G, Jirapanjawat T, Nauer PA, Van Goethem MW, Bay SK, Islam ZF, Jordaan K, Vikram S, Chown SL, Hogg ID, Makhalanyane TP, Grinter R, Cowan DA, Greening C. Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proc Natl Acad Sci U S A 2021; 118:e2025322118. [PMID: 34732568 PMCID: PMC8609440 DOI: 10.1073/pnas.2025322118] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Numerous diverse microorganisms reside in the cold desert soils of continental Antarctica, though we lack a holistic understanding of the metabolic processes that sustain them. Here, we profile the composition, capabilities, and activities of the microbial communities in 16 physicochemically diverse mountainous and glacial soils. We assembled 451 metagenome-assembled genomes from 18 microbial phyla and inferred through Bayesian divergence analysis that the dominant lineages present are likely native to Antarctica. In support of earlier findings, metagenomic analysis revealed that the most abundant and prevalent microorganisms are metabolically versatile aerobes that use atmospheric hydrogen to support aerobic respiration and sometimes carbon fixation. Surprisingly, however, hydrogen oxidation in this region was catalyzed primarily by a phylogenetically and structurally distinct enzyme, the group 1l [NiFe]-hydrogenase, encoded by nine bacterial phyla. Through gas chromatography, we provide evidence that both Antarctic soil communities and an axenic Bacteroidota isolate (Hymenobacter roseosalivarius) oxidize atmospheric hydrogen using this enzyme. Based on ex situ rates at environmentally representative temperatures, hydrogen oxidation is theoretically sufficient for soil communities to meet energy requirements and, through metabolic water production, sustain hydration. Diverse carbon monoxide oxidizers and abundant methanotrophs were also active in the soils. We also recovered genomes of microorganisms capable of oxidizing edaphic inorganic nitrogen, sulfur, and iron compounds and harvesting solar energy via microbial rhodopsins and conventional photosystems. Obligately symbiotic bacteria, including Patescibacteria, Chlamydiae, and predatory Bdellovibrionota, were also present. We conclude that microbial diversity in Antarctic soils reflects the coexistence of metabolically flexible mixotrophs with metabolically constrained specialists.
Collapse
Affiliation(s)
- Maximiliano Ortiz
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - Pok Man Leung
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton VIC 3800, Australia;
| | - Guy Shelley
- School of Biological Sciences, Monash University, Clayton VIC 3800, Australia
| | - Thanavit Jirapanjawat
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton VIC 3800, Australia
| | - Philipp A Nauer
- School of Chemistry, Monash University, Clayton VIC 3800, Australia
| | - Marc W Van Goethem
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Sean K Bay
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton VIC 3800, Australia
- School of Biological Sciences, Monash University, Clayton VIC 3800, Australia
| | - Zahra F Islam
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton VIC 3800, Australia
- School of Biological Sciences, Monash University, Clayton VIC 3800, Australia
| | - Karen Jordaan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Surendra Vikram
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - Steven L Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Clayton VIC 3800, Australia
| | - Ian D Hogg
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
- School of Science, University of Waikato, Hamilton 3240, New Zealand
- Polar Knowledge Canada, Canadian High Arctic Research Station, Cambridge Bay NU X0B 0C0, Canada
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - Rhys Grinter
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton VIC 3800, Australia
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa;
| | - Chris Greening
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton VIC 3800, Australia;
- School of Biological Sciences, Monash University, Clayton VIC 3800, Australia
| |
Collapse
|
9
|
Bay SK, Waite DW, Dong X, Gillor O, Chown SL, Hugenholtz P, Greening C. Chemosynthetic and photosynthetic bacteria contribute differentially to primary production across a steep desert aridity gradient. THE ISME JOURNAL 2021; 15:3339-3356. [PMID: 34035443 PMCID: PMC8528921 DOI: 10.1038/s41396-021-01001-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 02/04/2023]
Abstract
Desert soils harbour diverse communities of aerobic bacteria despite lacking substantial organic carbon inputs from vegetation. A major question is therefore how these communities maintain their biodiversity and biomass in these resource-limiting ecosystems. Here, we investigated desert topsoils and biological soil crusts collected along an aridity gradient traversing four climatic regions (sub-humid, semi-arid, arid, and hyper-arid). Metagenomic analysis indicated these communities vary in their capacity to use sunlight, organic compounds, and inorganic compounds as energy sources. Thermoleophilia, Actinobacteria, and Acidimicrobiia were the most abundant and prevalent bacterial classes across the aridity gradient in both topsoils and biocrusts. Contrary to the classical view that these taxa are obligate organoheterotrophs, genome-resolved analysis suggested they are metabolically flexible, with the capacity to also use atmospheric H2 to support aerobic respiration and often carbon fixation. In contrast, Cyanobacteria were patchily distributed and only abundant in certain biocrusts. Activity measurements profiled how aerobic H2 oxidation, chemosynthetic CO2 fixation, and photosynthesis varied with aridity. Cell-specific rates of atmospheric H2 consumption increased 143-fold along the aridity gradient, correlating with increased abundance of high-affinity hydrogenases. Photosynthetic and chemosynthetic primary production co-occurred throughout the gradient, with photosynthesis dominant in biocrusts and chemosynthesis dominant in arid and hyper-arid soils. Altogether, these findings suggest that the major bacterial lineages inhabiting hot deserts use different strategies for energy and carbon acquisition depending on resource availability. Moreover, they highlight the previously overlooked roles of Actinobacteriota as abundant primary producers and trace gases as critical energy sources supporting productivity and resilience of desert ecosystems.
Collapse
Affiliation(s)
- Sean K Bay
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.
| | - David W Waite
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde Boker, Israel
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
10
|
Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations. THE ISME JOURNAL 2021; 15:2692-2707. [PMID: 33753881 PMCID: PMC8397712 DOI: 10.1038/s41396-021-00944-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 02/01/2023]
Abstract
Candidatus phylum Eremiobacterota (formerly WPS-2) is an as-yet-uncultured bacterial clade that takes its name from Ca. Eremiobacter, an Antarctic soil aerobe proposed to be capable of a novel form of chemolithoautotrophy termed atmospheric chemosynthesis, that uses the energy derived from atmospheric H2-oxidation to fix CO2 through the Calvin-Benson-Bassham (CBB) cycle via type 1E RuBisCO. To elucidate the phylogenetic affiliation and metabolic capacities of Ca. Eremiobacterota, we analysed 63 public metagenome-assembled genomes (MAGs) and nine new MAGs generated from Antarctic soil metagenomes. These MAGs represent both recognized classes within Ca. Eremiobacterota, namely Ca. Eremiobacteria and UBP9. Ca. Eremiobacteria are inferred to be facultatively acidophilic with a preference for peptides and amino acids as nutrient sources. Epifluorescence microscopy revealed Ca. Eremiobacteria cells from Antarctica desert soil to be coccoid in shape. Two orders are recognized within class Ca. Eremiobacteria: Ca. Eremiobacterales and Ca. Baltobacterales. The latter are metabolically versatile, with individual members having genes required for trace gas driven autotrophy, anoxygenic photosynthesis, CO oxidation, and anaerobic respiration. UBP9, here renamed Ca. Xenobia class. nov., are inferred to be obligate heterotrophs with acidophilic adaptations, but individual members having highly divergent metabolic capacities compared to Ca. Eremiobacteria, especially with regard to respiration and central carbon metabolism. We conclude Ca. Eremiobacterota to be an ecologically versatile phylum with the potential to thrive under an array of "extreme" environmental conditions.
Collapse
|
11
|
Termite gas emissions select for hydrogenotrophic microbial communities in termite mounds. Proc Natl Acad Sci U S A 2021; 118:2102625118. [PMID: 34285074 DOI: 10.1073/pnas.2102625118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organoheterotrophs are the dominant bacteria in most soils worldwide. While many of these bacteria can subsist on atmospheric hydrogen (H2), levels of this gas are generally insufficient to sustain hydrogenotrophic growth. In contrast, bacteria residing within soil-derived termite mounds are exposed to high fluxes of H2 due to fermentative production within termite guts. Here, we show through community, metagenomic, and biogeochemical profiling that termite emissions select for a community dominated by diverse hydrogenotrophic Actinobacteriota and Dormibacterota. Based on metagenomic short reads and derived genomes, uptake hydrogenase and chemosynthetic RuBisCO genes were significantly enriched in mounds compared to surrounding soils. In situ and ex situ measurements confirmed that high- and low-affinity H2-oxidizing bacteria were highly active in the mounds, such that they efficiently consumed all termite-derived H2 emissions and served as net sinks of atmospheric H2 Concordant findings were observed across the mounds of three different Australian termite species, with termite activity strongly predicting H2 oxidation rates (R 2 = 0.82). Cell-specific power calculations confirmed the potential for hydrogenotrophic growth in the mounds with most termite activity. In contrast, while methane is produced at similar rates to H2 by termites, mounds contained few methanotrophs and were net sources of methane. Altogether, these findings provide further evidence of a highly responsive terrestrial sink for H2 but not methane and suggest H2 availability shapes composition and activity of microbial communities. They also reveal a unique arthropod-bacteria interaction dependent on H2 transfer between host-associated and free-living microbial communities.
Collapse
|
12
|
Abstract
Volcanic and geothermal environments are characterized by low pH, high temperatures, and gas emissions consisting of mainly CO2 and varied CH4, H2S, and H2 contents which allow the formation of chemolithoautotrophic microbial communities. To determine the link between the emitted gases and the microbial community composition, geochemical and metagenomic analysis were performed. Soil samples of the geothermic region Favara Grande (Pantelleria, Italy) were taken at various depths (1 to 50 cm). Analysis of the gas composition revealed that CH4 and H2 have the potential to serve as the driving forces for the microbial community. Our metagenomic analysis revealed a high relative abundance of Bacteria in the top layer (1 to 10 cm), but the relative abundance of Archaea increased with depth from 32% to 70%. In particular, a putative hydrogenotrophic methanogenic archaeon, related to Methanocella conradii, appeared to have a high relative abundance (63%) in deeper layers. A variety of [NiFe]-hydrogenase genes were detected, showing that H2 was an important electron donor for microaerobic microorganisms in the upper layers. Furthermore, the bacterial population included verrucomicrobial and proteobacterial methanotrophs, the former showing an up to 7.8 times higher relative abundance. Analysis of the metabolic potential of this microbial community showed a clear capacity to oxidize CH4 aerobically, as several genes for distinct particulate methane monooxygenases and lanthanide-dependent methanol dehydrogenases (XoxF-type) were retrieved. Analysis of the CO2 fixation pathways showed the presence of the Calvin-Benson-Bassham cycle, the Wood-Ljungdahl pathway, and the (reverse) tricarboxylic acid (TCA) cycle, the latter being the most represented carbon fixation pathway. This study indicates that the methane emissions in the Favara Grande might be a combination of geothermal activity and biological processes and further provides insights into the diversity of the microbial population thriving on CH4 and H2 IMPORTANCE The Favara Grande nature reserve on the volcanic island of Pantelleria (Italy) is known for its geothermal gas emissions and high soil temperatures. These volcanic soil ecosystems represent "hot spots" of greenhouse gas emissions. The unique community might be shaped by the hostile conditions in the ecosystem, and it is involved in the cycling of elements such as carbon, hydrogen, sulfur, and nitrogen. Our metagenome study revealed that most of the microorganisms in this extreme environment are only distantly related to cultivated bacteria. The results obtained profoundly increased the understanding of these natural hot spots of greenhouse gas production/degradation and will help to enrich and isolate the microbial key players. After isolation, it will become possible to unravel the molecular mechanisms by which they adapt to extreme (thermo/acidophilic) conditions, and this may lead to new green enzymatic catalysts and technologies for industry.
Collapse
|
13
|
Ray AE, Zhang E, Terauds A, Ji M, Kong W, Ferrari BC. Soil Microbiomes With the Genetic Capacity for Atmospheric Chemosynthesis Are Widespread Across the Poles and Are Associated With Moisture, Carbon, and Nitrogen Limitation. Front Microbiol 2020; 11:1936. [PMID: 32903524 PMCID: PMC7437527 DOI: 10.3389/fmicb.2020.01936] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/22/2020] [Indexed: 11/13/2022] Open
Abstract
Soil microbiomes within oligotrophic cold deserts are extraordinarily diverse. Increasingly, oligotrophic sites with low levels of phototrophic primary producers are reported, leading researchers to question their carbon and energy sources. A novel microbial carbon fixation process termed atmospheric chemosynthesis recently filled this gap as it was shown to be supporting primary production at two Eastern Antarctic deserts. Atmospheric chemosynthesis uses energy liberated from the oxidation of atmospheric hydrogen to drive the Calvin-Benson-Bassham (CBB) cycle through a new chemotrophic form of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), designated IE. Here, we propose that the genetic determinants of this process; RuBisCO type IE (rbcL1E) and high affinity group 1h-[NiFe]-hydrogenase (hhyL) are widespread across cold desert soils and that this process is linked to dry and nutrient-poor environments. We used quantitative PCR (qPCR) to quantify these genes in 122 soil microbiomes across the three poles; spanning the Tibetan Plateau, 10 Antarctic and three high Arctic sites. Both genes were ubiquitous, being present at variable abundances in all 122 soils examined (rbcL1E, 6.25 × 103–1.66 × 109 copies/g soil; hhyL, 6.84 × 103–5.07 × 108 copies/g soil). For the Antarctic and Arctic sites, random forest and correlation analysis against 26 measured soil physicochemical parameters revealed that rbcL1E and hhyL genes were associated with lower soil moisture, carbon and nitrogen content. While further studies are required to quantify the rates of trace gas carbon fixation and the organisms involved, we highlight the global potential of desert soil microbiomes to be supported by this new minimalistic mode of carbon fixation, particularly throughout dry oligotrophic environments, which encompass more than 35% of the Earth’s surface.
Collapse
Affiliation(s)
- Angelique E Ray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Eden Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Aleks Terauds
- Australian Antarctic Division, Department of Environment, Antarctic Conservation and Management, Kingston, TAS, Australia
| | - Mukan Ji
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Weidong Kong
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
14
|
A widely distributed hydrogenase oxidises atmospheric H 2 during bacterial growth. ISME JOURNAL 2020; 14:2649-2658. [PMID: 32647310 PMCID: PMC7784904 DOI: 10.1038/s41396-020-0713-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 11/09/2022]
Abstract
Diverse aerobic bacteria persist by consuming atmospheric hydrogen (H2) using group 1h [NiFe]-hydrogenases. However, other hydrogenase classes are also distributed in aerobes, including the group 2a [NiFe]-hydrogenase. Based on studies focused on Cyanobacteria, the reported physiological role of the group 2a [NiFe]-hydrogenase is to recycle H2 produced by nitrogenase. However, given this hydrogenase is also present in various heterotrophs and lithoautotrophs lacking nitrogenases, it may play a wider role in bacterial metabolism. Here we investigated the role of this enzyme in three species from different phylogenetic lineages and ecological niches: Acidithiobacillus ferrooxidans (phylum Proteobacteria), Chloroflexus aggregans (phylum Chloroflexota), and Gemmatimonas aurantiaca (phylum Gemmatimonadota). qRT-PCR analysis revealed that the group 2a [NiFe]-hydrogenase of all three species is significantly upregulated during exponential growth compared to stationary phase, in contrast to the profile of the persistence-linked group 1h [NiFe]-hydrogenase. Whole-cell biochemical assays confirmed that all three strains aerobically respire H2 to sub-atmospheric levels, and oxidation rates were much higher during growth. Moreover, the oxidation of H2 supported mixotrophic growth of the carbon-fixing strains C. aggregans and A. ferrooxidans. Finally, we used phylogenomic analyses to show that this hydrogenase is widely distributed and is encoded by 13 bacterial phyla. These findings challenge the current persistence-centric model of the physiological role of atmospheric H2 oxidation and extend this process to two more phyla, Proteobacteria and Gemmatimonadota. In turn, these findings have broader relevance for understanding how bacteria conserve energy in different environments and control the biogeochemical cycling of atmospheric trace gases.
Collapse
|
15
|
Islam ZF, Cordero PRF, Greening C. Putative Iron-Sulfur Proteins Are Required for Hydrogen Consumption and Enhance Survival of Mycobacteria. Front Microbiol 2019; 10:2749. [PMID: 31824474 PMCID: PMC6883350 DOI: 10.3389/fmicb.2019.02749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/12/2019] [Indexed: 01/01/2023] Open
Abstract
Aerobic soil bacteria persist by scavenging molecular hydrogen (H2) from the atmosphere. This key process is the primary sink in the biogeochemical hydrogen cycle and supports the productivity of oligotrophic ecosystems. In Mycobacterium smegmatis, atmospheric H2 oxidation is catalyzed by two phylogenetically distinct [NiFe]-hydrogenases, Huc (group 2a) and Hhy (group 1h). However, it is currently unresolved how these enzymes transfer electrons derived from H2 oxidation into the aerobic respiratory chain. In this work, we used genetic approaches to confirm that two putative iron-sulfur cluster proteins encoded on the hydrogenase structural operons, HucE and HhyE, are required for H2 consumption in M. smegmatis. Sequence analysis show that these proteins, while homologous, fall into distinct phylogenetic clades and have distinct metal-binding motifs. H2 oxidation was reduced when the genes encoding these proteins were deleted individually and was eliminated when they were deleted in combination. In turn, the growth yield and long-term survival of these deletion strains was modestly but significantly reduced compared to the parent strain. In both biochemical and phenotypic assays, the mutant strains lacking the putative iron-sulfur proteins phenocopied those of hydrogenase structural subunit mutants. We hypothesize that these proteins mediate electron transfer between the catalytic subunits of the hydrogenases and the menaquinone pool of the M. smegmatis respiratory chain; however, other roles (e.g., in maturation) are also plausible and further work is required to resolve their role. The conserved nature of these proteins within most Hhy- or Huc-encoding organisms suggests that these proteins are important determinants of atmospheric H2 oxidation.
Collapse
Affiliation(s)
| | | | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
16
|
Staebe K, Meiklejohn KI, Singh SM, Matcher GF. Biogeography of soil bacterial populations in the Jutulsessen and Ahlmannryggen of Western Dronning Maud Land, Antarctica. Polar Biol 2019. [DOI: 10.1007/s00300-019-02532-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Diversity of key genes for carbon and nitrogen fixation in soils from the Sør Rondane Mountains, East Antarctica. Polar Biol 2018. [DOI: 10.1007/s00300-018-2353-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Li M, Yang Y, He Y, Mathieu J, Yu C, Li Q, Alvarez PJJ. Detection and cell sorting of Pseudonocardia species by fluorescence in situ hybridization and flow cytometry using 16S rRNA-targeted oligonucleotide probes. Appl Microbiol Biotechnol 2018; 102:3375-3386. [DOI: 10.1007/s00253-018-8801-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/19/2017] [Accepted: 01/21/2018] [Indexed: 10/18/2022]
|
19
|
MacKellar D, Lieber L, Norman JS, Bolger A, Tobin C, Murray JW, Oksaksin M, Chang RL, Ford TJ, Nguyen PQ, Woodward J, Permingeat HR, Joshi NS, Silver PA, Usadel B, Rutherford AW, Friesen ML, Prell J. Streptomyces thermoautotrophicus does not fix nitrogen. Sci Rep 2016; 6:20086. [PMID: 26833023 PMCID: PMC4735515 DOI: 10.1038/srep20086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/07/2015] [Indexed: 11/09/2022] Open
Abstract
Streptomyces thermoautotrophicus UBT1 has been described as a moderately thermophilic chemolithoautotroph with a novel nitrogenase enzyme that is oxygen-insensitive. We have cultured the UBT1 strain, and have isolated two new strains (H1 and P1-2) of very similar phenotypic and genetic characters. These strains show minimal growth on ammonium-free media, and fail to incorporate isotopically labeled N2 gas into biomass in multiple independent assays. The sdn genes previously published as the putative nitrogenase of S. thermoautotrophicus have little similarity to anything found in draft genome sequences, published here, for strains H1 and UBT1, but share >99% nucleotide identity with genes from Hydrogenibacillus schlegelii, a draft genome for which is also presented here. H. schlegelii similarly lacks nitrogenase genes and is a non-diazotroph. We propose reclassification of the species containing strains UBT1, H1, and P1-2 as a non-Streptomycete, non-diazotrophic, facultative chemolithoautotroph and conclude that the existence of the previously proposed oxygen-tolerant nitrogenase is extremely unlikely.
Collapse
Affiliation(s)
- Drew MacKellar
- Harvard Medical School, 200 Longwood Ave, Boston MA 02130
- Wyss Institute, 3 Blackfan Cir, Boston MA 02115
| | - Lucas Lieber
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina
- Dept. Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Jeffrey S. Norman
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI USA 48824
| | - Anthony Bolger
- Institute for Biology I, BioSC, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| | - Cory Tobin
- TheLab Inc, 1340 E. 6th Street Suite 603, Los Angeles, CA USA 90021
| | | | - Mehtap Oksaksin
- Institute for Biology I, BioSC, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| | - Roger L. Chang
- Harvard Medical School, 200 Longwood Ave, Boston MA 02130
| | - Tyler J. Ford
- Harvard Medical School, 200 Longwood Ave, Boston MA 02130
| | | | - Jimmy Woodward
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI USA 48824
| | - Hugo R. Permingeat
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla S2125ZAA, Santa Fe, Argentina
| | | | - Pamela A. Silver
- Harvard Medical School, 200 Longwood Ave, Boston MA 02130
- Wyss Institute, 3 Blackfan Cir, Boston MA 02115
| | - Björn Usadel
- Institute for Biology I, BioSC, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| | | | - Maren L. Friesen
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI USA 48824
| | - Jürgen Prell
- Institute for Biology I, BioSC, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany
| |
Collapse
|
20
|
Abstract
We have known for 40 years that soils can consume the trace amounts of molecular hydrogen (H2) found in the Earth’s atmosphere.This process is predicted to be the most significant term in the global hydrogen cycle. However, the organisms and enzymes responsible for this process were only recently identified. Pure culture experiments demonstrated that several species of Actinobacteria, including streptomycetes and mycobacteria, can couple the oxidation of atmospheric H2 to the reduction of ambient O2. A combination of genetic, biochemical, and phenotypic studies suggest that these organisms primarily use this fuel source to sustain electron input into the respiratory chain during energy starvation. This process is mediated by a specialized enzyme, the group 5 [NiFe]-hydrogenase, which is unusual for its high affinity, oxygen insensitivity, and thermostability. Atmospheric hydrogen scavenging is a particularly dependable mode of energy generation, given both the ubiquity of the substrate and the stress tolerance of its catalyst. This minireview summarizes the recent progress in understanding how and why certain organisms scavenge atmospheric H2. In addition, it provides insight into the wider significance of hydrogen scavenging in global H2 cycling and soil microbial ecology.
Collapse
|