1
|
Colman DR, Veach A, Stefánsson A, Wurch L, Belisle BS, Podar PT, Yang Z, Klingeman D, Senba K, Murakami KS, Kristjánsson JK, Björnsdóttir SH, Boyd ES, Podar M. Tectonic and geological setting influence hot spring microbiology. Environ Microbiol 2023; 25:2481-2497. [PMID: 37553090 DOI: 10.1111/1462-2920.16472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023]
Abstract
Hydrothermal systems form at divergent and convergent boundaries of lithospheric plates and within plates due to weakened crust and mantle plumes, playing host to diverse microbial ecosystems. Little is known of how differences in tectonic setting influence the geochemical and microbial compositions of these hydrothermal ecosystems. Here, coordinated geochemical and microbial community analyses were conducted on 87 high-temperature (>65°C) water and sediment samples from hot springs in Yellowstone National Park, Wyoming, USA (n = 41; mantle plume setting), Iceland (n = 41, divergent boundary), and Japan (n = 5; convergent boundary). Region-specific variation in geochemistry and sediment-associated 16S rRNA gene amplicon sequence variant (ASV) composition was observed, with 16S rRNA gene assemblages being nearly completely distinguished by region and pH being the most explanatory parameter within regions. Several low abundance ASVs exhibited cosmopolitan distributions across regions, while most high-abundance ASVs were only identified in specific regions. The presence of some cosmopolitan ASVs across regions argues against dispersal limitation primarily shaping the distribution of taxa among regions. Rather, the results point to local tectonic and geologic characteristics shaping the geochemistry of continental hydrothermal systems that then select for distinct microbial assemblages. These results provide new insights into the co-evolution of hydrothermal systems and their microbial communities.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Allison Veach
- Department of Integrative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Andri Stefánsson
- Institute of Earth Sciences, University of Iceland, Reykjavik, Iceland
| | - Louie Wurch
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Biology, James Madison University, Harrisonburg, Virginia, USA
| | - B Shafer Belisle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Peter T Podar
- School of Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Zamin Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Dawn Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Kazuyo Senba
- Department of Microbiology, Beppu University, Beppu, Oita, Japan
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, State College, Pennsylvania, USA
| | | | | | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
2
|
Blum LN, Colman DR, Eloe-Fadrosh EA, Kellom M, Boyd ES, Zhaxybayeva O, Leavitt WD. Distribution and abundance of tetraether lipid cyclization genes in terrestrial hot springs reflect pH. Environ Microbiol 2023; 25:1644-1658. [PMID: 37032561 DOI: 10.1111/1462-2920.16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023]
Abstract
Many Archaea produce membrane-spanning lipids that enable life in extreme environments. These isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs) may contain up to eight cyclopentyl and one cyclohexyl ring, where higher degrees of cyclization are associated with more acidic, hotter or energy-limited conditions. Recently, the genes encoding GDGT ring synthases, grsAB, were identified in two Sulfolobaceae; however, the distribution and abundance of grs homologs across environments inhabited by these and related organisms remain a mystery. To address this, we examined the distribution of grs homologs in relation to environmental temperature and pH, from thermal springs across Earth, where sequences derive from metagenomes, metatranscriptomes, single-cell and cultivar genomes. The abundance of grs homologs shows a strong negative correlation to pH, but a weak positive correlation to temperature. Archaeal genomes and metagenome-assembled genomes (MAGs) that carry two or more grs copies are more abundant in low pH springs. We also find grs in 12 archaeal classes, with the most representatives in Thermoproteia, followed by MAGs of the uncultured Korarchaeia, Bathyarchaeia and Hadarchaeia, while several Nitrososphaeria encodes >3 copies. Our findings highlight the key role of grs-catalysed lipid cyclization in archaeal diversification across hot and acidic environments.
Collapse
Affiliation(s)
- Laura N Blum
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | | | - Matthew Kellom
- Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - William D Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
3
|
Ugwuanyi IR, Fogel ML, Bowden R, Steele A, De Natale G, Troise C, Somma R, Piochi M, Mormone A, Glamoclija M. Comparative metagenomics at Solfatara and Pisciarelli hydrothermal systems in Italy reveal that ecological differences across substrates are not ubiquitous. Front Microbiol 2023; 14:1066406. [PMID: 36819055 PMCID: PMC9930910 DOI: 10.3389/fmicb.2023.1066406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction Continental hydrothermal systems (CHSs) are geochemically complex, and they support microbial communities that vary across substrates. However, our understanding of these variations across the complete range of substrates in CHS is limited because many previous studies have focused predominantly on aqueous settings. Methods Here we used metagenomes in the context of their environmental geochemistry to investigate the ecology of different substrates (i.e., water, mud and fumarolic deposits) from Solfatara and Pisciarelli. Results and Discussion Results indicate that both locations are lithologically similar with distinct fluid geochemistry. In particular, all substrates from Solfatara have similar chemistry whereas Pisciarelli substrates have varying chemistry; with water and mud from bubbling pools exhibiting high SO4 2- and NH4 + concentrations. Species alpha diversity was found to be different between locations but not across substrates, and pH was shown to be the most important driver of both diversity and microbial community composition. Based on cluster analysis, microbial community structure differed significantly between Pisciarelli substrates but not between Solfatara substrates. Pisciarelli mud pools, were dominated by (hyper)thermophilic archaea, and on average, bacteria dominated Pisciarelli fumarolic deposits and all investigated Solfatara environments. Carbon fixation and sulfur oxidation were the most important metabolic pathways fueled by volcanic outgassing at both locations. Together, results demonstrate that ecological differences across substrates are not a widespread phenomenon but specific to the system. Therefore, this study demonstrates the importance of analyzing different substrates of a CHS to understand the full range of microbial ecology to avoid biased ecological assessments.
Collapse
Affiliation(s)
- Ifeoma R. Ugwuanyi
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States,Ifeoma R. Ugwuanyi, ✉
| | - Marilyn L. Fogel
- EDGE Institute, University of California, Riverside, Riverside, CA, United States
| | - Roxane Bowden
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, United States
| | - Andrew Steele
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, United States
| | - Giuseppe De Natale
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy,Consiglio Nazionale delle Ricerche INO, Naples, Italy
| | - Claudia Troise
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy,Consiglio Nazionale delle Ricerche INO, Naples, Italy
| | - Renato Somma
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy,Consiglio Nazionale delle Ricerche IRISS, Naples, Italy
| | - Monica Piochi
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy
| | - Angela Mormone
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy
| | - Mihaela Glamoclija
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States,*Correspondence: Mihaela Glamoclija, ✉
| |
Collapse
|
4
|
Abstract
Archaeal membrane lipids are widely used for paleotemperature reconstructions, yet these molecular fossils also bear rich information about ecology and evolution of marine ammonia-oxidizing archaea (AOA). Here we identified thermal and nonthermal behaviors of archaeal glycerol dialkyl glycerol tetraethers (GDGTs) by comparing the GDGT-based temperature index (TEX86) to the ratio of GDGTs with two and three cyclopentane rings (GDGT-2/GDGT-3). Thermal-dependent biosynthesis should increase TEX86 and decrease GDGT-2/GDGT-3 when the ambient temperature increases. This presumed temperature-dependent (PTD) trend is observed in GDGTs derived from cultures of thermophilic and mesophilic AOA. The distribution of GDGTs in suspended particulate matter (SPM) and sediments collected from above the pycnocline-shallow water samples-also follows the PTD trend. These similar GDGT distributions between AOA cultures and shallow water environmental samples reflect shallow ecotypes of marine AOA. While there are currently no cultures of deep AOA clades, GDGTs derived from deep water SPM and marine sediment samples exhibit nonthermal behavior deviating from the PTD trend. The presence of deep AOA increases the GDGT-2/GDGT-3 ratio and distorts the temperature-controlled correlation between GDGT-2/GDGT-3 and TEX86. We then used Gaussian mixture models to statistically characterize these diagnostic patterns of modern AOA ecology from paleo-GDGT records to infer the evolution of marine AOA from the Mid-Mesozoic to the present. Long-term GDGT-2/GDGT-3 trends suggest a suppression of today's deep water marine AOA during the Mesozoic-early Cenozoic greenhouse climates. Our analysis provides invaluable insights into the evolutionary timeline and the expansion of AOA niches associated with major oceanographic and climate changes.
Collapse
|
5
|
Wang P, Li M, Dong L, Zhang C, Xie W. Comparative Genomics of Thaumarchaeota From Deep-Sea Sponges Reveal Their Niche Adaptation. Front Microbiol 2022; 13:869834. [PMID: 35859738 PMCID: PMC9289680 DOI: 10.3389/fmicb.2022.869834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Thaumarchaeota account for a large portion of microbial symbionts in deep-sea sponges and are even dominant in some cases. In this study, we investigated three new sponge-associated Thaumarchaeota from the deep West Pacific Ocean. Thaumarchaeota were found to be the most dominant phylum in this sponge by both prokaryotic 16S rRNA amplicons and metagenomic sequencing. Fifty-seven published Thaumarchaeota genomes from sponges and other habitats were included for genomic comparison. Similar to shallow sponge-associated Thaumarchaeota, those Thaumarchaeota in deep-sea sponges have extended genome sizes and lower coding density compared with their free-living lineages. Thaumarchaeota in deep-sea sponges were specifically enriched in genes related to stress adapting, symbiotic adhesion and stability, host–microbe interaction and protein transportation. The genes involved in defense mechanisms, such as the restriction-modification system, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system, and toxin-antitoxin system were commonly enriched in both shallow and deep sponge-associated Thaumarchaeota. Our study demonstrates the significant effects of both depth and symbiosis on forming genomic characteristics of Thaumarchaeota, and provides novel insights into their niche adaptation in deep-sea sponges.
Collapse
Affiliation(s)
- Peng Wang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Minchun Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Liang Dong
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Zhang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Wei Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- *Correspondence: Wei Xie,
| |
Collapse
|
6
|
Cobban A, Zhang Y, Zhou A, Weber Y, Elling FJ, Pearson A, Leavitt WD. Multiple environmental parameters impact lipid cyclization in Sulfolobus acidocaldarius. Environ Microbiol 2021; 22:4046-4056. [PMID: 32783317 DOI: 10.1111/1462-2920.15194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/09/2020] [Indexed: 01/19/2023]
Abstract
Adaptation of lipid membrane composition is an important component of archaeal homeostatic response. Historically, the number of cyclopentyl and cyclohexyl rings in the glycerol dibiphytanyl glycerol tetraether (GDGT) Archaeal lipids has been linked to variation in environmental temperature. However, recent work with GDGT-making archaea highlight the roles of other factors, such as pH or energy availability, in influencing the degree of GDGT cyclization. To better understand the role of multiple variables in a consistent experimental framework and organism, we cultivated the model Crenarchaeon Sulfolobus acidocaldarius DSM639 at different combinations of temperature, pH, oxygen flux, or agitation speed. We quantified responses in growth rate, biomass yield, and core lipid compositions, specifically the degree of core GDGT cyclization. The degree of GDGT cyclization correlated with growth rate under most conditions. The results suggest the degree of cyclization in archaeal lipids records a universal response to energy availability at the cellular level, both in thermoacidophiles, and in other recent findings in the mesoneutrophilic Thaumarchaea. Although we isolated the effects of key individual parameters, there remains a need for multi-factor experiments (e.g., pH + temperature + redox) in order to more robustly establish a framework to better understand homeostatic membrane responses.
Collapse
Affiliation(s)
- Alec Cobban
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA.,Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Yujiao Zhang
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA.,State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Alice Zhou
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA.,Department of Earth Science, University of Michigan, Ann Arbor, MI, USA
| | - Yuki Weber
- Department of Earth & Planetary Sciences, Harvard University, Cambridge, MA, 02138, USA.,Greenlight Biosciences Inc., Medford, MA, USA
| | - Felix J Elling
- Department of Earth & Planetary Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Ann Pearson
- Department of Earth & Planetary Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - William D Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA.,Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.,Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
7
|
Li L, Li W, Zou Q, Ma Z(S. Network analysis of the hot spring microbiome sketches out possible niche differentiations among ecological guilds. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Li L, Ma ZS. Species Sorting and Neutral Theory Analyses Reveal Archaeal and Bacterial Communities Are Assembled Differently in Hot Springs. Front Bioeng Biotechnol 2020; 8:464. [PMID: 32548097 PMCID: PMC7271673 DOI: 10.3389/fbioe.2020.00464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/21/2020] [Indexed: 12/03/2022] Open
Abstract
Although the recognition of archaea as one of the three kingdoms in the tree of life has been nearly a half-century long, the comparative investigations on their ecological adaptations with bacteria have been limited. The mechanisms of their community assembly and diversity maintenance in hot springs have not been addressed. The mechanistic study is critical not only for understanding the hot-spring microbiome structure and dynamics, but also for shedding light on their evolutionary adaptations. We applied the neutral theory model and species sorting paradigm of metacommunity theory to investigate how hot-spring microbial communities were assembled, how their diversities were maintained, and how the temperature and pH influence these mechanisms. Through rigorous statistical tests based on the neutral theory and species sorting paradigm, we found (i) According to the neutral theory, archaeal and bacterial communities are assembled differently, with stochastic neutral force playing a more significant role in archaeal communities than in bacterial communities (neutrality-rate = 52.9 vs. 15.8%, p-value < 0.05). (ii) Temperature and pH account for rather limited (<10%) variations in hot-spring microbiomes based on the species sorting paradigm. The pH has more significant influences than temperature on archaeal communities, and both pH and temperature have similarly low influences on bacterial community structure. (iii) We postulate that the differences between archaea and bacteria are likely due to the longer evolutionary history and better adaptation of archaea to host spring environments.
Collapse
Affiliation(s)
- Lianwei Li
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zhanshan Sam Ma
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
9
|
Colman DR, Lindsay MR, Amenabar MJ, Boyd ES. The Intersection of Geology, Geochemistry, and Microbiology in Continental Hydrothermal Systems. ASTROBIOLOGY 2019; 19:1505-1522. [PMID: 31592688 DOI: 10.1089/ast.2018.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Decompressional boiling of ascending hydrothermal waters and separation into a vapor (gas) and a liquid phase drive extensive variation in the geochemical composition of hot spring waters. Yet little is known of how the process of phase separation influences the distribution of microbial metabolisms in springs. Here, we determined the variation in protein coding genes in 51 metagenomes from chemosynthetic hot spring communities that span geochemical gradients in Yellowstone National Park. The 51 metagenomes could be divided into 5 distinct groups that correspond to low and high temperatures and acidic and circumneutral/alkaline springs. A fifth group primarily comprised metagenomes from springs with moderate acidity and that are influenced by elevated volcanic gas input. Protein homologs putatively involved in the oxidation of sulfur compounds, a process that leads to acidification of spring waters, in addition to those involved in the reduction of sulfur compounds were enriched in metagenomes from acidic springs sourced by vapor phase gases. Metagenomes from springs with evidence for elevated volcanic gas input were enriched in protein homologs putatively involved in oxidation of those gases, including hydrogen and methane. Finally, metagenomes from circumneutral/alkaline springs sourced by liquid phase waters were enriched in protein homologs putatively involved in heterotrophy and respiration of oxidized nitrogen compounds and oxygen. These results indicate that the geological process of phase separation shapes the ecology of thermophilic communities through its influence on the availability of nutrients in the form of gases, solutes, and minerals. Microbial acidification of hot spring waters further influences the kinetic and thermodynamic stabilities of nutrients and their bioavailability. These data therefore provide an important framework to understand how geological processes have shaped the evolutionary history of chemosynthetic thermophiles and how these organisms, in turn, have shaped their geochemical environments.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana
| | - Melody R Lindsay
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana
| | | | - Eric S Boyd
- Department of Microbiology & Immunology, Montana State University, Bozeman, Montana
| |
Collapse
|
10
|
Li L, Ma Z(S. Global Microbiome Diversity Scaling in Hot Springs With DAR (Diversity-Area Relationship) Profiles. Front Microbiol 2019; 10:118. [PMID: 30853941 PMCID: PMC6395440 DOI: 10.3389/fmicb.2019.00118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/18/2019] [Indexed: 11/20/2022] Open
Abstract
The spatial distribution of biodiversity (i.e., the biogeography) of the hot-spring microbiome is critical for understanding the microbial ecosystems in hot springs. We investigated the microbiome diversity scaling (changes) over space by analyzing the diversity-area relationship (DAR), which is an extension to classic SAR (species-area relationship) law in biogeography. We built DAR models for archaea and bacteria with 16S-rRNA sequencing datasets from 165 hot springs globally. From the DAR models, we sketch out the biogeographic maps of hot-spring microbiomes by constructing: (i) DAR profile-measuring the archaea or bacteria diversity scaling over space (areas); (ii) PDO (pair-wise diversity overlap or similarity) profile-estimating the PDO between two hot springs; (iii) MAD (maximal accrual diversity) profile-predicting the global MAD; (iv) LRD/LGD (ratio of local diversity to regional or global diversity) profile. We further investigated the differences between archaea and bacteria in their biogeographic maps. For example, the comparison of DAR-profile maps revealed that the archaea diversity is more heterogeneous (i.e., more diverse) or scaling faster than the bacterial diversity does in terms of species numbers (species richness), but is less heterogeneous (i.e., less diverse) or scaling slower than bacteria when the diversity (Hill numbers) were weighted in favor of more abundant dominant species. When the diversity is weighted equally in terms of species abundances, archaea, and bacteria are equally heterogeneous over space or scaling at the same rate. Finally, unified DAR models (maps) were built with the combined datasets of archaea and bacteria.
Collapse
Affiliation(s)
- Lianwei Li
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Zhanshan (Sam) Ma
- Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
11
|
Colman DR, Lindsay MR, Boyd ES. Mixing of meteoric and geothermal fluids supports hyperdiverse chemosynthetic hydrothermal communities. Nat Commun 2019; 10:681. [PMID: 30737379 PMCID: PMC6368606 DOI: 10.1038/s41467-019-08499-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/15/2019] [Indexed: 12/28/2022] Open
Abstract
Little is known of how mixing of meteoric and geothermal fluids supports biodiversity in non-photosynthetic ecosystems. Here, we use metagenomic sequencing to investigate a chemosynthetic microbial community in a hot spring (SJ3) of Yellowstone National Park that exhibits geochemistry consistent with mixing of a reduced volcanic gas-influenced end member with an oxidized near-surface meteoric end member. SJ3 hosts an exceptionally diverse community with representatives from ~50% of known higher-order archaeal and bacterial lineages, including several divergent deep-branching lineages. A comparison of functional potential with other available chemosynthetic community metagenomes reveals similarly high diversity and functional potentials (i.e., incorporation of electron donors supplied by volcanic gases) in springs sourced by mixed fluids. Further, numerous closely related SJ3 populations harbor differentiated metabolisms that may function to minimize niche overlap, further increasing endemic diversity. We suggest that dynamic mixing of waters generated by subsurface and near-surface geological processes may play a key role in the generation and maintenance of chemosynthetic biodiversity in hydrothermal and other similar environments. Chemosynthetic microbial communities in hydrothermal environments receiving meteoric and geothermal fluids are understudied. Here, Colman et al. use metagenomics to study one such community from a hot spring at Yellowstone National Park, revealing exceptional biodiversity and unique functional potential.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59718, USA
| | - Melody R Lindsay
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59718, USA
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59718, USA. .,NASA Astrobiology Institute, Ames Research Center, Mountain View, CA, USA.
| |
Collapse
|
12
|
Xie W, Luo H, Murugapiran SK, Dodsworth JA, Chen S, Sun Y, Hedlund BP, Wang P, Fang H, Deng M, Zhang CL. Localized high abundance of Marine Group II archaea in the subtropical Pearl River Estuary: implications for their niche adaptation. Environ Microbiol 2017; 20:734-754. [PMID: 29235710 DOI: 10.1111/1462-2920.14004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/18/2017] [Accepted: 11/19/2017] [Indexed: 11/29/2022]
Abstract
Marine Group II archaea are widely distributed in global oceans and dominate the total archaeal community within the upper euphotic zone of temperate waters. However, factors controlling the distribution of MGII are poorly delineated and the physiology and ecological functions of these still-uncultured organisms remain elusive. In this study, we investigated the planktonic MGII associated with particles and in free-living forms in the Pearl River Estuary (PRE) over a 10-month period. We detected high abundance of particle-associated MGII in PRE (up to ∼108 16S rRNA gene copies/l), which was around 10-fold higher than the free-living MGII in the same region, and an order of magnitude higher than previously reported in other marine environments. 10‰ salinity appeared to be a threshold value for these MGII because MGII abundance decreased sharply below it. Above 10‰ salinity, the abundance of MGII on the particles was positively correlated with phototrophs and MGII in the surface water was negatively correlated with irradiance. However, the abundances of those free-living MGII showed positive correlations with salinity and temperature, suggesting the different physiological characteristics between particle-attached and free-living MGIIs. A nearly completely assembled metagenome, MGIIa_P, was recovered using metagenome binning methods. Compared with the other two MGII genomes from surface ocean, MGIIa_P contained higher proportions of glycoside hydrolases, indicating the ability of MGIIa_P to hydrolyse glycosidic bonds in complex sugars in PRE. MGIIa_P is the first assembled MGII metagenome containing a catalase gene, which might be involved in scavenging reactive oxygen species generated by the abundant phototrophs in the eutrophic PRE. Our study presented the widespread and high abundance of MGII in the water columns of PRE, and characterized the determinant abiotic factors affecting their distribution. Their association with heterotrophs, preference for particles and resourceful metabolic traits indicate MGII might play a significant role in metabolising organic matters in the PRE and other temperate estuarine systems.
Collapse
Affiliation(s)
- Wei Xie
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Senthil K Murugapiran
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA.,MetaGénoPolis, Institut National de la Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA 92407, USA
| | - Songze Chen
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Ying Sun
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - Peng Wang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| | - Huaying Fang
- School of Mathematical Sciences, Peking University, Beijing, 100871, China
| | - Minghua Deng
- School of Mathematical Sciences, Peking University, Beijing, 100871, China
| | - Chuanlun L Zhang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
13
|
Environmental factors shaping the archaeal community structure and ether lipid distribution in a subtropic river and estuary, China. Appl Microbiol Biotechnol 2017; 102:461-474. [PMID: 29103169 DOI: 10.1007/s00253-017-8595-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
Abstract
Archaea are widespread and abundant in aquatic and terrestrial habitats and play fundamental roles in global biogeochemical cycles. Archaeal lipids, such as isoprenoid glycerol diakyl glycerol tetraethers (iGDGTs), are important biomarkers tracing changes in archaeal community structure and biogeochemical processes in nature. However, the linkage between the archaeal populations and the GDGT distribution in the natural environment is poorly examined, which hindered the application and interpretation of GDGT-based climate or environmental proxies. We addressed this question by investigating changes in archaeal lipid composition and community structure in the context of environmental variables along the subtropical Jiulong River Watershed (JRW) and Jiulong River Estuary (JRE) in southern China. The results showed that both the archaeal cells and the polar GDGTs (P-GDGTs) in the JRW and JRE were mostly autochthonous rather than exogenous input from surrounding soils. We further found that only five (Methanobacteriales, Ca. Bathyarchaeota, Marine Benthic Groups A (MBGA), Marine Benthic Groups B (MBGB), and Marine Benthic Groups D (MBGD)) out of sixteen lineages showed significant impacts on the composition of P-GDGTs, suggesting the significant contribution of those archaea to the changes of P-GDGT compositions. Salinity and total phosphorus (TP) showed significant impact on the distribution of both genetic and P-GDGTs compositions of archaea; whereas, sand and silt contents only had significant impact on the P-GDGTs. MBGD archaea, which occur widely in marine sediments, showed positive correlations with P-TEX86 in the JRW and JRE, suggesting that uncultivated MBGD might also contribute to the variations in TEX86 signals in marine sediments. This study provided insight into the sources of P-GDGTs and the factors controlling their distributions in river-dominated continental margins, which has relevance to applications of GDGT-based proxies in paleoclimate studies.
Collapse
|
14
|
Geobiological feedbacks and the evolution of thermoacidophiles. ISME JOURNAL 2017; 12:225-236. [PMID: 29028004 PMCID: PMC5739016 DOI: 10.1038/ismej.2017.162] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/27/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022]
Abstract
Oxygen-dependent microbial oxidation of sulfur compounds leads to the acidification of natural waters. How acidophiles and their acidic habitats evolved, however, is largely unknown. Using 16S rRNA gene abundance and composition data from 72 hot springs in Yellowstone National Park, Wyoming, we show that hyperacidic (pH<3.0) hydrothermal ecosystems are dominated by a limited number of archaeal lineages with an inferred ability to respire O2. Phylogenomic analyses of 584 existing archaeal genomes revealed that hyperacidophiles evolved independently multiple times within the Archaea, each coincident with the emergence of the ability to respire O2, and that these events likely occurred in the recent evolutionary past. Comparative genomic analyses indicated that archaeal thermoacidophiles from independent lineages are enriched in similar protein-coding genes, consistent with convergent evolution aided by horizontal gene transfer. Because the generation of acidic environments and their successful habitation characteristically require O2, these results suggest that thermoacidophilic Archaea and the acidity of their habitats co-evolved after the evolution of oxygenic photosynthesis. Moreover, it is likely that dissolved O2 concentrations in thermal waters likely did not reach levels capable of sustaining aerobic thermoacidophiles and their acidifying activity until ~0.8 Ga, when present day atmospheric levels were reached, a time period that is supported by our estimation of divergence times for archaeal thermoacidophilic clades.
Collapse
|
15
|
Jiang X, Takacs-Vesbach CD. Microbial community analysis of pH 4 thermal springs in Yellowstone National Park. Extremophiles 2016; 21:135-152. [PMID: 27807621 DOI: 10.1007/s00792-016-0889-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 10/20/2016] [Indexed: 02/01/2023]
Abstract
The pH of the majority of thermal springs in Yellowstone National Park (YNP) is from 1 to 3 and 6 to 10; relatively few springs (~5%) have a pH range of 4-5. We used 16S rRNA gene pyrosequencing to investigate microbial communities sampled from four pH 4 thermal springs collected from four regions of YNP that differed in their fluid temperature and geochemistry. Our results revealed that the composition of bacterial communities varied among the sites, despite sharing similar pH values. The taxonomic composition and metabolic functional potential of the site with the lowest temperature (55 °C), a thermal spring from the Seven Mile Hole (SMH) area, were further investigated using shotgun metagenome sequencing. The taxonomic classification, based on 372 Mbp of unassembled metagenomic reads, indicated that this community included a high proportion of Chloroflexi, Bacteroidetes, Proteobacteria, and Firmicutes. Functional comparison with other YNP thermal spring metagenomes indicated that the SMH metagenome was enriched in genes related to energy production and conversion, transcription, and carbohydrate transport. Analysis of genes involved in nitrogen metabolism revealed assimilatory and dissimilatory nitrate reduction pathways, whereas the majority of genes involved in sulfur metabolism were related to the reduction of sulfate to adenylylsulfate, sulfite, and H2S. Given that pH 4 thermal springs are relatively less common in YNP and thermal areas worldwide, they may harbor novel microbiota and the communities that inhabit them deserve further investigation.
Collapse
Affiliation(s)
- Xiaoben Jiang
- Department of Biology, MSC03 2020 1UNM, University of New Mexico, Albuquerque, NM, 87131, USA
| | | |
Collapse
|
16
|
Colman DR, Feyhl-Buska J, Robinson KJ, Fecteau KM, Xu H, Shock EL, Boyd ES. Ecological differentiation in planktonic and sediment-associated chemotrophic microbial populations in Yellowstone hot springs. FEMS Microbiol Ecol 2016; 92:fiw137. [PMID: 27306555 DOI: 10.1093/femsec/fiw137] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2016] [Indexed: 01/29/2023] Open
Abstract
Chemosynthetic sediment and planktonic community composition and sizes, aqueous geochemistry and sediment mineralogy were determined in 15 non-photosynthetic hot springs in Yellowstone National Park (YNP). These data were used to evaluate the hypothesis that differences in the availability of dissolved or mineral substrates in the bulk fluids or sediments within springs coincides with ecologically differentiated microbial communities and their populations. Planktonic and sediment-associated communities exhibited differing ecological characteristics including community sizes, evenness and richness. pH and temperature influenced microbial community composition among springs, but within-spring partitioning of taxa into sediment or planktonic communities was widespread, statistically supported (P < 0.05) and could be best explained by the inferred metabolic strategies of the partitioned taxa. Microaerophilic genera of the Aquificales predominated in many of the planktonic communities. In contrast, taxa capable of mineral-based metabolism such as S(o) oxidation/reduction or Fe-oxide reduction predominated in sediment communities. These results indicate that ecological differentiation within thermal spring habitats is common across a range of spring geochemistry and is influenced by the availability of dissolved nutrients and minerals that can be used in metabolism.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Jayme Feyhl-Buska
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Kirtland J Robinson
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Huifang Xu
- Department of Geosciences, University of Wisconsin, Madison, WI 53706, USA NASA Astrobiology Institute, Mountain View, CA 94035, USA School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Everett L Shock
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA NASA Astrobiology Institute, Mountain View, CA 94035, USA School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA NASA Astrobiology Institute, Mountain View, CA 94035, USA School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
17
|
Macqueen DJ, Gubry-Rangin C. Molecular adaptation of ammonia monooxygenase during independent pH specialization in Thaumarchaeota. Mol Ecol 2016; 25:1986-99. [DOI: 10.1111/mec.13607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/24/2016] [Accepted: 03/02/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel J. Macqueen
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen AB24 2TZ UK
| | - Cécile Gubry-Rangin
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen AB24 2TZ UK
| |
Collapse
|