1
|
Pozarycki C, Seaton KM, C Vincent E, Novak Sanders C, Nuñez N, Castillo M, Ingall E, Klempay B, Pontefract A, Fisher LA, Paris ER, Buessecker S, Alansson NB, Carr CE, Doran PT, Bowman JS, Schmidt BE, Stockton AM. Biosignature Molecules Accumulate and Persist in Evaporitic Brines: Implications for Planetary Exploration. ASTROBIOLOGY 2024; 24:795-812. [PMID: 39159437 DOI: 10.1089/ast.2023.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The abundance of potentially habitable hypersaline environments in our solar system compels us to understand the impacts of high-salt matrices and brine dynamics on biosignature detection efforts. We identified and quantified organic compounds in brines from South Bay Salt Works (SBSW), where evapoconcentration of ocean water enables exploration of the impact of NaCl- and MgCl2-dominated brines on the detection of potential biosignature molecules. In SBSW, organic biosignature abundance and distribution are likely influenced by evapoconcentration, osmolyte accumulation, and preservation effects. Bioluminescence assays show that adenosine triphosphate (ATP) concentrations are higher in NaCl-rich, low water activity (aw) samples (<0.85) from SBSW. This is consistent with the accumulation and preservation of ATP at low aw as described in past laboratory studies. The water-soluble small organic molecule inventory was determined by using microchip capillary electrophoresis paired with high-resolution mass spectrometry (µCE-HRMS). We analyzed the relative distribution of proteinogenic amino acids with a recently developed quantitative method using CE-separation and laser-induced fluorescence (LIF) detection of amino acids in hypersaline brines. Salinity trends for dissolved free amino acids were consistent with amino acid residue abundance determined from the proteome of the microbial community predicted from metagenomic data. This highlights a tangible connection up and down the "-omics" ladder across changing geochemical conditions. The detection of water-soluble organic compounds, specifically proteinogenic amino acids at high abundance (>7 mM) in concentrated brines, demonstrates that potential organic biomarkers accumulate at hypersaline sites and suggests the possibility of long-term preservation. The detection of such molecules in high abundance when using diverse analytical tools appropriate for spacecraft suggests that life detection within hypersaline environments, such as evaporates on Mars and the surface or subsurface brines of ocean world Europa, is plausible and argues such environments should be a high priority for future exploration. Key Words: Salts-Analytical chemistry-Amino acids-Biosignatures-Capillary electrophoresis-Preservation. Astrobiology 24, 795-812.
Collapse
Affiliation(s)
- Chad Pozarycki
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kenneth M Seaton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Emily C Vincent
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Carlie Novak Sanders
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nickie Nuñez
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mariah Castillo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ellery Ingall
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Benjamin Klempay
- Scripps Institution of Oceanography, University of California San Diego, San Diego, California, USA
| | | | - Luke A Fisher
- Scripps Institution of Oceanography, University of California San Diego, San Diego, California, USA
| | - Emily R Paris
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Steffen Buessecker
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Nikolas B Alansson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Christopher E Carr
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter T Doran
- Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jeff S Bowman
- Scripps Institution of Oceanography, University of California San Diego, San Diego, California, USA
| | - Britney E Schmidt
- Departments of Astronomy and Earth & Atmospheric Sciences, Cornell University, Ithaca, New York, USA
| | - Amanda M Stockton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Rubin-Blum M, Makovsky Y, Rahav E, Belkin N, Antler G, Sisma-Ventura G, Herut B. Active microbial communities facilitate carbon turnover in brine pools found in the deep Southeastern Mediterranean Sea. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106497. [PMID: 38631226 DOI: 10.1016/j.marenvres.2024.106497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
Discharge of gas-rich brines fuels productive chemosynthetic ecosystems in the deep sea. In these salty, methanic and sulfidic brines, microbial communities adapt to specific niches along the physicochemical gradients. However, the molecular mechanisms that underpin these adaptations are not fully known. Using metagenomics, we investigated the dense (∼106 cell ml-1) microbial communities that occupy small deep-sea brine pools found in the Southeastern Mediterranean Sea (1150 m water depth, ∼22 °C, ∼60 PSU salinity, sulfide, methane, ammonia reaching millimolar levels, and oxygen usually depleted), reaching high productivity rates of 685 μg C L-1 d-1 ex-situ. We curated 266 metagenome-assembled genomes of bacteria and archaea from the several pools and adjacent sediment-water interface, highlighting the dominance of a single Sulfurimonas, which likely fuels its autotrophy using sulfide oxidation or inorganic sulfur disproportionation. This lineage may be dominant in its niche due to genome streamlining, limiting its metabolic repertoire, particularly by using a single variant of sulfide: quinone oxidoreductase. These primary producers co-exist with ANME-2c archaea that catalyze the anaerobic oxidation of methane. Other lineages can degrade the necromass aerobically (Halomonas and Alcanivorax), or anaerobically through fermentation of macromolecules (e.g., Caldatribacteriota, Bipolaricaulia, Chloroflexota, etc). These low-abundance organisms likely support the autotrophs, providing energy-rich H2, and vital organics such as vitamin B12.
Collapse
Affiliation(s)
- Maxim Rubin-Blum
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel; The Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| | - Yizhaq Makovsky
- The Dr. Moses Strauss Department of Marine Geosciences, Charney School of Marine Sciences , University of Haifa, Haifa, Israel; The Hatter Department of Marine Technologies, Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Eyal Rahav
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Natalia Belkin
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Gilad Antler
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel; The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Guy Sisma-Ventura
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Barak Herut
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel; The Dr. Moses Strauss Department of Marine Geosciences, Charney School of Marine Sciences , University of Haifa, Haifa, Israel
| |
Collapse
|
3
|
Paris ER, Arandia-Gorostidi N, Klempay B, Bowman JS, Pontefract A, Elbon CE, Glass JB, Ingall ED, Doran PT, Som SM, Schmidt BE, Dekas AE. Single-cell analysis in hypersaline brines predicts a water-activity limit of microbial anabolic activity. SCIENCE ADVANCES 2023; 9:eadj3594. [PMID: 38134283 PMCID: PMC10745694 DOI: 10.1126/sciadv.adj3594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Hypersaline brines provide excellent opportunities to study extreme microbial life. Here, we investigated anabolic activity in nearly 6000 individual cells from solar saltern sites with water activities (aw) ranging from 0.982 to 0.409 (seawater to extreme brine). Average anabolic activity decreased exponentially with aw, with nuanced trends evident at the single-cell level: The proportion of active cells remained high (>50%) even after NaCl saturation, and subsets of cells spiked in activity as aw decreased. Intracommunity heterogeneity in activity increased as seawater transitioned to brine, suggesting increased phenotypic heterogeneity with increased physiological stress. No microbial activity was detected in the 0.409-aw brine (an MgCl2-dominated site) despite the presence of cell-like structures. Extrapolating our data, we predict an aw limit for detectable anabolic activity of 0.540, which is beyond the currently accepted limit of life based on cell division. This work demonstrates the utility of single-cell, metabolism-based techniques for detecting active life and expands the potential habitable space on Earth and beyond.
Collapse
Affiliation(s)
- Emily R. Paris
- Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
| | | | - Benjamin Klempay
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, USA
| | - Jeff S. Bowman
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, USA
| | | | - Claire E. Elbon
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jennifer B. Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ellery D. Ingall
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Peter T. Doran
- Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sanjoy M. Som
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - Britney E. Schmidt
- Departments of Astronomy and Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Anne E. Dekas
- Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Font-Verdera F, Liébana R, Rossello-Mora R, Viver T. Impact of dilution on stochastically driven methanogenic microbial communities of hypersaline anoxic sediments. FEMS Microbiol Ecol 2023; 99:fiad146. [PMID: 37989854 PMCID: PMC10673710 DOI: 10.1093/femsec/fiad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/02/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023] Open
Abstract
Sediments underlying the solar salterns of S'Avall are anoxic hypersaline ecosystems dominated by anaerobic prokaryotes, and with the especial relevance of putative methanogenic archaea. Slurries from salt-saturated sediments, diluted in a gradient of salinity and incubated for > 4 years revealed that salt concentration was the major selection force that deterministically structured microbial communities. The dominant archaea in the original communities showed a decrease in alpha diversity with dilution accompanied by the increase of bacterial alpha diversity, being highest at 5% salts. Correspondingly, methanogens decreased and in turn sulfate reducers increased with decreasing salt concentrations. Methanogens especially dominated at 25%. Different concentrations of litter of Posidonia oceanica seagrass added as a carbon substrate, did not promote any clear relevant effect. However, the addition of ampicillin as selection pressure exerted important effects on the assemblage probably due to the removal of competitors or enhancers. The amended antibiotic enhanced methanogenesis in the concentrations ≤ 15% of salts, whereas it was depleted at salinities ≥ 20% revealing key roles of ampicillin-sensitive bacteria.
Collapse
Affiliation(s)
- Francisca Font-Verdera
- Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Miquel Marquès, 21, 07190 Esporles, Illes Balears, SPAIN
| | - Raquel Liébana
- Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Miquel Marquès, 21, 07190 Esporles, Illes Balears, SPAIN
- AZTI, Basque Research Technology Alliance (BRTA), Txatxarramendi ugartea z/g, Sukarrieta, 48395 Sukarrieta, Bizkaia, Spain
| | - Ramon Rossello-Mora
- Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Miquel Marquès, 21, 07190 Esporles, Illes Balears, SPAIN
| | - Tomeu Viver
- Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Miquel Marquès, 21, 07190 Esporles, Illes Balears, SPAIN
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| |
Collapse
|
5
|
Carré L, Gonzalez D, Girard É, Franzetti B. Effects of chaotropic salts on global proteome stability in halophilic archaea: Implications for life signatures on Mars. Environ Microbiol 2023; 25:2216-2230. [PMID: 37349893 DOI: 10.1111/1462-2920.16451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/28/2023] [Indexed: 06/24/2023]
Abstract
Halophilic archaea thriving in hypersaline environments, such as salt lakes, offer models for putative life in extraterrestrial brines such as those found on Mars. However, little is known about the effect of the chaotropic salts that could be found in such brines, such as MgCl2 , CaCl2 and (per)chlorate salts, on complex biological samples like cell lysates which could be expected to be more representative of biomarkers left behind putative extraterrestrial life forms. We used intrinsic fluorescence to study the salt dependence of proteomes extracted from five halophilic strains: Haloarcula marismortui, Halobacterium salinarum, Haloferax mediterranei, Halorubrum sodomense and Haloferax volcanii. These strains were isolated from Earth environments with different salt compositions. Among the five strains that were analysed, H. mediterranei stood out as a results of its high dependency on NaCl for its proteome stabilization. Interestingly, the results showed contrasting denaturation responses of the proteomes to chaotropic salts. In particular, the proteomes of strains that are most dependent or tolerant on MgCl2 for growth exhibited higher tolerance towards chaotropic salts that are abundant in terrestrial and Martian brines. These experiments bridge together global protein properties and environmental adaptation and help guide the search for protein-like biomarkers in extraterrestrial briny environments.
Collapse
Affiliation(s)
- Lorenzo Carré
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | - Éric Girard
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | |
Collapse
|
6
|
Hallsworth JE, Udaondo Z, Pedrós‐Alió C, Höfer J, Benison KC, Lloyd KG, Cordero RJB, de Campos CBL, Yakimov MM, Amils R. Scientific novelty beyond the experiment. Microb Biotechnol 2023; 16:1131-1173. [PMID: 36786388 PMCID: PMC10221578 DOI: 10.1111/1751-7915.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 02/15/2023] Open
Abstract
Practical experiments drive important scientific discoveries in biology, but theory-based research studies also contribute novel-sometimes paradigm-changing-findings. Here, we appraise the roles of theory-based approaches focusing on the experiment-dominated wet-biology research areas of microbial growth and survival, cell physiology, host-pathogen interactions, and competitive or symbiotic interactions. Additional examples relate to analyses of genome-sequence data, climate change and planetary health, habitability, and astrobiology. We assess the importance of thought at each step of the research process; the roles of natural philosophy, and inconsistencies in logic and language, as drivers of scientific progress; the value of thought experiments; the use and limitations of artificial intelligence technologies, including their potential for interdisciplinary and transdisciplinary research; and other instances when theory is the most-direct and most-scientifically robust route to scientific novelty including the development of techniques for practical experimentation or fieldwork. We highlight the intrinsic need for human engagement in scientific innovation, an issue pertinent to the ongoing controversy over papers authored using/authored by artificial intelligence (such as the large language model/chatbot ChatGPT). Other issues discussed are the way in which aspects of language can bias thinking towards the spatial rather than the temporal (and how this biased thinking can lead to skewed scientific terminology); receptivity to research that is non-mainstream; and the importance of theory-based science in education and epistemology. Whereas we briefly highlight classic works (those by Oakes Ames, Francis H.C. Crick and James D. Watson, Charles R. Darwin, Albert Einstein, James E. Lovelock, Lynn Margulis, Gilbert Ryle, Erwin R.J.A. Schrödinger, Alan M. Turing, and others), the focus is on microbiology studies that are more-recent, discussing these in the context of the scientific process and the types of scientific novelty that they represent. These include several studies carried out during the 2020 to 2022 lockdowns of the COVID-19 pandemic when access to research laboratories was disallowed (or limited). We interviewed the authors of some of the featured microbiology-related papers and-although we ourselves are involved in laboratory experiments and practical fieldwork-also drew from our own research experiences showing that such studies can not only produce new scientific findings but can also transcend barriers between disciplines, act counter to scientific reductionism, integrate biological data across different timescales and levels of complexity, and circumvent constraints imposed by practical techniques. In relation to urgent research needs, we believe that climate change and other global challenges may require approaches beyond the experiment.
Collapse
Affiliation(s)
- John E. Hallsworth
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| | - Zulema Udaondo
- Department of Biomedical InformaticsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Carlos Pedrós‐Alió
- Department of Systems BiologyCentro Nacional de Biotecnología (CSIC)MadridSpain
| | - Juan Höfer
- Escuela de Ciencias del MarPontificia Universidad Católica de ValparaísoValparaísoChile
| | - Kathleen C. Benison
- Department of Geology and GeographyWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Karen G. Lloyd
- Microbiology DepartmentUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Radamés J. B. Cordero
- Department of Molecular Microbiology and ImmunologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Claudia B. L. de Campos
- Institute of Science and TechnologyUniversidade Federal de Sao Paulo (UNIFESP)São José dos CamposSPBrazil
| | | | - Ricardo Amils
- Department of Molecular Biology, Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)Nicolás Cabrera n° 1, Universidad Autónoma de MadridMadridSpain
- Department of Planetology and HabitabilityCentro de Astrobiología (INTA‐CSIC)Torrejón de ArdozSpain
| |
Collapse
|
7
|
Mapelli F, Barbato M, Chouaia B, Riva V, Daffonchio D, Borin S. Bacterial community structure and diversity along the halocline of Tyro deep-sea hypersaline anoxic basin. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Tyro is a deep hypersaline anoxic basin (DHAB) located at the seafloor of the Eastern Mediterranean sea. Tyro hosts a stratified eukaryotic microbiome moving from seawater to the brine, but no reports are available on its prokaryotic community. We provide the first snapshot of the bacterial community structure in Tyro brine, seawater-brine interface, and the overlaying deep seawater.
Methods
In this study, we combined the use of molecular analyses, i.e., DNA fingerprinting and 16S rRNA pyrosequencing for the description of the bacterial community structure and taxonomy. PiCRUST2 was used to infer information on the prokaryotes functional diversity. A culture-dependent approach was applied to enrich bacteria of interest for marine biotechnology.
Results
Bacterial communities sharply clustered moving from the seawater to the Tyro brine, in agreement with the abrupt increase of salinity values. Moreover, specific taxonomic groups inhabited the seawater-brine interface compared to the overlaying seawater and their identification revealed converging taxonomy with other DHABs in the Eastern Mediterranean sea. Functional traits inferred from the prokaryote taxonomy in the upper interface and the overlaying seawater indicated metabolic pathways for the synthesis of osmoprotectants, likely involved in bacterial adaptation to the steep increasing salinity. Metabolic traits related to methane and methylated compounds and to hydrocarbon degradation were also revealed in the upper interface of Tyro. The overall capability of the Tyro microbiome for hydrocarbon metabolism was confirmed by the isolation of hydrocarbonoclastic bacteria in the sediments.
Conclusions
Our results suggest that Tyro seawater-brine interface hosts a specific microbiome adapted to the polyextreme condition typical of DHABs with potential metabolic features that could be further explored for the characterization of the metabolic network connecting the brine with the deep seawater through the chemocline. Moreover, Tyro could be a reservoir of culturable microbes endowed with functionalities of interest for biotechnological applications like hydrocarbon bioremediation.
Collapse
|
8
|
Abstract
Water is the cellular milieu, drives all biochemistry within Earth's biosphere and facilitates microbe-mediated decay processes. Instead of reviewing these topics, the current article focuses on the activities of water as a preservative-its capacity to maintain the long-term integrity and viability of microbial cells-and identifies the mechanisms by which this occurs. Water provides for, and maintains, cellular structures; buffers against thermodynamic extremes, at various scales; can mitigate events that are traumatic to the cell membrane, such as desiccation-rehydration, freeze-thawing and thermal shock; prevents microbial dehydration that can otherwise exacerbate oxidative damage; mitigates against biocidal factors (in some circumstances reducing ultraviolet radiation and diluting solute stressors or toxic substances); and is effective at electrostatic screening so prevents damage to the cell by the intense electrostatic fields of some ions. In addition, the water retained in desiccated cells (historically referred to as 'bound' water) plays key roles in biomacromolecular structures and their interactions even for fully hydrated cells. Assuming that the components of the cell membrane are chemically stable or at least repairable, and the environment is fairly constant, water molecules can apparently maintain membrane geometries over very long periods provided these configurations represent thermodynamically stable states. The spores and vegetative cells of many microbes survive longer in the presence of vapour-phase water (at moderate-to-high relative humidities) than under more-arid conditions. There are several mechanisms by which large bodies of water, when cooled during subzero weather conditions remain in a liquid state thus preventing potentially dangerous (freeze-thaw) transitions for their microbiome. Microbial life can be preserved in pure water, freshwater systems, seawater, brines, ice/permafrost, sugar-rich aqueous milieux and vapour-phase water according to laboratory-based studies carried out over periods of years to decades and some natural environments that have yielded cells that are apparently thousands, or even (for hypersaline fluid inclusions of mineralized NaCl) hundreds of millions, of years old. The term preservative has often been restricted to those substances used to extend the shelf life of foods (e.g. sodium benzoate, nitrites and sulphites) or those used to conserve dead organisms, such as ethanol or formaldehyde. For living microorganisms however, the ultimate preservative may actually be water. Implications of this role are discussed with reference to the ecology of halophiles, human pathogens and other microbes; food science; biotechnology; biosignatures for life and other aspects of astrobiology; and the large-scale release/reactivation of preserved microbes caused by global climate change.
Collapse
Affiliation(s)
- John E. Hallsworth
- Institute for Global Food SecuritySchool of Biological SciencesQueen’s University Belfast19 Chlorine GardensBelfastBT9 5DLUK
| |
Collapse
|
9
|
Kotsyurbenko OR, Cordova JA, Belov AA, Cheptsov VS, Kölbl D, Khrunyk YY, Kryuchkova MO, Milojevic T, Mogul R, Sasaki S, Słowik GP, Snytnikov V, Vorobyova EA. Exobiology of the Venusian Clouds: New Insights into Habitability through Terrestrial Models and Methods of Detection. ASTROBIOLOGY 2021; 21:1186-1205. [PMID: 34255549 PMCID: PMC9545807 DOI: 10.1089/ast.2020.2296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Abstract
The search for life beyond Earth has focused on Mars and the icy moons Europa and Enceladus, all of which are considered a safe haven for life due to evidence of current or past water. The surface of Venus, on the other hand, has extreme conditions that make it a nonhabitable environment to life as we know it. This is in contrast, however, to its cloud layer, which, while still an extreme environment, may prove to be a safe haven for some extreme forms of life similar to extremophiles on Earth. We consider the venusian clouds a habitable environment based on the presence of (1) a solvent for biochemical reactions, (2) appropriate physicochemical conditions, (3) available energy, and (4) biologically relevant elements. The diversity of extreme microbial ecosystems on Earth has allowed us to identify terrestrial chemolithoautotrophic microorganisms that may be analogs to putative venusian organisms. Here, we hypothesize and describe biological processes that may be performed by such organisms in the venusian clouds. To detect putative venusian organisms, we describe potential biosignature detection methods, which include metal-microbial interactions and optical methods. Finally, we describe currently available technology that can potentially be used for modeling and simulation experiments.
Collapse
Affiliation(s)
- Oleg R. Kotsyurbenko
- Yugra State University, The Institute of Oil and Gas, School of Ecology, Khanty-Mansiysk, Russian Federation
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
| | - Jaime A. Cordova
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, USA
| | - Andrey A. Belov
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
| | - Vladimir S. Cheptsov
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
- Space Research Institute, Russian Academy of Sciences, Moscow, Russian Federation
| | - Denise Kölbl
- Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Yuliya Y. Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, Ekaterinburg, Russian Federation
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation
| | - Margarita O. Kryuchkova
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
| | - Tetyana Milojevic
- Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Rakesh Mogul
- Chemistry and Biochemistry Department, California State Polytechnic University, Pomona, California, USA
| | - Satoshi Sasaki
- School of Biosciences and Biotechnology/School of Health Sciences, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Grzegorz P. Słowik
- Institute of Materials and Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Zielona Góra, Poland
| | - Valery Snytnikov
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Elena A. Vorobyova
- Network of Researchers on the Chemical Evolution of Life, Leeds, UK
- Moscow State University, Faculty of Soil Science, Moscow, Russian Federation
| |
Collapse
|
10
|
Belilla J, Iniesto M, Moreira D, Benzerara K, López-García JM, López-Archilla AI, Reboul G, Deschamps P, Gérard E, López-García P. Archaeal overdominance close to life-limiting conditions in geothermally influenced hypersaline lakes at the Danakil Depression, Ethiopia. Environ Microbiol 2021; 23:7168-7182. [PMID: 34519149 DOI: 10.1111/1462-2920.15771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 01/04/2023]
Abstract
The Dallol protovolcanic area on the Danakil Depression (Afar region, Ethiopia) exhibits unique hydrothermal manifestations in hypersaline context, yielding varied polyextreme physicochemical conditions. Previous studies identified a wide archaeal diversity in less extreme brines but failed to identify microorganisms thriving in either high-chaotropicity, low-water-activity brines or hyperacidic-hypersaline Na-Fe-rich brines. Recently, we accessed several small lakes under intense degassing activity adjacent to the Round Mountain, west to the Dallol dome [Western Canyon Lakes (WCL); WCL1-5]. They exhibited intermediate parameter combinations (pH ~ 5, 34%-41% (weight/volume) NaCl-dominated salts with relatively high levels of chaotropic Mg-Ca salts) that should allow to better constrain life limits. These lakes were overwhelmingly dominated by Archaea, encompassing up to 99% of prokaryotic 16S rRNA gene amplicon sequences in metabarcoding studies. The majority belonged to Halobacteriota and Nanohaloarchaeota, the latter representing up to half of prokaryotic sequences. Optical and epifluorescence microscopy showed active cells in natural samples and diverse morphotypes in enrichment cultures. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy revealed tiny cells (200-300 nm diameter) epibiotically associated with somewhat larger cells (0.6-1 μm) but also the presence of silica-dominated precipitates of similar size and shape, highlighting the difficulty of distinguishing microbes from mineral biomorphs in this kind of low-biomass systems.
Collapse
Affiliation(s)
- Jodie Belilla
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Miguel Iniesto
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | | | | | - Guillaume Reboul
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Philippe Deschamps
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | | | - Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| |
Collapse
|
11
|
Fine-scale metabolic discontinuity in a stratified prokaryote microbiome of a Red Sea deep halocline. THE ISME JOURNAL 2021; 15:2351-2365. [PMID: 33649556 PMCID: PMC8319295 DOI: 10.1038/s41396-021-00931-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 02/08/2021] [Indexed: 02/03/2023]
Abstract
Deep-sea hypersaline anoxic basins are polyextreme environments in the ocean's interior characterized by the high density of brines that prevents mixing with the overlaying seawater, generating sharp chemoclines and redoxclines up to tens of meters thick that host a high concentration of microbial communities. Yet, a fundamental understanding of how such pycnoclines shape microbial life and the associated biogeochemical processes at a fine scale, remains elusive. Here, we applied high-precision sampling of the brine-seawater transition interface in the Suakin Deep, located at 2770 m in the central Red Sea, to reveal previously undocumented fine-scale community structuring and succession of metabolic groups along a salinity gradient only 1 m thick. Metagenomic profiling at a 10-cm-scale resolution highlighted spatial organization of key metabolic pathways and corresponding microbial functional units, emphasizing the prominent role and significance of salinity and oxygen in shaping their ecology. Nitrogen cycling processes are especially affected by the redoxcline with ammonia oxidation processes being taxa and layers specific, highlighting also the presence of novel microorganisms, such as novel Thaumarchaeota and anammox, adapted to the changing conditions of the chemocline. The findings render the transition zone as a critical niche for nitrogen cycling, with complementary metabolic networks, in turn underscoring the biogeochemical complexity of deep-sea brines.
Collapse
|
12
|
Font-Verdera F, Liébana R, Aldeguer-Riquelme B, Gangloff V, Santos F, Viver T, Rosselló-Móra R. Inverted microbial community stratification and spatial-temporal stability in hypersaline anaerobic sediments from the S'Avall solar salterns. Syst Appl Microbiol 2021; 44:126231. [PMID: 34332366 DOI: 10.1016/j.syapm.2021.126231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/01/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022]
Abstract
The anaerobic hypersaline sediments of an ephemeral pond from the S'Avall solar salterns constituted an excellent study system because of their easy accessibility, as well as the analogy of their microbial assemblages with some known deep-sea hypersaline anaerobic brines. By means of shotgun metagenomics and 16S rRNA gene amplicon sequencing, the microbial composition of the sediment was shown to be stable in time and space. The communities were formed by prokaryote representatives with a clear inferred anaerobic metabolism, mainly related to the methane, sulfur and nitrate cycles. The most conspicuous finding was the inverted nature of the vertical stratification. Contrarily to what could be expected, a methanogenic archaeal metabolism was found to dominate in the upper layers, whereas Bacteria with fermentative and anaerobic respiration metabolisms increased with depth. We could demonstrate the methanogenic nature of the members of candidate lineages DHVE2 and MSBL1, which were present in high abundance in this system, and described, for the first time, viruses infecting these lineages. Members of the putatively active aerobic genera Salinibacter and Halorubrum were detected especially in the deepest layers for which we hypothesize that either oxygen could be sporadically available, or they could perform anaerobic metabolisms. We also report a novel repertoire of virus species thriving in these sediments, which had special relevance because of their lysogenic lifestyles.
Collapse
Affiliation(s)
- Francisca Font-Verdera
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), Esporles, Spain.
| | - Raquel Liébana
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), Esporles, Spain
| | - Borja Aldeguer-Riquelme
- Department of Physiology, Genetics and Microbiology, Universidad de Alicante, Alicante, Spain
| | - Valentin Gangloff
- Department of Physiology, Genetics and Microbiology, Universidad de Alicante, Alicante, Spain
| | - Fernando Santos
- Department of Physiology, Genetics and Microbiology, Universidad de Alicante, Alicante, Spain
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), Esporles, Spain
| | - Ramon Rosselló-Móra
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), Esporles, Spain
| |
Collapse
|
13
|
Benison KC, O'Neill WK, Blain D, Hallsworth JE. Water Activities of Acid Brine Lakes Approach the Limit for Life. ASTROBIOLOGY 2021; 21:729-740. [PMID: 33819431 PMCID: PMC8219186 DOI: 10.1089/ast.2020.2334] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 02/09/2021] [Indexed: 05/19/2023]
Abstract
Water activity is an important characteristic for describing unusual waters and is a determinant of habitability for microorganisms. However, few empirical studies of water activity have been done for natural waters exhibiting an extreme chemistry. Here, we investigate water activity for acid brines from Western Australia and Chile with pH as low as 1.4, salinities as high as 32% total dissolved solids, and complex chemical compositions. These acid brines host diverse communities of extremophilic microorganisms, including archaea, bacteria, algae, and fungi, according to metagenomic analyses. For the most extreme brine, its water activity (0.714) was considerably lower than that of saturated (pure) NaCl brine. This study provides a thermodynamic insight into life within end-member natural waters that lie at, or possibly beyond, the very edge of habitable space on Earth.
Collapse
Affiliation(s)
- Kathleen C. Benison
- Department of Geology and Geography, West Virginia University, Morgantown, West Virginia, USA
| | - William K. O'Neill
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - David Blain
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - John E. Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
14
|
Hallsworth JE, Mancinelli RL, Conley CA, Dallas TD, Rinaldi T, Davila AF, Benison KC, Rapoport A, Cavalazzi B, Selbmann L, Changela H, Westall F, Yakimov MM, Amils R, Madigan MT. Astrobiology of life on Earth. Environ Microbiol 2021; 23:3335-3344. [PMID: 33817931 DOI: 10.1111/1462-2920.15499] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/29/2022]
Abstract
Astrobiology is mistakenly regarded by some as a field confined to studies of life beyond Earth. Here, we consider life on Earth through an astrobiological lens. Whereas classical studies of microbiology historically focused on various anthropocentric sub-fields (such as fermented foods or commensals and pathogens of crop plants, livestock and humans), addressing key biological questions via astrobiological approaches can further our understanding of all life on Earth. We highlight potential implications of this approach through the articles in this Environmental Microbiology special issue 'Ecophysiology of Extremophiles'. They report on the microbiology of places/processes including low-temperature environments and chemically diverse saline- and hypersaline habitats; aspects of sulphur metabolism in hypersaline lakes, dysoxic marine waters, and thermal acidic springs; biology of extremophile viruses; the survival of terrestrial extremophiles on the surface of Mars; biological soils crusts and rock-associated microbes of deserts; subsurface and deep biosphere, including a salticle formed within Triassic halite; and interactions of microbes with igneous and sedimentary rocks. These studies, some of which we highlight here, contribute to our understanding of the spatiotemporal reach of Earth'sfunctional biosphere, and the tenacity of terrestrial life. Their findings will help set the stage for future work focused on the constraints for life, and how organisms adapt and evolve to circumvent these constraints.
Collapse
Affiliation(s)
- John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - Rocco L Mancinelli
- Bay Area Environmental Research Institute, NASA Ames Research Center, Mountain View, CA, 94035, USA
| | | | - Tiffany D Dallas
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - Teresa Rinaldi
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, 00185, Italy
| | | | - Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, WV, 26506-6300, USA
| | - Alexander Rapoport
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, Riga, LV-1004, Latvia
| | - Barbara Cavalazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, 40126, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, 01100, Italy.,Italian Antarctic National Museum (MNA), Mycological Section, Genoa, 16128, Italy
| | - Hitesh Changela
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China.,Department of Earth and Planetary Science, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Frances Westall
- CNRS, Ctr Biophys Mol UPR 4301, Rue Charles Sadron, CS 80054, Orleans, F-45071, France
| | - Michail M Yakimov
- Institute of Marine Biological Resources and Biotechnology, IRBIM-CNR, Messina, 98122, Italy
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (CBMSO, CSICUAM), Cantoblanco, Madrid, 28049, Spain.,Centro de Astrobiología (CAB, INTA-CSIC), Torrejón de Ardoz, 28055, Spain
| | - Michael T Madigan
- School of Biological Sciences, Department of Microbiology, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
15
|
Klempay B, Arandia-Gorostidi N, Dekas AE, Bartlett DH, Carr CE, Doran PT, Dutta A, Erazo N, Fisher LA, Glass JB, Pontefract A, Som SM, Wilson JM, Schmidt BE, Bowman JS. Microbial diversity and activity in Southern California salterns and bitterns: analogues for remnant ocean worlds. Environ Microbiol 2021; 23:3825-3839. [PMID: 33621409 DOI: 10.1111/1462-2920.15440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 01/02/2023]
Abstract
Concurrent osmotic and chaotropic stress make MgCl2 -rich brines extremely inhospitable environments. Understanding the limits of life in these brines is essential to the search for extraterrestrial life on contemporary and relict ocean worlds, like Mars, which could host similar environments. We sequenced environmental 16S rRNA genes and quantified microbial activity across a broad range of salinity and chaotropicity at a Mars-analogue salt harvesting facility in Southern California, where seawater is evaporated in a series of ponds ranging from kosmotropic NaCl brines to highly chaotropic MgCl2 brines. Within NaCl brines, we observed a proliferation of specialized halophilic Euryarchaeota, which corresponded closely with the dominant taxa found in salterns around the world. These communities were characterized by very slow growth rates and high biomass accumulation. As salinity and chaotropicity increased, we found that the MgCl2 -rich brines eventually exceeded the limits of microbial activity. We found evidence that exogenous genetic material is preserved in these chaotropic brines, producing an unexpected increase in diversity in the presumably sterile MgCl2 -saturated brines. Because of their high potential for biomarker preservation, chaotropic brines could therefore serve as repositories of genetic biomarkers from nearby environments (both on Earth and beyond) making them prime targets for future life-detection missions.
Collapse
Affiliation(s)
- Benjamin Klempay
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | | | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Douglas H Bartlett
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | - Christopher E Carr
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,School of Earth and Atmospheric Studies, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Peter T Doran
- Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Avishek Dutta
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | - Natalia Erazo
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | - Luke A Fisher
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | - Jennifer B Glass
- School of Earth and Atmospheric Studies, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Sanjoy M Som
- Blue Marble Space Institute of Science, Seattle, WA, 98154, USA
| | - Jesse M Wilson
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| | - Britney E Schmidt
- School of Earth and Atmospheric Studies, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jeff S Bowman
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA
| |
Collapse
|
16
|
Fisher LA, Pontefract A, Som S, Carr CE, Klempay B, Schmidt B, Bowman J, Bartlett DH. Current state of athalassohaline deep‐sea hypersaline anoxic basin research—recommendations for future work and relevance to astrobiology. Environ Microbiol 2021; 23:3360-3369. [DOI: 10.1111/1462-2920.15414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/06/2023]
Affiliation(s)
- Luke A. Fisher
- Marine Biology Research Division Scripps Institution of Oceanography, University of California San Diego La Jolla CA 92093‐0202 USA
| | | | - Sanjoy Som
- Blue Marble Space Institute of Science Seattle WA 98104 USA
| | - Christopher E. Carr
- Daniel Guggenheim School of Aerospace Engineering Georgia Institute of Technology Atlanta GA 30332 USA
- Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta GA 30332 USA
| | - Benjamin Klempay
- Integrative Oceanography Division, Scripps Institution of Oceanography University of California San Diego La Jolla CA 92093‐0218 USA
| | - Britney Schmidt
- Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta GA 30332 USA
| | - Jeff Bowman
- Integrative Oceanography Division, Scripps Institution of Oceanography University of California San Diego La Jolla CA 92093‐0218 USA
- Center for Microbiome Innovation University of California San Diego La Jolla CA 92093‐0218 USA
| | - Douglas H. Bartlett
- Marine Biology Research Division Scripps Institution of Oceanography, University of California San Diego La Jolla CA 92093‐0202 USA
| |
Collapse
|
17
|
Martínez JM, Escudero C, Rodríguez N, Rubin S, Amils R. Subsurface and surface halophile communities of the chaotropic Salar de Uyuni. Environ Microbiol 2021; 23:3987-4001. [PMID: 33511754 DOI: 10.1111/1462-2920.15411] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 01/04/2023]
Abstract
Salar de Uyuni (SdU) is the biggest athalosaline environment on Earth, holding a high percentage of the known world Li reserves. Due to its hypersalinity, temperature and humidity fluctuations, high exposure to UV radiation, and its elevated concentration of chaotropic agents like MgCl2 , LiCl and NaBr, SdU is considered a polyextreme environment. Here, we report the prokaryotic abundance and diversity of 46 samples obtained in different seasons and geographical areas. The identified bacterial community was found to be more heterogeneous than the archaeal community, with both communities varying geographically. A seasonal difference has been detected for archaea. Salinibacter, Halonotius and Halorubrum were the most abundant genera in Salar de Uyuni. Different unclassified archaea were also detected. In addition, the diversity of two subsurface samples obtained at 20 and 80 m depth was evaluated and compared with the surface data, generating an evolutionary record of a multilayer hypersaline ecosystem.
Collapse
Affiliation(s)
- José M Martínez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (CBMSO, CSIC-UAM), Cantoblanco, Madrid, 28049, Spain
| | - Cristina Escudero
- Centro de Astrobiología (CAB, INTA-CSIC), Torrejón de Ardoz, 28055, Spain
| | - Nuria Rodríguez
- Centro de Astrobiología (CAB, INTA-CSIC), Torrejón de Ardoz, 28055, Spain
| | - Sergio Rubin
- Université Catholique de Louvain, Earth and Life Institute, Georges Lamaitre Center for Earth and Climate Research, Gante, Belgium.,Centro Nacional de Investigaciones Biotecnológicas, CNIB, Cochabamba, Bolivia
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (CBMSO, CSIC-UAM), Cantoblanco, Madrid, 28049, Spain.,Centro de Astrobiología (CAB, INTA-CSIC), Torrejón de Ardoz, 28055, Spain
| |
Collapse
|
18
|
Cozannet M, Borrel G, Roussel E, Moalic Y, Allioux M, Sanvoisin A, Toffin L, Alain K. New Insights into the Ecology and Physiology of Methanomassiliicoccales from Terrestrial and Aquatic Environments. Microorganisms 2020; 9:E30. [PMID: 33374130 PMCID: PMC7824343 DOI: 10.3390/microorganisms9010030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Members of the archaeal order Methanomassiliicoccales are methanogens mainly associated with animal digestive tracts. However, environmental members remain poorly characterized as no representatives not associated with a host have been cultivated so far. In this study, metabarcoding screening combined with quantitative PCR analyses on a collection of diverse non-host-associated environmental samples revealed that Methanomassiliicoccales were very scarce in most terrestrial and aquatic ecosystems. Relative abundance of Methanomassiliicoccales and substrates/products of methanogenesis were monitored during incubation of environmental slurries. A sediment slurry enriched in Methanomassiliicoccales was obtained from a freshwater sample. It allowed the reconstruction of a high-quality metagenome-assembled genome (MAG) corresponding to a new candidate species, for which we propose the name of Candidatus 'Methanomassiliicoccus armoricus MXMAG1'. Comparison of the annotated genome of MXMAG1 with the published genomes and MAGs from Methanomassiliicoccales belonging to the 2 known clades ('free-living'/non-host-associated environmental clade and 'host-associated'/digestive clade) allowed us to explore the putative physiological traits of Candidatus 'M. armoricus MXMAG1'. As expected, Ca. 'Methanomassiliicoccus armoricus MXMAG1' had the genetic potential to produce methane by reduction of methyl compounds and dihydrogen oxidation. This MAG encodes for several putative physiological and stress response adaptations, including biosynthesis of trehalose (osmotic and temperature regulations), agmatine production (pH regulation), and arsenic detoxication, by reduction and excretion of arsenite, a mechanism that was only present in the 'free-living' clade. An analysis of co-occurrence networks carried out on environmental samples and slurries also showed that Methanomassiliicoccales detected in terrestrial and aquatic ecosystems were strongly associated with acetate and dihydrogen producing bacteria commonly found in digestive habitats and which have been reported to form syntrophic relationships with methanogens.
Collapse
Affiliation(s)
- Marc Cozannet
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.C.); (E.R.); (Y.M.); (M.A.); (A.S.); (L.T.)
| | - Guillaume Borrel
- Unit Evolutionary Biology of the Microbial Cell, Department of Microbiology, Institute Pasteur, 75015 Paris, France;
| | - Erwan Roussel
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.C.); (E.R.); (Y.M.); (M.A.); (A.S.); (L.T.)
| | - Yann Moalic
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.C.); (E.R.); (Y.M.); (M.A.); (A.S.); (L.T.)
| | - Maxime Allioux
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.C.); (E.R.); (Y.M.); (M.A.); (A.S.); (L.T.)
| | - Amandine Sanvoisin
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.C.); (E.R.); (Y.M.); (M.A.); (A.S.); (L.T.)
| | - Laurent Toffin
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.C.); (E.R.); (Y.M.); (M.A.); (A.S.); (L.T.)
| | - Karine Alain
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.C.); (E.R.); (Y.M.); (M.A.); (A.S.); (L.T.)
| |
Collapse
|
19
|
Methanohalophilus profundi sp. nov., a methylotrophic halophilic piezophilic methanogen isolated from a deep hypersaline anoxic basin. Syst Appl Microbiol 2020; 43:126107. [DOI: 10.1016/j.syapm.2020.126107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 11/23/2022]
|
20
|
Timson DJ, Eardley J. Destressing Yeast for Higher Biofuel Yields: Can Excess Chaotropicity Be Mitigated? Appl Biochem Biotechnol 2020; 192:1368-1375. [PMID: 32803494 DOI: 10.1007/s12010-020-03406-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/12/2020] [Indexed: 11/24/2022]
Abstract
Biofuels have the capacity to contribute to carbon dioxide emission reduction and to energy security as oil reserves diminish and/or become concentrated in politically unstable regions. However, challenges exist in obtaining the maximum yield from industrial fermentations. One challenge arises from the nature of alcohols. These compounds are chaotropic (i.e. causes disorder in the system) which causes stress in the microbes producing the biofuel. Brewer's yeast (Saccharomyces cerevisiae) typically cannot grow at ethanol concentration much above 17% (v/v). Mitigation of these properties has the potential to increase yield. Previously, we have explored the effects of chaotropes on model enzyme systems and attempted (largely unsuccessfully) to offset these effects by kosmotropes (compounds which increase the order of the system, i.e. the "opposite" of chaotropes). Here we present some theoretical results which suggest that high molecular mass polyethylene glycols may be the most effective kosmotropic additives in terms of both efficacy and cost. The assumptions and limitations of these calculations are also presented. A deeper understanding of the effects of chaotropes on biofuel-producing microbes is likely to inform improvements in bioethanol yields and enable more rational approaches to the "neutralisation" of chaotropicity.
Collapse
Affiliation(s)
- David J Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK.
| | - Joshua Eardley
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK
| |
Collapse
|
21
|
Symbiosis between nanohaloarchaeon and haloarchaeon is based on utilization of different polysaccharides. Proc Natl Acad Sci U S A 2020; 117:20223-20234. [PMID: 32759215 PMCID: PMC7443923 DOI: 10.1073/pnas.2007232117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We report on cultivation and characterization of an association between Candidatus Nanohalobium constans and its host, the chitinotrophic haloarchaeon Halomicrobium LC1Hm, obtained from a crystallizer pond of marine solar salterns. High-quality nanohaloarchael genome sequence in conjunction with electron- and fluorescence microscopy, growth analysis, and proteomic and metabolomic data revealed mutually beneficial interactions between two archaea, and allowed dissection of the mechanisms for these interactions. Owing to their ubiquity in hypersaline environments, Nanohaloarchaeota may play a role in carbon turnover and ecosystem functioning, yet insights into the nature of this have been lacking. Here, we provide evidence that nanohaloarchaea can expand the range of available substrates for the haloarchaeon, suggesting that the ectosymbiont increases the metabolic capacity of the host. Nano-sized archaeota, with their small genomes and limited metabolic capabilities, are known to associate with other microbes, thereby compensating for their own auxotrophies. These diminutive and yet ubiquitous organisms thrive in hypersaline habitats that they share with haloarchaea. Here, we reveal the genetic and physiological nature of a nanohaloarchaeon–haloarchaeon association, with both microbes obtained from a solar saltern and reproducibly cultivated together in vitro. The nanohaloarchaeon Candidatus Nanohalobium constans LC1Nh is an aerotolerant, sugar-fermenting anaerobe, lacking key anabolic machinery and respiratory complexes. The nanohaloarchaeon cells are found physically connected to the chitinolytic haloarchaeon Halomicrobium sp. LC1Hm. Our experiments revealed that this haloarchaeon can hydrolyze chitin outside the cell (to produce the monosaccharide N-acetylglucosamine), using this beta-glucan to obtain carbon and energy for growth. However, LC1Hm could not metabolize either glycogen or starch (both alpha-glucans) or other polysaccharides tested. Remarkably, the nanohaloarchaeon’s ability to hydrolyze glycogen and starch to glucose enabled growth of Halomicrobium sp. LC1Hm in the absence of a chitin. These findings indicated that the nanohaloarchaeon–haloarchaeon association is both mutualistic and symbiotic; in this case, each microbe relies on its partner’s ability to degrade different polysaccharides. This suggests, in turn, that other nano-sized archaeota may also be beneficial for their hosts. Given that availability of carbon substrates can vary both spatially and temporarily, the susceptibility of Halomicrobium to colonization by Ca. Nanohalobium can be interpreted as a strategy to maximize the long-term fitness of the host.
Collapse
|
22
|
Microbiome and ecology of a hot spring-microbialite system on the Trans-Himalayan Plateau. Sci Rep 2020; 10:5917. [PMID: 32246033 PMCID: PMC7125080 DOI: 10.1038/s41598-020-62797-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 03/17/2020] [Indexed: 11/30/2022] Open
Abstract
Little is known about life in the boron-rich hot springs of Trans-Himalayas. Here, we explore the geomicrobiology of a 4438-m-high spring which emanates ~70 °C-water from a boratic microbialite called Shivlinga. Due to low atmospheric pressure, the vent-water is close to boiling point so can entropically destabilize biomacromolecular systems. Starting from the vent, Shivlinga’s geomicrobiology was revealed along the thermal gradients of an outflow-channel and a progressively-drying mineral matrix that has no running water; ecosystem constraints were then considered in relation to those of entropically comparable environments. The spring-water chemistry and sinter mineralogy were dominated by borates, sodium, thiosulfate, sulfate, sulfite, sulfide, bicarbonate, and other macromolecule-stabilizing (kosmotropic) substances. Microbial diversity was high along both of the hydrothermal gradients. Bacteria, Eukarya and Archaea constituted >98%, ~1% and <1% of Shivlinga’s microbiome, respectively. Temperature constrained the biodiversity at ~50 °C and ~60 °C, but not below 46 °C. Along each thermal gradient, in the vent-to-apron trajectory, communities were dominated by Aquificae/Deinococcus-Thermus, then Chlorobi/Chloroflexi/Cyanobacteria, and finally Bacteroidetes/Proteobacteria/Firmicutes. Interestingly, sites of >45 °C were inhabited by phylogenetic relatives of taxa for which laboratory growth is not known at >45 °C. Shivlinga’s geomicrobiology highlights the possibility that the system’s kosmotrope-dominated chemistry mitigates against the biomacromolecule-disordering effects of its thermal water.
Collapse
|
23
|
Alder-Rangel A, Idnurm A, Brand AC, Brown AJP, Gorbushina A, Kelliher CM, Campos CB, Levin DE, Bell-Pedersen D, Dadachova E, Bauer FF, Gadd GM, Braus GH, Braga GUL, Brancini GTP, Walker GM, Druzhinina I, Pócsi I, Dijksterhuis J, Aguirre J, Hallsworth JE, Schumacher J, Wong KH, Selbmann L, Corrochano LM, Kupiec M, Momany M, Molin M, Requena N, Yarden O, Cordero RJB, Fischer R, Pascon RC, Mancinelli RL, Emri T, Basso TO, Rangel DEN. The Third International Symposium on Fungal Stress - ISFUS. Fungal Biol 2020; 124:235-252. [PMID: 32389286 DOI: 10.1016/j.funbio.2020.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022]
Abstract
Stress is a normal part of life for fungi, which can survive in environments considered inhospitable or hostile for other organisms. Due to the ability of fungi to respond to, survive in, and transform the environment, even under severe stresses, many researchers are exploring the mechanisms that enable fungi to adapt to stress. The International Symposium on Fungal Stress (ISFUS) brings together leading scientists from around the world who research fungal stress. This article discusses presentations given at the third ISFUS, held in São José dos Campos, São Paulo, Brazil in 2019, thereby summarizing the state-of-the-art knowledge on fungal stress, a field that includes microbiology, agriculture, ecology, biotechnology, medicine, and astrobiology.
Collapse
Affiliation(s)
| | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, VIC, Australia
| | - Alexandra C Brand
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, England, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, England, UK
| | - Anna Gorbushina
- Bundesanstalt für Materialforschung und -prüfung, Materials and the Environment, Berlin, Germany
| | - Christina M Kelliher
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Claudia B Campos
- Departamento de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, SP, Brazil
| | - David E Levin
- Boston University Goldman School of Dental Medicine, Boston, MA, USA
| | - Deborah Bell-Pedersen
- Center for Biological Clocks Research, Department of Biology, Texas A&M University, College Station, TX, USA
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Florian F Bauer
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Matieland, South Africa
| | - Geoffrey M Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Goettingen Center for Molecular Biosciences, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Gilberto U L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Guilherme T P Brancini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Graeme M Walker
- School of Applied Sciences, Abertay University, Dundee, Scotland, UK
| | | | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Jan Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Julia Schumacher
- Bundesanstalt für Materialforschung und -prüfung, Materials and the Environment, Berlin, Germany
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy; Italian National Antarctic Museum (MNA), Mycological Section, Genoa, Italy
| | | | - Martin Kupiec
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Michelle Momany
- Fungal Biology Group & Plant Biology Department, University of Georgia, Athens, GA, USA
| | - Mikael Molin
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Natalia Requena
- Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jeruslaem, Rehovot 7610001, Israel
| | - Radamés J B Cordero
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Renata C Pascon
- Biological Sciences Department, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | | - Tamas Emri
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, Debrecen, Hungary
| | - Thiago O Basso
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
24
|
Varrella S, Tangherlini M, Corinaldesi C. Deep Hypersaline Anoxic Basins as Untapped Reservoir of Polyextremophilic Prokaryotes of Biotechnological Interest. Mar Drugs 2020; 18:md18020091. [PMID: 32019162 PMCID: PMC7074082 DOI: 10.3390/md18020091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
Deep-sea hypersaline anoxic basins (DHABs) are considered to be among the most extreme ecosystems on our planet, allowing only the life of polyextremophilic organisms. DHABs’ prokaryotes exhibit extraordinary metabolic capabilities, representing a hot topic for microbiologists and biotechnologists. These are a source of enzymes and new secondary metabolites with valuable applications in different biotechnological fields. Here, we review the current knowledge on prokaryotic diversity in DHABs, highlighting the biotechnological applications of identified taxa and isolated species. The discovery of new species and molecules from these ecosystems is expanding our understanding of life limits and is expected to have a strong impact on biotechnological applications.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, 60131 Ancona, Italy;
| | | | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, 60131 Ancona, Italy;
- Correspondence:
| |
Collapse
|
25
|
Baricz A, Chiriac CM, Andrei AȘ, Bulzu PA, Levei EA, Cadar O, Battes KP, Cîmpean M, Șenilă M, Cristea A, Muntean V, Alexe M, Coman C, Szekeres EK, Sicora CI, Ionescu A, Blain D, O'Neill WK, Edwards J, Hallsworth JE, Banciu HL. Spatio-temporal insights into microbiology of the freshwater-to-hypersaline, oxic-hypoxic-euxinic waters of Ursu Lake. Environ Microbiol 2020; 23:3523-3540. [PMID: 31894632 DOI: 10.1111/1462-2920.14909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 12/30/2022]
Abstract
Ursu Lake is located in the Middle Miocene salt deposit of Central Romania. It is stratified, and the water column has three distinct water masses: an upper freshwater-to-moderately saline stratum (0-3 m), an intermediate stratum exhibiting a steep halocline (3-3.5 m), and a lower hypersaline stratum (4 m and below) that is euxinic (i.e. anoxic and sulphidic). Recent studies have characterized the lake's microbial taxonomy and given rise to intriguing ecological questions. Here, we explore whether the communities are dynamic or stable in relation to taxonomic composition, geochemistry, biophysics, and ecophysiological functions during the annual cycle. We found: (i) seasonally fluctuating, light-dependent communities in the upper layer (≥0.987-0.990 water-activity), a stable but phylogenetically diverse population of heterotrophs in the hypersaline stratum (water activities down to 0.762) and a persistent plate of green sulphur bacteria that connects these two (0.958-0.956 water activity) at 3-3.5 to 4 m; (ii) communities that might be involved in carbon- and sulphur-cycling between and within the lake's three main water masses; (iii) uncultured lineages including Acetothermia (OP1), Cloacimonetes (WWE1), Marinimicrobia (SAR406), Omnitrophicaeota (OP3), Parcubacteria (OD1) and other Candidate Phyla Radiation bacteria, and SR1 in the hypersaline stratum (likely involved in the anaerobic steps of carbon- and sulphur-cycling); and (iv) that species richness and habitat stability are associated with high redox-potentials. Ursu Lake has a unique and complex ecology, at the same time exhibiting dynamic fluctuations and stability, and can be used as a modern analogue for ancient euxinic water bodies and comparator system for other stratified hypersaline systems.
Collapse
Affiliation(s)
- Andreea Baricz
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania
| | - Cecilia Maria Chiriac
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,National Institute of Research and Development for Biological Sciences, Institute of Biological Research, 48 Republicii Str., 400015, Cluj-Napoca, Romania
| | - Adrian-Ștefan Andrei
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 702/7, 370 05 České, Budějovice, Czech Republic
| | - Paul-Adrian Bulzu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,Institute for Interdisciplinary Research in Bio-Nano-Sciences, 42 A. Treboniu Laurian Str., Babeş-Bolyai University, 400271, Cluj-Napoca, Romania
| | - Erika Andrea Levei
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Str., 400293, Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Str., 400293, Cluj-Napoca, Romania
| | - Karina Paula Battes
- Department of Taxonomy and Ecology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania
| | - Mirela Cîmpean
- Department of Taxonomy and Ecology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania
| | - Marin Șenilă
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Str., 400293, Cluj-Napoca, Romania
| | - Adorján Cristea
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,Institute for Interdisciplinary Research in Bio-Nano-Sciences, 42 A. Treboniu Laurian Str., Babeş-Bolyai University, 400271, Cluj-Napoca, Romania
| | - Vasile Muntean
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania
| | - Mircea Alexe
- Department of Physical and Technical Geography, Faculty of Geography, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania
| | - Cristian Coman
- National Institute of Research and Development for Biological Sciences, Institute of Biological Research, 48 Republicii Str., 400015, Cluj-Napoca, Romania
| | - Edina Kriszta Szekeres
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,National Institute of Research and Development for Biological Sciences, Institute of Biological Research, 48 Republicii Str., 400015, Cluj-Napoca, Romania
| | - Cosmin Ionel Sicora
- Biological Research Center Jibou, 16 Wesselenyi Miklos Str., 455200, Jibou, Romania
| | - Artur Ionescu
- Faculty of Environmental Science and Engineering, Babeş-Bolyai University, 30 Fantanele Str., 400294, Cluj-Napoca, Romania
| | - David Blain
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - William Kenneth O'Neill
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - Jessica Edwards
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - John Edward Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 7BL, UK
| | - Horia Leonard Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 5-7 Clinicilor Str., 400006, Cluj-Napoca, Romania.,Institute for Interdisciplinary Research in Bio-Nano-Sciences, 42 A. Treboniu Laurian Str., Babeş-Bolyai University, 400271, Cluj-Napoca, Romania
| |
Collapse
|
26
|
|
27
|
Eardley J, Dedi C, Dymond M, Hallsworth JE, Timson DJ. Evidence for chaotropicity/kosmotropicity offset in a yeast growth model. Biotechnol Lett 2019; 41:1309-1318. [DOI: 10.1007/s10529-019-02737-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/20/2019] [Indexed: 11/28/2022]
|
28
|
|
29
|
Cubillos CF, Paredes A, Yáñez C, Palma J, Severino E, Vejar D, Grágeda M, Dorador C. Insights Into the Microbiology of the Chaotropic Brines of Salar de Atacama, Chile. Front Microbiol 2019; 10:1611. [PMID: 31354691 PMCID: PMC6637823 DOI: 10.3389/fmicb.2019.01611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/27/2019] [Indexed: 02/02/2023] Open
Abstract
Microbial life inhabiting hypersaline environments belong to a limited group of extremophile or extremotolerant taxa. Natural or artificial hypersaline environments are not limited to high concentrations of NaCl, and under such conditions, specific adaptation mechanisms are necessary to permit microbial survival and growth. Argentina, Bolivia, and Chile include three large salars (salt flats) which globally, represent the largest lithium reserves, and are commonly referred to as the Lithium Triangle Zone. To date, a large amount of information has been generated regarding chemical, geological, meteorological and economical perspectives of these salars. However, there is a remarkable lack of information regarding the biology of these unique environments. Here, we report the presence of two bacterial strains (isolates LIBR002 and LIBR003) from one of the most hypersaline lithium-dominated man-made environments (total salinity 556 g/L; 11.7 M LiCl) reported to date. Both isolates were classified to the Bacillus genera, but displayed differences in 16S rRNA gene and fatty acid profiles. Our results also revealed that the isolates are lithium-tolerant and that they are phylogenetically differentiated from those Bacillus associated with high NaCl concentration environments, and form a new clade from the Lithium Triangle Zone. To determine osmoadaptation strategies in these microorganisms, both isolates were characterized using morphological, metabolic and physiological attributes. We suggest that our characterization of bacterial isolates from a highly lithium-enriched environment has revealed that even at such extreme salinities with high concentrations of chaotropic solutes, scope for microbial life exists. These conditions have previously been considered to limit the development of life, and our work extends the window of life beyond high concentrations of MgCl2, as previously reported, to LiCl. Our results can be used to further the understanding of salt tolerance, most especially for LiCl-dominated brines, and likely have value as models for the understanding of putative extra-terrestrial (e.g., Martian) life.
Collapse
Affiliation(s)
- Carolina F. Cubillos
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Department of Chemical Engineering and Mineral Process, Center for Advanced Study of Lithium and Industrial Minerals, Universidad de Antofagasta, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
| | - Adrián Paredes
- Laboratorio Química Biológica, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | - Carolina Yáñez
- Laboratorio Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jenifer Palma
- Departamento de Ciencias de los Alimentos, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Esteban Severino
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Drina Vejar
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
| | - Mario Grágeda
- Department of Chemical Engineering and Mineral Process, Center for Advanced Study of Lithium and Industrial Minerals, Universidad de Antofagasta, Antofagasta, Chile
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
30
|
Zeaiter Z, Marasco R, Booth JM, Prosdocimi EM, Mapelli F, Callegari M, Fusi M, Michoud G, Molinari F, Daffonchio D, Borin S, Crotti E. Phenomics and Genomics Reveal Adaptation of Virgibacillus dokdonensis Strain 21D to Its Origin of Isolation, the Seawater-Brine Interface of the Mediterranean Sea Deep Hypersaline Anoxic Basin Discovery. Front Microbiol 2019; 10:1304. [PMID: 31244812 PMCID: PMC6581673 DOI: 10.3389/fmicb.2019.01304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/27/2019] [Indexed: 12/03/2022] Open
Abstract
The adaptation of sporeformers to extreme environmental conditions is frequently questioned due to their capacity to produce highly resistant endospores that are considered as resting contaminants, not representing populations adapted to the system. In this work, in order to gain a better understanding of bacterial adaptation to extreme habitats, we investigated the phenotypic and genomic characteristics of the halophile Virgibacillus sp. 21D isolated from the seawater-brine interface (SBI) of the MgCl2-saturated deep hypersaline anoxic basin Discovery located in the Eastern Mediterranean Sea. Vegetative cells of strain 21D showed the ability to grow in the presence of high concentrations of MgCl2, such as 14.28% corresponding to 1.5 M. Biolog phenotype MicroArray (PM) was adopted to investigate the strain phenotype, with reference to carbon energy utilization and osmotic tolerance. The strain was able to metabolize only 8.4% of 190 carbon sources provided in the PM1 and PM2 plates, mainly carbohydrates, in accordance with the low availability of nutrients in its habitat of origin. By using in silico DNA-DNA hybridization the analysis of strain 21D genome, assembled in one circular contig, revealed that the strain belongs to the species Virgibacillus dokdonensis. The genome presented compatible solute-based osmoadaptation traits, including genes encoding for osmotically activated glycine-betaine/carnitine/choline ABC transporters, as well as ectoine synthase enzymes. Osmoadaptation of the strain was then confirmed with phenotypic assays by using the osmolyte PM9 Biolog plate and growth experiments. Furthermore, the neutral isoelectric point of the reconstructed proteome suggested that the strain osmoadaptation was mainly mediated by compatible solutes. The presence of genes involved in iron acquisition and metabolism indicated that osmoadaptation was tailored to the iron-depleted saline waters of the Discovery SBI. Overall, both phenomics and genomics highlighted the potential capability of V. dokdonensis 21D vegetative cells to adapt to the environmental conditions in Discovery SBI.
Collapse
Affiliation(s)
- Zahraa Zeaiter
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Ramona Marasco
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jenny M. Booth
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Erica M. Prosdocimi
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Francesca Mapelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Matteo Callegari
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Marco Fusi
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Grégoire Michoud
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Francesco Molinari
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Daniele Daffonchio
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sara Borin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
31
|
Guan Y, Ngugi DK, Vinu M, Blom J, Alam I, Guillot S, Ferry JG, Stingl U. Comparative Genomics of the Genus Methanohalophilus, Including a Newly Isolated Strain From Kebrit Deep in the Red Sea. Front Microbiol 2019; 10:839. [PMID: 31068917 PMCID: PMC6491703 DOI: 10.3389/fmicb.2019.00839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/02/2019] [Indexed: 01/25/2023] Open
Abstract
Halophilic methanogens play an important role in the carbon cycle in hypersaline environments, but are under-represented in culture collections. In this study, we describe a novel Methanohalophilus strain that was isolated from the sulfide-rich brine-seawater interface of Kebrit Deep in the Red Sea. Based on physiological and phylogenomic features, strain RSK, which is the first methanogenic archaeon to be isolated from a deep hypersaline anoxic brine lake of the Red Sea, represents a novel species of this genus. In order to compare the genetic traits underpinning the adaptations of this genus in diverse hypersaline environments, we sequenced the genome of strain RSK and compared it with genomes of previously isolated and well characterized species in this genus (Methanohalophilus mahii, Methanohalophilus halophilus, Methanohalophilus portucalensis, and Methanohalophilus euhalobius). These analyses revealed a highly conserved genomic core of greater than 93% of annotated genes (1490 genes) containing pathways for methylotrophic methanogenesis, osmoprotection through salt-out strategy, and oxidative stress response, among others. Despite the high degree of genomic conservation, species-specific differences in sulfur and glycogen metabolisms, viral resistance, amino acid, and peptide uptake machineries were also evident. Thus, while Methanohalophilus species are found in diverse extreme environments, each genotype also possesses adaptive traits that are likely relevant in their respective hypersaline habitats.
Collapse
Affiliation(s)
- Yue Guan
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - David K. Ngugi
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Manikandan Vinu
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jochen Blom
- Bioinformatik und Systembiologie, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sylvain Guillot
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - James G. Ferry
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Ulrich Stingl
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Microbiology and Cell Science, UF/IFAS Fort Lauderdale Research and Education Center, University of Florida, Davie, FL, United States
| |
Collapse
|
32
|
Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S, Giovannelli D. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Front Microbiol 2019; 10:780. [PMID: 31037068 PMCID: PMC6476344 DOI: 10.3389/fmicb.2019.00780] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/27/2019] [Indexed: 01/21/2023] Open
Abstract
Prokaryotic life has dominated most of the evolutionary history of our planet, evolving to occupy virtually all available environmental niches. Extremophiles, especially those thriving under multiple extremes, represent a key area of research for multiple disciplines, spanning from the study of adaptations to harsh conditions, to the biogeochemical cycling of elements. Extremophile research also has implications for origin of life studies and the search for life on other planetary and celestial bodies. In this article, we will review the current state of knowledge for the biospace in which life operates on Earth and will discuss it in a planetary context, highlighting knowledge gaps and areas of opportunity.
Collapse
Affiliation(s)
- Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA, United States
| | - Heidi S Aronson
- Department of Biology, University of Southern California, Los Angeles, CA, United States
| | - Diana P Bojanova
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Jayme Feyhl-Buska
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Michael L Wong
- Department of Astronomy - Astrobiology Program, University of Washington, Seattle, WA, United States.,NASA Astrobiology Institute's Virtual Planetary Laboratory, University of Washington, Seattle, WA, United States
| | - Shu Zhang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA, United States
| | - Donato Giovannelli
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Department of Biology, University of Naples "Federico II", Naples, Italy.,Department of Marine and Coastal Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.,Institute for Biological Resources and Marine Biotechnology, National Research Council of Italy, Ancona, Italy
| |
Collapse
|
33
|
La Cono V, Bortoluzzi G, Messina E, La Spada G, Smedile F, Giuliano L, Borghini M, Stumpp C, Schmitt-Kopplin P, Harir M, O'Neill WK, Hallsworth JE, Yakimov M. The discovery of Lake Hephaestus, the youngest athalassohaline deep-sea formation on Earth. Sci Rep 2019; 9:1679. [PMID: 30737448 PMCID: PMC6368551 DOI: 10.1038/s41598-018-38444-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/27/2018] [Indexed: 12/30/2022] Open
Abstract
Hydrated, magnesium-rich minerals and subglacial brines exist on the martian surface, so the habitability of high-Mg2+ environments on Earth has extraterrestrial (as well as terrestrial) implications. Here, we report the discovery of a MgCl2-dominated (4.72 M) brine lake on the floor of the Mediterranean Ridge that underlies a 3500-m water column, and name it Lake Hephaestus. Stable isotope analyses indicated that the Hephaestus brine is derived from interactions between ancient bishofite-enriched evaporites and subsurface fluids. Analyses of sediment pore waters indicated that the Hephaestus depression had contained the MgCl2 brine for a remarkably short period; only 700 years. Lake Hephaestus is, therefore, the youngest among currently known submarine athalassohaline brine lakes on Earth. Due to its biologically hostile properties (low water-activity and extreme chaotropicity), the Hephaestus brine is devoid of life. By contrast, the seawater-Hephaestus brine interface has been shown to act as refuge for extremely halophilic and magnesium-adapted stratified communities of microbes, even at MgCl2 concentrations that approach the water-activity limit for life (0.653).
Collapse
Affiliation(s)
- Violetta La Cono
- CNR, Institute for Coastal Marine Environment, Messina, 98122, Italy
| | | | - Enzo Messina
- CNR, Institute for Coastal Marine Environment, Messina, 98122, Italy
| | - Gina La Spada
- CNR, Institute for Coastal Marine Environment, Messina, 98122, Italy
| | - Francesco Smedile
- CNR, Institute for Coastal Marine Environment, Messina, 98122, Italy
| | - Laura Giuliano
- Mediterranean Science Commission (CIESM), MC, 98000, Monaco
| | | | - Christine Stumpp
- Institute of Groundwater Ecology, Helmholtz Centre Munich, Neuherberg, 85764, Germany.,Institute of Hydraulics and Rural Water Management, University of Natural Resources and Life Sciences Vienna, Wien, 1190, Austria
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Centre Munich, Neuherberg, 85764, Germany.,Technische Universität München, Lehrstuhl für Analytische Lebensmittelchemie, Freising, 85354, Germany
| | - Mourad Harir
- Research Unit Analytical BioGeoChemistry, Helmholtz Centre Munich, Neuherberg, 85764, Germany
| | - William K O'Neill
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Michail Yakimov
- CNR, Institute for Coastal Marine Environment, Messina, 98122, Italy. .,Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad, 236016, Russia.
| |
Collapse
|
34
|
Hallsworth JE. Wooden owl that redefines Earth's biosphere may yet catapult a fungus into space. Environ Microbiol 2019; 21:2202-2211. [PMID: 30588723 PMCID: PMC6618284 DOI: 10.1111/1462-2920.14510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 11/30/2022]
Affiliation(s)
- John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, MBC, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
35
|
Lee CJD, McMullan PE, O'Kane CJ, Stevenson A, Santos IC, Roy C, Ghosh W, Mancinelli RL, Mormile MR, McMullan G, Banciu HL, Fares MA, Benison KC, Oren A, Dyall-Smith ML, Hallsworth JE. NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats. FEMS Microbiol Rev 2018; 42:672-693. [PMID: 29893835 DOI: 10.1093/femsre/fuy026] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/08/2018] [Indexed: 11/12/2022] Open
Abstract
NaCl-saturated brines such as saltern crystalliser ponds, inland salt lakes, deep-sea brines and liquids-of-deliquescence on halite are commonly regarded as a paradigm for the limit of life on Earth. There are, however, other habitats that are thermodynamically more extreme. Typically, NaCl-saturated environments contain all domains of life and perform complete biogeochemical cycling. Despite their reduced water activity, ∼0.755 at 5 M NaCl, some halophiles belonging to the Archaea and Bacteria exhibit optimum growth/metabolism in these brines. Furthermore, the recognised water-activity limit for microbial function, ∼0.585 for some strains of fungi, lies far below 0.755. Other biophysical constraints on the microbial biosphere (temperatures of >121°C; pH > 12; and high chaotropicity; e.g. ethanol at >18.9% w/v (24% v/v) and MgCl2 at >3.03 M) can prevent any cellular metabolism or ecosystem function. By contrast, NaCl-saturated environments contain biomass-dense, metabolically diverse, highly active and complex microbial ecosystems; and this underscores their moderate character. Here, we survey the evidence that NaCl-saturated brines are biologically permissive, fertile habitats that are thermodynamically mid-range rather than extreme. Indeed, were NaCl sufficiently soluble, some halophiles might grow at concentrations of up to 8 M. It may be that the finite solubility of NaCl has stabilised the genetic composition of halophile populations and limited the action of natural selection in driving halophile evolution towards greater xerophilicity. Further implications are considered for the origin(s) of life and other aspects of astrobiology.
Collapse
Affiliation(s)
- Callum J D Lee
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Phillip E McMullan
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Callum J O'Kane
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Inês C Santos
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Chayan Roy
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Wriddhiman Ghosh
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Rocco L Mancinelli
- BAER Institute, Mail Stop 239-4, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Melanie R Mormile
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Geoffrey McMullan
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Horia L Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Mario A Fares
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain.,Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de Valencia (CSIC-UV), Valencia, 46980, Spain.,Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Dublin, Ireland
| | - Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, WV 26506-6300, USA
| | - Aharon Oren
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, Jerusalem 9190401, Israel
| | - Mike L Dyall-Smith
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| |
Collapse
|
36
|
Merlino G, Barozzi A, Michoud G, Ngugi DK, Daffonchio D. Microbial ecology of deep-sea hypersaline anoxic basins. FEMS Microbiol Ecol 2018; 94:4995905. [DOI: 10.1093/femsec/fiy085] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/09/2018] [Indexed: 01/12/2023] Open
Affiliation(s)
- Giuseppe Merlino
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal 23955-6900, Saudi Arabia
| | - Alan Barozzi
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal 23955-6900, Saudi Arabia
| | - Grégoire Michoud
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal 23955-6900, Saudi Arabia
| | - David Kamanda Ngugi
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal 23955-6900, Saudi Arabia
| | - Daniele Daffonchio
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
37
|
Steinle L, Knittel K, Felber N, Casalino C, de Lange G, Tessarolo C, Stadnitskaia A, Sinninghe Damsté JS, Zopfi J, Lehmann MF, Treude T, Niemann H. Life on the edge: active microbial communities in the Kryos MgCl 2-brine basin at very low water activity. ISME JOURNAL 2018; 12:1414-1426. [PMID: 29666446 DOI: 10.1038/s41396-018-0107-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/19/2018] [Accepted: 03/12/2018] [Indexed: 11/09/2022]
Abstract
The Kryos Basin is a deep-sea hypersaline anoxic basin (DHAB) located in the Eastern Mediterranean Sea (34.98°N 22.04°E). It is filled with brine of re-dissolved Messinian evaporites and is nearly saturated with MgCl2-equivalents, which makes this habitat extremely challenging for life. The strong density difference between the anoxic brine and the overlying oxic Mediterranean seawater impedes mixing, giving rise to a narrow chemocline. Here, we investigate the microbial community structure and activities across the seawater-brine interface using a combined biogeochemical, next-generation sequencing, and lipid biomarker approach. Within the interface, we detected fatty acids that were distinctly 13C-enriched when compared to other fatty acids. These likely originated from sulfide-oxidizing bacteria that fix carbon via the reverse tricarboxylic acid cycle. In the lower part of the interface, we also measured elevated rates of methane oxidation, probably mediated by aerobic methanotrophs under micro-oxic conditions. Sulfate reduction rates increased across the interface and were highest within the brine, providing first evidence that sulfate reducers (likely Desulfovermiculus and Desulfobacula) thrive in the Kryos Basin at a water activity of only ~0.4 Aw. Our results demonstrate that a highly specialized microbial community in the Kryos Basin has adapted to the poly-extreme conditions of a DHAB with nearly saturated MgCl2 brine, extending the known environmental range where microbial life can persist.
Collapse
Affiliation(s)
- Lea Steinle
- Department of Environmental Sciences, University of Basel, Basel, Switzerland. .,GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany.
| | - Katrin Knittel
- Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Nicole Felber
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Claudia Casalino
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Gert de Lange
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Chiara Tessarolo
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Alina Stadnitskaia
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Texel, The Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands.,Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Texel, The Netherlands
| | - Jakob Zopfi
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Moritz F Lehmann
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Tina Treude
- Department of Earth, Planetary and Space Sciences, University of Los Angeles, Los Angeles, CA, USA.,Department of Atmospheric and Oceanic Sciences, University of Los Angeles, Los Angeles, CA, USA
| | - Helge Niemann
- Department of Environmental Sciences, University of Basel, Basel, Switzerland.,Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Texel, The Netherlands.,Department of Geology, Centre for Arctic Gas Hydrate, Environment and Climate, UiT the Arctic University of Norway, 9037, Tromsø, Norway
| |
Collapse
|
38
|
Fox-Powell MG, Cockell CS. Building a Geochemical View of Microbial Salt Tolerance: Halophilic Adaptation of Marinococcus in a Natural Magnesium Sulfate Brine. Front Microbiol 2018; 9:739. [PMID: 29713317 PMCID: PMC5911959 DOI: 10.3389/fmicb.2018.00739] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/29/2018] [Indexed: 11/13/2022] Open
Abstract
Current knowledge of life in hypersaline habitats is mostly limited to sodium and chloride-dominated environments. This narrow compositional window does not reflect the diversity of brine environments that exist naturally on Earth and other planetary bodies. Understanding the limits of the microbial biosphere and predicting extraterrestrial habitability demands a systematic effort to characterize ionic specificities of organisms from a representative range of saline habitats. Here, we investigated a strain of Marinococcus isolated from the magnesium and sulfate-dominated Basque Lakes (British Columbia, Canada). This organism was the sole isolate obtained after exposure to exceptionally high levels of Mg2+ and SO42- ions (2.369 and 2.840 M, respectively), and grew at extremes of ionic strength not normally encountered in Na+/Cl- brines (12.141 mol liter-1). Its association at the 16S rDNA level with bacterial halophiles suggests that ancestral halophily has allowed it to adapt to a different saline habitat. Growth was demonstrated in media dominated by NaCl, Na2SO4, MgCl2, and MgSO4, yet despite this plasticity the strain was still restricted; requiring either Na+ or Cl- to maintain short doubling times. Water activity could not explain growth rate differences between media, demonstrating the importance of ionic composition for dictating microbial growth windows. A new framework for understanding growth in brines is required, that accounts for the geochemical history of brines as well as the various stresses that ions impose on microbes. Studies such as this are required to gain a truly universal understanding of the limits of biological ion tolerance.
Collapse
Affiliation(s)
- Mark G Fox-Powell
- UK Centre for Astrobiology, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, United Kingdom.,School of Earth and Environmental Sciences, University of St Andrews, St Andrews, United Kingdom
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
39
|
Schwendner P, Bohmeier M, Rettberg P, Beblo-Vranesevic K, Gaboyer F, Moissl-Eichinger C, Perras AK, Vannier P, Marteinsson VT, Garcia-Descalzo L, Gómez F, Malki M, Amils R, Westall F, Riedo A, Monaghan EP, Ehrenfreund P, Cabezas P, Walter N, Cockell C. Beyond Chloride Brines: Variable Metabolomic Responses in the Anaerobic Organism Yersinia intermedia MASE-LG-1 to NaCl and MgSO 4 at Identical Water Activity. Front Microbiol 2018; 9:335. [PMID: 29535699 PMCID: PMC5835128 DOI: 10.3389/fmicb.2018.00335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/12/2018] [Indexed: 11/18/2022] Open
Abstract
Growth in sodium chloride (NaCl) is known to induce stress in non-halophilic microorganisms leading to effects on the microbial metabolism and cell structure. Microorganisms have evolved a number of adaptations, both structural and metabolic, to counteract osmotic stress. These strategies are well-understood for organisms in NaCl-rich brines such as the accumulation of certain organic solutes (known as either compatible solutes or osmolytes). Less well studied are responses to ionic environments such as sulfate-rich brines which are prevalent on Earth but can also be found on Mars. In this paper, we investigated the global metabolic response of the anaerobic bacterium Yersinia intermedia MASE-LG-1 to osmotic salt stress induced by either magnesium sulfate (MgSO4) or NaCl at the same water activity (0.975). Using a non-targeted mass spectrometry approach, the intensity of hundreds of metabolites was measured. The compatible solutes L-asparagine and sucrose were found to be increased in both MgSO4 and NaCl compared to the control sample, suggesting a similar osmotic response to different ionic environments. We were able to demonstrate that Yersinia intermedia MASE-LG-1 accumulated a range of other compatible solutes. However, we also found the global metabolic responses, especially with regard to amino acid metabolism and carbohydrate metabolism, to be salt-specific, thus, suggesting ion-specific regulation of specific metabolic pathways.
Collapse
Affiliation(s)
- Petra Schwendner
- School of Physics and Astronomy, UK Center for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria Bohmeier
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Petra Rettberg
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Kristina Beblo-Vranesevic
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne, Germany
| | - Frédéric Gaboyer
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique, Orléans, France
| | - Christine Moissl-Eichinger
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Alexandra K. Perras
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Department of Microbiology and Archaea, University of Regensburg, Regensburg, Germany
| | | | - Viggó T. Marteinsson
- MATIS - Prokaria, Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | | | - Felipe Gómez
- Instituto Nacional de Técnica Aeroespacial - Centro de Astrobiología, Madrid, Spain
| | - Moustafa Malki
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Frances Westall
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique, Orléans, France
| | - Andreas Riedo
- Leiden Observatory, Universiteit Leiden, Leiden, Netherlands
| | | | - Pascale Ehrenfreund
- Leiden Observatory, Universiteit Leiden, Leiden, Netherlands
- Space Policy Institute, George Washington University, Washington, DC, United States
| | - Patricia Cabezas
- Space Policy Institute, George Washington University, Washington, DC, United States
- European Science Foundation, Strasbourg, France
| | - Nicolas Walter
- Space Policy Institute, George Washington University, Washington, DC, United States
- European Science Foundation, Strasbourg, France
| | - Charles Cockell
- School of Physics and Astronomy, UK Center for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
40
|
Liu K, Ding X, Tang X, Wang J, Li W, Yan Q, Liu Z. Macro and Microelements Drive Diversity and Composition of Prokaryotic and Fungal Communities in Hypersaline Sediments and Saline-Alkaline Soils. Front Microbiol 2018. [PMID: 29535703 PMCID: PMC5835090 DOI: 10.3389/fmicb.2018.00352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding the effects of environmental factors on microbial communities is critical for microbial ecology, but it remains challenging. In this study, we examined the diversity (alpha diversity) and community compositions (beta diversity) of prokaryotes and fungi in hypersaline sediments and salinized soils from northern China. Environmental variables were highly correlated, but they differed significantly between the sediments and saline soils. The compositions of prokaryotic and fungal communities in the hypersaline sediments were different from those in adjacent saline–alkaline soils, indicating a habitat-specific microbial distribution pattern. The macroelements (S, P, K, Mg, and Fe) and Ca were, respectively, correlated closely with the alpha diversity of prokaryotes and fungi, while the macronutrients (e.g., Na, S, P, and Ca) were correlated with the prokaryotic and fungal beta-diversity (P ≤ 0.05). And, the nine microelements (e.g., Al, Ba, Co, Hg, and Mn) and micronutrients (Ba, Cd, and Sr) individually shaped the alpha diversity of prokaryotes and fungi, while the six microelements (e.g., As, Ba, Cr, and Ge) and only the trace elements (Cr and Cu), respectively, influenced the beta diversity of prokaryotes and fungi (P < 0.05). Variation-partitioning analysis (VPA) showed that environmental variables jointly explained 55.49% and 32.27% of the total variation for the prokaryotic and fungal communities, respectively. Together, our findings demonstrate that the diversity and community composition of the prokaryotes and fungi were driven by different macro and microelements in saline habitats, and that geochemical elements could more widely regulate the diversity and community composition of prokaryotes than these of fungi.
Collapse
Affiliation(s)
- Kaihui Liu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Xiaowei Ding
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Xiaofei Tang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Wenjun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qingyun Yan
- Environmental Microbiome Research Center and School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| |
Collapse
|
41
|
La Cono V, Ruggeri G, Azzaro M, Crisafi F, Decembrini F, Denaro R, La Spada G, Maimone G, Monticelli LS, Smedile F, Giuliano L, Yakimov MM. Contribution of Bicarbonate Assimilation to Carbon Pool Dynamics in the Deep Mediterranean Sea and Cultivation of Actively Nitrifying and CO 2-Fixing Bathypelagic Prokaryotic Consortia. Front Microbiol 2018; 9:3. [PMID: 29403458 PMCID: PMC5780414 DOI: 10.3389/fmicb.2018.00003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/03/2018] [Indexed: 11/16/2022] Open
Abstract
Covering two-thirds of our planet, the global deep ocean plays a central role in supporting life on Earth. Among other processes, this biggest ecosystem buffers the rise of atmospheric CO2. Despite carbon sequestration in the deep ocean has been known for a long time, microbial activity in the meso- and bathypelagic realm via the "assimilation of bicarbonate in the dark" (ABD) has only recently been described in more details. Based on recent findings, this process seems primarily the result of chemosynthetic and anaplerotic reactions driven by different groups of deep-sea prokaryoplankton. We quantified bicarbonate assimilation in relation to total prokaryotic abundance, prokaryotic heterotrophic production and respiration in the meso- and bathypelagic Mediterranean Sea. The measured ABD values, ranging from 133 to 370 μg C m-3 d-1, were among the highest ones reported worldwide for similar depths, likely due to the elevated temperature of the deep Mediterranean Sea (13-14°C also at abyssal depths). Integrated over the dark water column (≥200 m depth), bicarbonate assimilation in the deep-sea ranged from 396 to 873 mg C m-2 d-1. This quantity of produced de novo organic carbon amounts to about 85-424% of the phytoplankton primary production and covers up to 62% of deep-sea prokaryotic total carbon demand. Hence, the ABD process in the meso- and bathypelagic Mediterranean Sea might substantially contribute to the inorganic and organic pool and significantly sustain the deep-sea microbial food web. To elucidate the ABD key-players, we established three actively nitrifying and CO2-fixing prokaryotic enrichments. Consortia were characterized by the co-occurrence of chemolithoautotrophic Thaumarchaeota and chemoheterotrophic proteobacteria. One of the enrichments, originated from Ionian bathypelagic waters (3,000 m depth) and supplemented with low concentrations of ammonia, was dominated by the Thaumarchaeota "low-ammonia-concentration" deep-sea ecotype, an enigmatic and ecologically important group of organisms, uncultured until this study.
Collapse
Affiliation(s)
- Violetta La Cono
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Gioachino Ruggeri
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Maurizio Azzaro
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Francesca Crisafi
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Franco Decembrini
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Renata Denaro
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Gina La Spada
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Giovanna Maimone
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Luis S. Monticelli
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
| | - Francesco Smedile
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Laura Giuliano
- Mediterranean Science Commission (CIESM), Monaco, Monaco
| | - Michail M. Yakimov
- Institute for Coastal Marine Environment, National Research Council, Messina, Italy
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|
42
|
Alder-Rangel A, Bailão AM, da Cunha AF, Soares CMA, Wang C, Bonatto D, Dadachova E, Hakalehto E, Eleutherio ECA, Fernandes ÉKK, Gadd GM, Braus GH, Braga GUL, Goldman GH, Malavazi I, Hallsworth JE, Takemoto JY, Fuller KK, Selbmann L, Corrochano LM, von Zeska Kress MR, Bertolini MC, Schmoll M, Pedrini N, Loera O, Finlay RD, Peralta RM, Rangel DEN. The second International Symposium on Fungal Stress: ISFUS. Fungal Biol 2017; 122:386-399. [PMID: 29801782 DOI: 10.1016/j.funbio.2017.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/23/2022]
Abstract
The topic of 'fungal stress' is central to many important disciplines, including medical mycology, chronobiology, plant and insect pathology, industrial microbiology, material sciences, and astrobiology. The International Symposium on Fungal Stress (ISFUS) brought together researchers, who study fungal stress in a variety of fields. The second ISFUS was held in May 8-11 2017 in Goiania, Goiás, Brazil and hosted by the Instituto de Patologia Tropical e Saúde Pública at the Universidade Federal de Goiás. It was supported by grants from CAPES and FAPEG. Twenty-seven speakers from 15 countries presented their research related to fungal stress biology. The Symposium was divided into seven topics: 1. Fungal biology in extreme environments; 2. Stress mechanisms and responses in fungi: molecular biology, biochemistry, biophysics, and cellular biology; 3. Fungal photobiology in the context of stress; 4. Role of stress in fungal pathogenesis; 5. Fungal stress and bioremediation; 6. Fungal stress in agriculture and forestry; and 7. Fungal stress in industrial applications. This article provides an overview of the science presented and discussed at ISFUS-2017.
Collapse
Affiliation(s)
| | - Alexandre M Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil
| | - Anderson F da Cunha
- Laboratório de Bioquímica e Genética Aplicada, Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, 90040-060, SP, Brazil
| | - Célia M A Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil
| | - Chengshu Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Diego Bonatto
- Center for Biotechnology, Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, 13565-905, RS, Brazil
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Elias Hakalehto
- Department of Agricultural Sciences, P.O.B. 27, FI-00014, University of Helsinki, Finland
| | - Elis C A Eleutherio
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-901, RJ, Brazil
| | - Éverton K K Fernandes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO 74605-050, Brazil
| | - Geoffrey M Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD15EH, Scotland, UK
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, D-37077, Germany
| | - Gilberto U L Braga
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Gustavo H Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Iran Malavazi
- Centro de Ciências Biológicas e da Saúde, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, 13565-905, SP, Brazil
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Jon Y Takemoto
- Department of Biology, Utah State University, Logan, UT 84322, USA
| | - Kevin K Fuller
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Laura Selbmann
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Marcia R von Zeska Kress
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14040-903, SP, Brazil
| | - Maria Célia Bertolini
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, 14800-060, Araraquara, SP, Brazil
| | - Monika Schmoll
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad-Lorenz Straße 24, 3430 Tulln, Austria
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de La Plata (UNLP), calles 60 y 120, 1900 La Plata, Argentina
| | - Octavio Loera
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, C.P. 09340, Mexico City, Mexico
| | - Roger D Finlay
- Uppsala Biocenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 750 07 Uppsala, Sweden
| | - Rosane M Peralta
- Department of Biochemistry, Universidade Estadual de Maringá, 87020-900, Maringá, PR, Brazil
| | - Drauzio E N Rangel
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO 74605-050, Brazil.
| |
Collapse
|
43
|
Schulze-Makuch D, Airo A, Schirmack J. The Adaptability of Life on Earth and the Diversity of Planetary Habitats. Front Microbiol 2017; 8:2011. [PMID: 29085352 PMCID: PMC5650640 DOI: 10.3389/fmicb.2017.02011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/29/2017] [Indexed: 11/13/2022] Open
Abstract
The evolutionary adaptability of life to extreme environments is astounding given that all life on Earth is based on the same fundamental biochemistry. The range of some physicochemical parameters on Earth exceeds the ability of life to adapt, but stays within the limits of life for other parameters. Certain environmental conditions such as low water availability in hyperarid deserts on Earth seem to be close to the limit of biological activity. A much wider range of environmental parameters is observed on planetary bodies within our Solar System such as Mars or Titan, and presumably even larger outside of our Solar System. Here we review the adaptability of life as we know it, especially regarding temperature, pressure, and water activity. We use then this knowledge to outline the range of possible habitable environments for alien planets and moons and distinguish between a variety of planetary environment types. Some of these types are present in our Solar System, others are hypothetical. Our schematic categorization of alien habitats is limited to life as we know it, particularly regarding to the use of solvent (water) and energy source (light and chemical compounds).
Collapse
Affiliation(s)
- Dirk Schulze-Makuch
- Astrobiology Group, Center for Astronomy and Astrophysics, Technical University Berlin, Berlin, Germany.,Beyond Center, Arizona State University, Tempe, AZ, United States.,School of the Environment, Washington State University, Pullman, WA, United States
| | - Alessandro Airo
- Astrobiology Group, Center for Astronomy and Astrophysics, Technical University Berlin, Berlin, Germany
| | - Janosch Schirmack
- Astrobiology Group, Center for Astronomy and Astrophysics, Technical University Berlin, Berlin, Germany
| |
Collapse
|
44
|
|
45
|
dC Rubin SS, Marín I, Gómez MJ, Morales EA, Zekker I, San Martín-Uriz P, Rodríguez N, Amils R. Prokaryotic diversity and community composition in the Salar de Uyuni, a large scale, chaotropic salt flat. Environ Microbiol 2017; 19:3745-3754. [DOI: 10.1111/1462-2920.13876] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 07/16/2017] [Accepted: 07/24/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Sergio S. dC Rubin
- Centro Nacional de Investigaciones Biotecnológicas; CNIB; Bolivia
- Departamento de Biología Molecular; Universidad Autónoma de Madrid, Cantoblanco; Madrid 28049 Spain
| | - Irma Marín
- Departamento de Biología Molecular; Universidad Autónoma de Madrid, Cantoblanco; Madrid 28049 Spain
| | - Manuel J. Gómez
- Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernández Almagro 3; Madrid 28029 Spain
| | - Eduardo A. Morales
- Centro Nacional de Investigaciones Biotecnológicas; CNIB; Bolivia
- Herbario Criptogámico; Universidad Católica Boliviana; Cochabamba Bolivia
| | - Ivar Zekker
- Institute of Chemistry; University of Tartu; Tartu Estonia
| | | | - Nuria Rodríguez
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz; Madrid 28055 Spain
| | - Ricardo Amils
- Centro Nacional de Investigaciones Biotecnológicas; CNIB; Bolivia
- Centro de Astrobiología (INTA-CSIC), Torrejón de Ardoz; Madrid 28055 Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM); Universidad Autónoma de Madrid; Madrid 28049 Spain
| |
Collapse
|
46
|
Lorenzo FD, Palmigiano A, Paciello I, Pallach M, Garozzo D, Bernardini ML, Cono VL, Yakimov MM, Molinaro A, Silipo A. The Deep-Sea Polyextremophile Halobacteroides lacunaris TB21 Rough-Type LPS: Structure and Inhibitory Activity towards Toxic LPS. Mar Drugs 2017; 15:md15070201. [PMID: 28653982 PMCID: PMC5532643 DOI: 10.3390/md15070201] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/12/2017] [Accepted: 06/22/2017] [Indexed: 11/24/2022] Open
Abstract
The structural characterization of the lipopolysaccharide (LPS) from extremophiles has important implications in several biomedical and therapeutic applications. The polyextremophile Gram-negative bacterium Halobacteroideslacunaris TB21, isolated from one of the most extreme habitats on our planet, the deep-sea hypersaline anoxic basin Thetis, represents a fascinating microorganism to investigate in terms of its LPS component. Here we report the elucidation of the full structure of the R-type LPS isolated from H. lacunaris TB21 that was attained through a multi-technique approach comprising chemical analyses, NMR spectroscopy, and Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry. Furthermore, cellular immunology studies were executed on the pure R-LPS revealing a very interesting effect on human innate immunity as an inhibitor of the toxic Escherichia coli LPS.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.
| | - Angelo Palmigiano
- CNR-Istituto per i Polimeri, Compositi e Biomateriali IPCB-Unità di Catania, 95126 Catania, Italy.
| | - Ida Paciello
- Department of Biology and Biotechnology "Charles Darwin", Sapienza-University of Rome, 00185 Rome, Italy.
| | - Mateusz Pallach
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.
| | - Domenico Garozzo
- CNR-Istituto per i Polimeri, Compositi e Biomateriali IPCB-Unità di Catania, 95126 Catania, Italy.
| | - Maria-Lina Bernardini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza-University of Rome, 00185 Rome, Italy.
| | - Violetta La Cono
- Marine Molecular Microbiology & Biotechnology, CNR-Institute for Coastal Marine Environment, 98122 Messina, Italy.
| | - Michail M Yakimov
- Marine Molecular Microbiology & Biotechnology, CNR-Institute for Coastal Marine Environment, 98122 Messina, Italy.
- Immanuel Kant Baltic Federal University, 236040 Kaliningrad, Russia.
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.
| |
Collapse
|
47
|
Stevenson A, Hamill PG, Medina Á, Kminek G, Rummel JD, Dijksterhuis J, Timson DJ, Magan N, Leong SLL, Hallsworth JE. Glycerol enhances fungal germination at the water-activity limit for life. Environ Microbiol 2017; 19:947-967. [PMID: 27631633 PMCID: PMC5363249 DOI: 10.1111/1462-2920.13530] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 11/30/2022]
Abstract
For the most-extreme fungal xerophiles, metabolic activity and cell division typically halts between 0.700 and 0.640 water activity (approximately 70.0-64.0% relative humidity). Here, we investigate whether glycerol can enhance xerophile germination under acute water-activity regimes, using an experimental system which represents the biophysical limit of Earth's biosphere. Spores from a variety of species, including Aspergillus penicillioides, Eurotium halophilicum, Xerochrysium xerophilum (formerly Chrysosporium xerophilum) and Xeromyces bisporus, were produced by cultures growing on media supplemented with glycerol (and contained up to 189 mg glycerol g dry spores-1 ). The ability of these spores to germinate, and the kinetics of germination, were then determined on a range of media designed to recreate stresses experienced in microbial habitats or anthropogenic systems (with water-activities from 0.765 to 0.575). For A. penicillioides, Eurotium amstelodami, E. halophilicum, X. xerophilum and X. bisporus, germination occurred at lower water-activities than previously recorded (0.640, 0.685, 0.651, 0.664 and 0.637 respectively). In addition, the kinetics of germination at low water-activities were substantially faster than those reported previously. Extrapolations indicated theoretical water-activity minima below these values; as low as 0.570 for A. penicillioides and X. bisporus. Glycerol is present at high concentrations (up to molar levels) in many types of microbial habitat. We discuss the likely role of glycerol in expanding the water-activity limit for microbial cell function in relation to temporal constraints and location of the microbial cell or habitat. The findings reported here have also critical implications for understanding the extremes of Earth's biosphere; for understanding the potency of disease-causing microorganisms; and in biotechnologies that operate at the limits of microbial function.
Collapse
Affiliation(s)
- Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Philip G Hamill
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Ángel Medina
- Applied Mycology Group, Cranfield Soil and AgriFood Institute, Cranfield University, Cranfield, Bedford, MK43 OAL, UK
| | - Gerhard Kminek
- Independent Safety Office, European Space Agency, 2200 AG Noordwijk, The Netherlands
| | - John D Rummel
- SETI Institute, Mountain View, California, 94043, USA
| | - Jan Dijksterhuis
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, Utrecht, CT, 3584, The Netherlands
| | - David J Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, BN2 4GJ, UK
| | - Naresh Magan
- Applied Mycology Group, Cranfield Soil and AgriFood Institute, Cranfield University, Cranfield, Bedford, MK43 OAL, UK
| | - Su-Lin L Leong
- Department of Microbiology, Swedish University of Agricultural Sciences, Box 7025, Uppsala, 75007, Sweden
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| |
Collapse
|
48
|
Paulussen C, Hallsworth JE, Álvarez‐Pérez S, Nierman WC, Hamill PG, Blain D, Rediers H, Lievens B. Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microb Biotechnol 2017; 10:296-322. [PMID: 27273822 PMCID: PMC5328810 DOI: 10.1111/1751-7915.12367] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 01/26/2023] Open
Abstract
Fungi of the genus Aspergillus are widespread in the environment. Some Aspergillus species, most commonly Aspergillus fumigatus, may lead to a variety of allergic reactions and life-threatening systemic infections in humans. Invasive aspergillosis occurs primarily in patients with severe immunodeficiency, and has dramatically increased in recent years. There are several factors at play that contribute to aspergillosis, including both fungus and host-related factors such as strain virulence and host pulmonary structure/immune status, respectively. The environmental tenacity of Aspergilllus, its dominance in diverse microbial communities/habitats, and its ability to navigate the ecophysiological and biophysical challenges of host infection are attributable, in large part, to a robust stress-tolerance biology and exceptional capacity to generate cell-available energy. Aspects of its stress metabolism, ecology, interactions with diverse animal hosts, clinical presentations and treatment regimens have been well-studied over the past years. Here, we synthesize these findings in relation to the way in which some Aspergillus species have become successful opportunistic pathogens of human- and other animal hosts. We focus on the biophysical capabilities of Aspergillus pathogens, key aspects of their ecophysiology and the flexibility to undergo a sexual cycle or form cryptic species. Additionally, recent advances in diagnosis of the disease are discussed as well as implications in relation to questions that have yet to be resolved.
Collapse
Affiliation(s)
- Caroline Paulussen
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular Systems (M2S)KU LeuvenCampus De NayerSint‐Katelijne‐WaverB‐2860Belgium
| | - John E. Hallsworth
- Institute for Global Food SecuritySchool of Biological SciencesMedical Biology CentreQueen's University BelfastBelfastBT9 7BLUK
| | - Sergio Álvarez‐Pérez
- Faculty of Veterinary MedicineDepartment of Animal HealthUniversidad Complutense de MadridMadridE‐28040Spain
| | | | - Philip G. Hamill
- Institute for Global Food SecuritySchool of Biological SciencesMedical Biology CentreQueen's University BelfastBelfastBT9 7BLUK
| | - David Blain
- Institute for Global Food SecuritySchool of Biological SciencesMedical Biology CentreQueen's University BelfastBelfastBT9 7BLUK
| | - Hans Rediers
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular Systems (M2S)KU LeuvenCampus De NayerSint‐Katelijne‐WaverB‐2860Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM)Department of Microbial and Molecular Systems (M2S)KU LeuvenCampus De NayerSint‐Katelijne‐WaverB‐2860Belgium
| |
Collapse
|
49
|
Stevenson A, Hamill PG, O'Kane CJ, Kminek G, Rummel JD, Voytek MA, Dijksterhuis J, Hallsworth JE. Aspergillus penicillioidesdifferentiation and cell division at 0.585 water activity. Environ Microbiol 2017; 19:687-697. [DOI: 10.1111/1462-2920.13597] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Andrew Stevenson
- Institute for Global Food Security; School of Biological Sciences, MBC, Queen's University Belfast; Belfast BT9 7BL Northern Ireland
| | - Philip G. Hamill
- Institute for Global Food Security; School of Biological Sciences, MBC, Queen's University Belfast; Belfast BT9 7BL Northern Ireland
| | - Callum J. O'Kane
- Institute for Global Food Security; School of Biological Sciences, MBC, Queen's University Belfast; Belfast BT9 7BL Northern Ireland
| | - Gerhard Kminek
- Independent Safety Office; European Space Agency; 2200 AG Noordwijk The Netherlands
| | | | | | - Jan Dijksterhuis
- CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8; Utrecht CT 3584 The Netherlands
| | - John E. Hallsworth
- Institute for Global Food Security; School of Biological Sciences, MBC, Queen's University Belfast; Belfast BT9 7BL Northern Ireland
| |
Collapse
|
50
|
Mattenberger F, Sabater-Muñoz B, Hallsworth JE, Fares MA. Glycerol stress in Saccharomyces cerevisiae: Cellular responses and evolved adaptations. Environ Microbiol 2017; 19:990-1007. [PMID: 27871139 DOI: 10.1111/1462-2920.13603] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycerol synthesis is key to central metabolism and stress biology in Saccharomyces cerevisiae, yet the cellular adjustments needed to respond and adapt to glycerol stress are little understood. Here, we determined impacts of acute and chronic exposures to glycerol stress in S. cerevisiae. Glycerol stress can result from an increase of glycerol concentration in the medium due to the S. cerevisiae fermenting activity or other metabolic activities. Acute glycerol-stress led to a 50% decline in growth rate and altered transcription of more than 40% of genes. The increased genetic diversity in S. cerevisiae population, which had evolved in the standard nutrient medium for hundreds of generations, led to an increase in growth rate and altered transcriptome when such population was transferred to stressful media containing a high concentration of glycerol; 0.41 M (0.990 water activity). Evolution of S. cerevisiae populations during a 10-day period in the glycerol-containing medium led to transcriptome changes and readjustments to improve control of glycerol flux across the membrane, regulation of cell cycle, and more robust stress response; and a remarkable increase of growth rate under glycerol stress. Most of the observed regulatory changes arose in duplicated genes. These findings elucidate the physiological mechanisms, which underlie glycerol-stress response, and longer-term adaptations, in S. cerevisiae; they also have implications for enigmatic aspects of the ecology of this otherwise well-characterized yeast.
Collapse
Affiliation(s)
- Florian Mattenberger
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - Beatriz Sabater-Muñoz
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain.,Department of Genetic, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Dublin, Ireland
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, BT9 7BL, Northern Ireland
| | - Mario A Fares
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain.,Department of Genetic, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Dublin, Ireland
| |
Collapse
|