1
|
Danchin A, Huang JD. SynBio 2.0, a new era for synthetic life: Neglected essential functions for resilience. Environ Microbiol 2023; 25:64-78. [PMID: 36045561 DOI: 10.1111/1462-2920.16140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 01/21/2023]
Affiliation(s)
- Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Jian Dong Huang
- School of Biomedical Sciences, Li KaShing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
2
|
Using Steady-State Kinetics to Quantitate Substrate Selectivity and Specificity: A Case Study with Two Human Transaminases. Molecules 2022; 27:molecules27041398. [PMID: 35209187 PMCID: PMC8875635 DOI: 10.3390/molecules27041398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
We examined the ability of two human cytosolic transaminases, aspartate aminotransferase (GOT1) and alanine aminotransferase (GPT), to transform their preferred substrates whilst discriminating against similar metabolites. This offers an opportunity to survey our current understanding of enzyme selectivity and specificity in a biological context. Substrate selectivity can be quantitated based on the ratio of the kcat/KM values for two alternative substrates (the 'discrimination index'). After assessing the advantages, implications and limits of this index, we analyzed the reactions of GOT1 and GPT with alternative substrates that are metabolically available and show limited structural differences with respect to the preferred substrates. The transaminases' observed selectivities were remarkably high. In particular, GOT1 reacted ~106-fold less efficiently when the side-chain carboxylate of the 'physiological' substrates (aspartate and glutamate) was replaced by an amido group (asparagine and glutamine). This represents a current empirical limit of discrimination associated with this chemical difference. The structural basis of GOT1 selectivity was addressed through substrate docking simulations, which highlighted the importance of electrostatic interactions and proper substrate positioning in the active site. We briefly discuss the biological implications of these results and the possibility of using kcat/KM values to derive a global measure of enzyme specificity.
Collapse
|
3
|
Jeffryes JG, Lerma-Ortiz C, Liu F, Golubev A, Niehaus TD, Elbadawi-Sidhu M, Fiehn O, Hanson AD, Tyo KE, Henry CS. Chemical-damage MINE: A database of curated and predicted spontaneous metabolic reactions. Metab Eng 2021; 69:302-312. [PMID: 34958914 DOI: 10.1016/j.ymben.2021.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 10/05/2021] [Accepted: 11/23/2021] [Indexed: 01/27/2023]
Abstract
Spontaneous reactions between metabolites are often neglected in favor of emphasizing enzyme-catalyzed chemistry because spontaneous reaction rates are assumed to be insignificant under physiological conditions. However, synthetic biology and engineering efforts can raise natural metabolites' levels or introduce unnatural ones, so that previously innocuous or nonexistent spontaneous reactions become an issue. Problems arise when spontaneous reaction rates exceed the capacity of a platform organism to dispose of toxic or chemically active reaction products. While various reliable sources list competing or toxic enzymatic pathways' side-reactions, no corresponding compilation of spontaneous side-reactions exists, nor is it possible to predict their occurrence. We addressed this deficiency by creating the Chemical Damage (CD)-MINE resource. First, we used literature data to construct a comprehensive database of metabolite reactions that occur spontaneously in physiological conditions. We then leveraged this data to construct 148 reaction rules describing the known spontaneous chemistry in a substrate-generic way. We applied these rules to all compounds in the ModelSEED database, predicting 180,891 spontaneous reactions. The resulting (CD)-MINE is available at https://minedatabase.mcs.anl.gov/cdmine/#/home and through developer tools. We also demonstrate how damage-prone intermediates and end products are widely distributed among metabolic pathways, and how predicting spontaneous chemical damage helps rationalize toxicity and carbon loss using examples from published pathways to commercial products. We explain how analyzing damage-prone areas in metabolism helps design effective engineering strategies. Finally, we use the CD-MINE toolset to predict the formation of the novel damage product N-carbamoyl proline, and present mass spectrometric evidence for its presence in Escherichia coli.
Collapse
Affiliation(s)
- James G Jeffryes
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Claudia Lerma-Ortiz
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60637, USA; Department of Data Science and Learning, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Filipe Liu
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA; Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Alexey Golubev
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, 197758, Russia
| | - Thomas D Niehaus
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA; Plant and Microbial Biology Department, University of Minnesota, Saint Paul, MN, 55108, USA
| | | | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, CA, USA
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Keith Ej Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Christopher S Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA; Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
4
|
Noriega-Ortega BE, Wienhausen G, Mentges A, Dittmar T, Simon M, Niggemann J. Does the Chemodiversity of Bacterial Exometabolomes Sustain the Chemodiversity of Marine Dissolved Organic Matter? Front Microbiol 2019; 10:215. [PMID: 30837961 PMCID: PMC6382689 DOI: 10.3389/fmicb.2019.00215] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/25/2019] [Indexed: 11/13/2022] Open
Abstract
Marine dissolved organic matter (DOM) is a complex mixture of chemical compounds. At 750 Pg C, it is one of the biggest pools of reduced carbon on Earth. It has been proposed that the diversity of DOM is responsible for its recalcitrance. We hypothesize that the chemodiversity of marine DOM is a reflection of the chemodiversity of bacterial exometabolomes. To test this, we incubated two model strains of the Roseobacter group; Phaeobacter inhibens and Dinoroseobacter shibae in pure culture using three different simple organic compounds as sole carbon sources (glutamate, glucose, and acetate and succinate for P. inhibens and D. shibae, respectively). The exometabolome of the model organisms was characterized using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and ecological diversity measures. We detected thousands of molecular masses in the exometabolomes of P. inhibens and D. shibae (21,105 and 9,386, respectively), reflecting the capability of single bacterial strains to diversify simple organic compounds. The chemical composition of the exometabolomes changed with growth phase and also differed according to the strain incubated and the utilized substrate. We mimicked a higher diversity of substrates, bacterial species and heterogeneous growth (different growth phases) to approach the complexity of natural environments, by computationally creating combinations of detected exometabolomes. We compared the chemodiversity of these combinations, indicative for chemodiversity of freshly produced microbial DOM to that of refractory DOM from one of the oldest oceanic water masses (North Equatorial Pacific Intermediate Water). Some combinations of exometabolomes showed higher richness than the deep ocean refractory DOM, and all the combinations showed higher functional diversity. About 15% of the 13,509 molecular formulae detected in exometabolomes and refractory oceanic DOM were shared, i.e., occurred in Roseobacter exometabolomes and in deep water samples. This overlap provides further support for our hypothesis that marine bacteria from the Roseobacter group contribute to the sustainability of marine DOM chemodiversity and stability.
Collapse
Affiliation(s)
- Beatriz E Noriega-Ortega
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Gerrit Wienhausen
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Andrea Mentges
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.,Helmhotz Institute for Functional Marine Biodiversity (HIMFB), University of Oldenburg, Oldenburg, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.,Helmhotz Institute for Functional Marine Biodiversity (HIMFB), University of Oldenburg, Oldenburg, Germany
| | - Jutta Niggemann
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
5
|
Sekowska A, Ashida H, Danchin A. Revisiting the methionine salvage pathway and its paralogues. Microb Biotechnol 2019; 12:77-97. [PMID: 30306718 PMCID: PMC6302742 DOI: 10.1111/1751-7915.13324] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/24/2018] [Accepted: 09/14/2018] [Indexed: 12/17/2022] Open
Abstract
Methionine is essential for life. Its chemistry makes it fragile in the presence of oxygen. Aerobic living organisms have selected a salvage pathway (the MSP) that uses dioxygen to regenerate methionine, associated to a ratchet-like step that prevents methionine back degradation. Here, we describe the variation on this theme, developed across the tree of life. Oxygen appeared long after life had developed on Earth. The canonical MSP evolved from ancestors that used both predecessors of ribulose bisphosphate carboxylase oxygenase (RuBisCO) and methanethiol in intermediate steps. We document how these likely promiscuous pathways were also used to metabolize the omnipresent by-products of S-adenosylmethionine radical enzymes as well as the aromatic and isoprene skeleton of quinone electron acceptors.
Collapse
Affiliation(s)
- Agnieszka Sekowska
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐SalpêtrièreParisFrance
| | - Hiroki Ashida
- Graduate School of Human Development and EnvironmentKobe UniversityKobeJapan
| | - Antoine Danchin
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐SalpêtrièreParisFrance
- Institute of Synthetic BiologyShenzhen Institutes of Advanced StudiesShenzhenChina
| |
Collapse
|
6
|
Harnessing Underground Metabolism for Pathway Development. Trends Biotechnol 2019; 37:29-37. [DOI: 10.1016/j.tibtech.2018.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/17/2018] [Accepted: 08/06/2018] [Indexed: 01/13/2023]
|
7
|
Peracchi A. The Limits of Enzyme Specificity and the Evolution of Metabolism. Trends Biochem Sci 2018; 43:984-996. [DOI: 10.1016/j.tibs.2018.09.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 12/23/2022]
|
8
|
Danchin A. [Revisiting the origins of life: from atoms to molecules, reproduction, then replication]. Med Sci (Paris) 2018; 34:857-864. [PMID: 30451680 DOI: 10.1051/medsci/2018212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Regarder plus de trois milliards d’années en arrière est difficile et la reconstruction d’arbres de l’évolution à partir de l’ADN actuel repose sur des hypothèses cachées qui ne permettent pas de retrouver ses vraies racines. Cherchant à s’affranchir de notre anthropocentrisme, le scénario proposé dans les deux textes qui seront successivement publiés écarte pour commencer l’idée d’une origine unique pour le remplacer par un scénario d’évolution qui ferait apparaître un processus réplicatif – formation d’une copie exacte – au sein d’un système chimique qui ne fait que se reproduire, formant des copies voisines de ce qu’il est. Les premières cellules formeraient une population de prédateurs assimilant peu à peu divers compartiments où se déroule la suite des étapes ancestrales. Échappant aux cellules prédatrices, deux types nouveaux, peu compartimentés, bactéries et archées seraient alors apparus pour envahir la Terre, former des organites au sein des prédateurs ancestraux en donnant la vie telle qu’on la connaît aujourd’hui.
Collapse
Affiliation(s)
- Antoine Danchin
- Institut de Cardiométabolisme et Nutrition, Hôpital de la Pitié-Salpêtrière, 47, boulevard de l'Hôpital 75013 Paris, France
| |
Collapse
|
9
|
Danchin A, Sekowska A, Noria S. Functional Requirements in the Program and the Cell Chassis for Next-Generation Synthetic Biology. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Antoine Danchin
- Institute of Cardiometabolism and Nutrition; 47 boulevard de l'Hôpital Paris 75013 France
| | - Agnieszka Sekowska
- Institute of Cardiometabolism and Nutrition; 47 boulevard de l'Hôpital Paris 75013 France
| | - Stanislas Noria
- Fondation Fourmentin-Guilbert; 2 avenue du Pavé Neuf Noisy le Grand 93160 France
| |
Collapse
|
10
|
Danchin A. From chemical metabolism to life: the origin of the genetic coding process. Beilstein J Org Chem 2017; 13:1119-1135. [PMID: 28684991 PMCID: PMC5480338 DOI: 10.3762/bjoc.13.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
Looking for origins is so much rooted in ideology that most studies reflect opinions that fail to explore the first realistic scenarios. To be sure, trying to understand the origins of life should be based on what we know of current chemistry in the solar system and beyond. There, amino acids and very small compounds such as carbon dioxide, dihydrogen or dinitrogen and their immediate derivatives are ubiquitous. Surface-based chemical metabolism using these basic chemicals is the most likely beginning in which amino acids, coenzymes and phosphate-based small carbon molecules were built up. Nucleotides, and of course RNAs, must have come to being much later. As a consequence, the key question to account for life is to understand how chemical metabolism that began with amino acids progressively shaped into a coding process involving RNAs. Here I explore the role of building up complementarity rules as the first information-based process that allowed for the genetic code to emerge, after RNAs were substituted to surfaces to carry over the basic metabolic pathways that drive the pursuit of life.
Collapse
Affiliation(s)
- Antoine Danchin
- Institute of Cardiometabolism and Nutrition, Hôpital de la Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France
| |
Collapse
|
11
|
Abstract
Genomic studies focus on key metabolites and pathways that, despite their obvious anthropocentric design, keep being 'predicted', while this is only finding again what is already known. As increasingly more genomes are sequenced, this lightpost effect may account at least in part for our failure to understand the function of a continuously growing number of genes. Core metabolism often goes astray, accidentally producing a variety of unexpected compounds. Catabolism of these forgotten metabolites makes an essential part of the functions coded in metagenomes. Here, I explore the fate of a limited number of those: compounds resulting from radical reactions and molecules derived from some reactive intermediates produced during normal metabolism. I try both to update investigators with the most recent literature and to uncover old articles that may open up new research avenues in the genome exploration of metabolism. This should allow us to foresee further developments in experimental genomics and genome annotation.
Collapse
Affiliation(s)
- Antoine Danchin
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐Salpêtrière47 Boulevard de l'HôpitalParis75013France
| |
Collapse
|
12
|
Danchin A, Fang G. Unknown unknowns: essential genes in quest for function. Microb Biotechnol 2016; 9:530-40. [PMID: 27435445 PMCID: PMC4993169 DOI: 10.1111/1751-7915.12384] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 01/18/2023] Open
Abstract
The experimental design of a minimal synthetic genome revealed the presence of a large number of genes without ascribed function, in part because the abstract laws of life must be implemented within ad hoc material contraptions. Creating a function needs recruitment of some pre‐existing structure and this reveals kludges in their set‐up and history. Here, we show that looking for functions as an engineer would help in discovery of a significant number of those, proposed together with conceptual handles allowing investigators to pursue this endeavour in other contexts.
Collapse
Affiliation(s)
- Antoine Danchin
- Institute of Cardiometabolism and Nutrition, CHU Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013, Paris, France
| | - Gang Fang
- Department of Biology, New York University Shanghai Campus, 1555 Century Avenue, Pudong New Area, Shanghai, 200122, China
| |
Collapse
|
13
|
Nikel PI, Chavarría M, Danchin A, de Lorenzo V. From dirt to industrial applications: Pseudomonas putida as a Synthetic Biology chassis for hosting harsh biochemical reactions. Curr Opin Chem Biol 2016; 34:20-29. [PMID: 27239751 DOI: 10.1016/j.cbpa.2016.05.011] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 01/14/2023]
Abstract
The soil bacterium Pseudomonas putida is endowed with a central carbon metabolic network capable of fulfilling high demands of reducing power. This situation arises from a unique metabolic architecture that encompasses the partial recycling of triose phosphates to hexose phosphates-the so-called EDEMP cycle. In this article, the value of P. putida as a bacterial chassis of choice for contemporary, industrially-oriented metabolic engineering is addressed. The biochemical properties that make this bacterium adequate for hosting biotransformations involving redox reactions as well as toxic compounds and intermediates are discussed. Finally, novel developments and open questions in the continuous quest for an optimal microbial cell factory are presented at the light of current and future needs in the area of biocatalysis.
Collapse
Affiliation(s)
- Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| | - Max Chavarría
- Escuela de Química & CIPRONA, Universidad de Costa Rica, 11501-2060 San José, Costa Rica
| | - Antoine Danchin
- AMAbiotics SAS, Institut of Cardiometabolism and Nutrition (ICAN), Hôpital Universitaire de la Pitié-Salpêtrière, 75013 Paris, France
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
14
|
Belda E, van Heck RGA, José Lopez-Sanchez M, Cruveiller S, Barbe V, Fraser C, Klenk HP, Petersen J, Morgat A, Nikel PI, Vallenet D, Rouy Z, Sekowska A, Martins dos Santos VAP, de Lorenzo V, Danchin A, Médigue C. The revisited genome ofPseudomonas putidaKT2440 enlightens its value as a robust metabolicchassis. Environ Microbiol 2016; 18:3403-3424. [DOI: 10.1111/1462-2920.13230] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/16/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Eugeni Belda
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
- Institut Pasteur, Unit of Insect Vector Genetics and Genomics, Department of Parasitology and Mycology; 28, rue du Dr. Roux, Paris, Cedex 15 75724 France
| | - Ruben G. A. van Heck
- Laboratory of Systems and Synthetic Biology, Wageningen University; Dreijenplein 10, Building number 316 6703 HB Wageningen The Netherlands
| | - Maria José Lopez-Sanchez
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière; Paris France
| | - Stéphane Cruveiller
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
| | - Valérie Barbe
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute, National Sequencing Center; 2 rue Gaston Crémieux 91057 Evry France
| | - Claire Fraser
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine; Baltimore MD USA
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures; Braunschweig Germany
- School of Biology, Newcastle University; Newcastle upon Tyne NE1 7RU UK
| | - Jörn Petersen
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures; Braunschweig Germany
| | - Anne Morgat
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics; Geneva CH-1206 Switzerland
| | - Pablo I. Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC); C/Darwin 3 28049 Madrid Spain
| | - David Vallenet
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
| | - Zoé Rouy
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
| | - Agnieszka Sekowska
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière; Paris France
| | - Vitor A. P. Martins dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University; Dreijenplein 10, Building number 316 6703 HB Wageningen The Netherlands
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC); C/Darwin 3 28049 Madrid Spain
| | - Antoine Danchin
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière; Paris France
| | - Claudine Médigue
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
| |
Collapse
|
15
|
|
16
|
Abstract
Plants and bacteria synthesize the essential human micronutrient riboflavin (vitamin B2) via the same multi-step pathway. The early intermediates of this pathway are notoriously reactive and may be overproduced in vivo because riboflavin biosynthesis enzymes lack feedback controls. In the present paper, we demonstrate disposal of riboflavin intermediates by COG3236 (DUF1768), a protein of previously unknown function that is fused to two different riboflavin pathway enzymes in plants and bacteria (RIBR and RibA respectively). We present cheminformatic, biochemical, genetic and genomic evidence to show that: (i) plant and bacterial COG3236 proteins cleave the N-glycosidic bond of the first two intermediates of riboflavin biosynthesis, yielding relatively innocuous products; (ii) certain COG3236 proteins are in a multi-enzyme riboflavin biosynthesis complex that gives them privileged access to riboflavin intermediates; and (iii) COG3236 action in Arabidopsis thaliana and Escherichia coli helps maintain flavin levels. COG3236 proteins thus illustrate two emerging principles in chemical biology: directed overflow metabolism, in which excess flux is diverted out of a pathway, and the pre-emption of damage from reactive metabolites.
Collapse
|
17
|
de Lorenzo V, Sekowska A, Danchin A. Chemical reactivity drives spatiotemporal organisation of bacterial metabolism. FEMS Microbiol Rev 2014; 39:96-119. [PMID: 25227915 DOI: 10.1111/1574-6976.12089] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this review, we examine how bacterial metabolism is shaped by chemical constraints acting on the material and dynamic layout of enzymatic networks and beyond. These are moulded not only for optimisation of given metabolic objectives (e.g. synthesis of a particular amino acid or nucleotide) but also for curbing the detrimental reactivity of chemical intermediates. Besides substrate channelling, toxicity is avoided by barriers to free diffusion (i.e. compartments) that separate otherwise incompatible reactions, along with ways for distinguishing damaging vs. harmless molecules. On the other hand, enzymes age and their operating lifetime must be tuned to upstream and downstream reactions. This time dependence of metabolic pathways creates time-linked information, learning and memory. These features suggest that the physical structure of existing biosystems, from operon assemblies to multicellular development may ultimately stem from the need to restrain chemical damage and limit the waste inherent to basic metabolic functions. This provides a new twist of our comprehension of fundamental biological processes in live systems as well as practical take-home lessons for the forward DNA-based engineering of novel biological objects.
Collapse
Affiliation(s)
- Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología CSIC, Cantoblanco-Madrid, Spain
| | - Agnieszka Sekowska
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Antoine Danchin
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
18
|
Kelwick R, MacDonald JT, Webb AJ, Freemont P. Developments in the tools and methodologies of synthetic biology. Front Bioeng Biotechnol 2014; 2:60. [PMID: 25505788 PMCID: PMC4244866 DOI: 10.3389/fbioe.2014.00060] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/12/2014] [Indexed: 11/27/2022] Open
Abstract
Synthetic biology is principally concerned with the rational design and engineering of biologically based parts, devices, or systems. However, biological systems are generally complex and unpredictable, and are therefore, intrinsically difficult to engineer. In order to address these fundamental challenges, synthetic biology is aiming to unify a “body of knowledge” from several foundational scientific fields, within the context of a set of engineering principles. This shift in perspective is enabling synthetic biologists to address complexity, such that robust biological systems can be designed, assembled, and tested as part of a biological design cycle. The design cycle takes a forward-design approach in which a biological system is specified, modeled, analyzed, assembled, and its functionality tested. At each stage of the design cycle, an expanding repertoire of tools is being developed. In this review, we highlight several of these tools in terms of their applications and benefits to the synthetic biology community.
Collapse
Affiliation(s)
- Richard Kelwick
- Centre for Synthetic Biology and Innovation, Imperial College London , London , UK ; Department of Medicine, Imperial College London , London , UK
| | - James T MacDonald
- Centre for Synthetic Biology and Innovation, Imperial College London , London , UK ; Department of Medicine, Imperial College London , London , UK
| | - Alexander J Webb
- Centre for Synthetic Biology and Innovation, Imperial College London , London , UK ; Department of Medicine, Imperial College London , London , UK
| | - Paul Freemont
- Centre for Synthetic Biology and Innovation, Imperial College London , London , UK ; Department of Medicine, Imperial College London , London , UK
| |
Collapse
|
19
|
Porcar M, Danchin A, de Lorenzo V. Confidence, tolerance, and allowance in biological engineering: The nuts and bolts of living things. Bioessays 2014; 37:95-102. [DOI: 10.1002/bies.201400091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Manuel Porcar
- Cavanilles Institute of Biodiversity and Evolutionary Biology; University of Valencia; Valencia Spain
- Fundació General; University of Valencia; Valencia Spain
| | - Antoine Danchin
- AMAbiotics SAS; ICM, Hôpital de la Pitié-Salpêtrière; Paris France
| | - Víctor de Lorenzo
- National Center of Biotechnology; CSIC; Campus Cantoblanco Madrid Spain
| |
Collapse
|
20
|
|
21
|
Carter CW, Li L, Weinreb V, Collier M, Gonzalez-Rivera K, Jimenez-Rodriguez M, Erdogan O, Kuhlman B, Ambroggio X, Williams T, Chandrasekharan SN. The Rodin-Ohno hypothesis that two enzyme superfamilies descended from one ancestral gene: an unlikely scenario for the origins of translation that will not be dismissed. Biol Direct 2014; 9:11. [PMID: 24927791 PMCID: PMC4082485 DOI: 10.1186/1745-6150-9-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/19/2014] [Indexed: 01/19/2023] Open
Abstract
Background Because amino acid activation is rate-limiting for uncatalyzed protein synthesis, it is a key puzzle in understanding the origin of the genetic code. Two unrelated classes (I and II) of contemporary aminoacyl-tRNA synthetases (aaRS) now translate the code. Observing that codons for the most highly conserved, Class I catalytic peptides, when read in the reverse direction, are very nearly anticodons for Class II defining catalytic peptides, Rodin and Ohno proposed that the two superfamilies descended from opposite strands of the same ancestral gene. This unusual hypothesis languished for a decade, perhaps because it appeared to be unfalsifiable. Results The proposed sense/antisense alignment makes important predictions. Fragments that align in antiparallel orientations, and contain the respective active sites, should catalyze the same two reactions catalyzed by contemporary synthetases. Recent experiments confirmed that prediction. Invariant cores from both classes, called Urzymes after Ur = primitive, authentic, plus enzyme and representing ~20% of the contemporary structures, can be expressed and exhibit high, proportionate rate accelerations for both amino-acid activation and tRNA acylation. A major fraction (60%) of the catalytic rate acceleration by contemporary synthetases resides in segments that align sense/antisense. Bioinformatic evidence for sense/antisense ancestry extends to codons specifying the invariant secondary and tertiary structures outside the active sites of the two synthetase classes. Peptides from a designed, 46-residue gene constrained by Rosetta to encode Class I and II ATP binding sites with fully complementary sequences both accelerate amino acid activation by ATP ~400 fold. Conclusions Biochemical and bioinformatic results substantially enhance the posterior probability that ancestors of the two synthetase classes arose from opposite strands of the same ancestral gene. The remarkable acceleration by short peptides of the rate-limiting step in uncatalyzed protein synthesis, together with the synergy of synthetase Urzymes and their cognate tRNAs, introduce a new paradigm for the origin of protein catalysts, emphasize the potential relevance of an operational RNA code embedded in the tRNA acceptor stems, and challenge the RNA-World hypothesis. Reviewers This article was reviewed by Dr. Paul Schimmel (nominated by Laura Landweber), Dr. Eugene Koonin and Professor David Ardell.
Collapse
Affiliation(s)
- Charles W Carter
- Department of Biochemistry and Biophysics, CB 7260 University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7260, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|