1
|
He XL, Zhang WQ, Zhang NN, Wen SM, Chen J. Hydrogen sulfide and nitric oxide regulate the adaptation to iron deficiency through affecting Fe homeostasis and thiol redox modification in Glycine max seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:1-14. [PMID: 36368221 DOI: 10.1016/j.plaphy.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Iron (Fe) is a vital microelement required for the growth and development of plants. Hydrogen sulfide (H2S) and nitric oxide (NO), as messenger molecules, participated in the regulation of plant physiological processes. Here, we studied the interaction effects of H2S and NO on the adaptation to Fe deficiency in Glycine max L. Physiological, biochemical and molecular approaches were conducted to analyze the role of H2S and NO in regulating the adaptation to Fe deficiency in soybean. We found that H2S and NO had obvious rescuing function on the Fe deficiency-induced the plant growth inhibition, which was significantly correlated with the increase in Fe content in the leaves, stems, and roots of soybean. Meanwhile, H+-flux, ferric chelate reductase (FCR) activity, and root apoplast Fe content were significantly affected by H2S and NO. Under Fe deficiency conditions NO and H2S regulated the expression of genes related to Fe homeostasis. Moreover, photosynthesis (Pn) and photosystem II (PSII) efficiency were enhanced by H2S and NO, and thiol redox modification was important for regulating the adaptation of Fe deficiency. The aforementioned affirmative influences caused by H2S and NO were also totally reversed by cPTIO (a NO scavenger). Our results suggested that H2S might act upstream of NO in response to Fe deficiency by affecting the Fe homeostasis enzyme activities and gene expression, and by promoting Fe accumulation in plant tissues as well as by enhancing thiol redox modification and photosynthesis in soybean plants.
Collapse
Affiliation(s)
- Xi-Li He
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Wei-Qin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Ni-Na Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Shi-Ming Wen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Juan Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
2
|
Synechococcus sp. PCC7002 Uses Peroxiredoxin to Cope with Reactive Sulfur Species Stress. mBio 2022; 13:e0103922. [PMID: 35861504 PMCID: PMC9426444 DOI: 10.1128/mbio.01039-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria are a widely distributed group of microorganisms in the ocean, and they often need to cope with the stress of reactive sulfur species, such as sulfide and sulfane sulfur. Sulfane sulfur refers to the various forms of zero-valent sulfur, including persulfide, polysulfide, and element sulfur (S8). Although sulfane sulfur participates in signaling transduction and resistance to reactive oxygen species in cyanobacteria, it is toxic at high concentrations and induces sulfur stress, which has similar effects to oxidative stress. In this study, we report that Synechococcus sp. PCC7002 uses peroxiredoxin to cope with the stress of cellular sulfane sulfur. Synechococcus sp. PCC7002 contains six peroxiredoxins, and all were induced by S8. Peroxiredoxin I (PrxI) reduced S8 to H2S by forming a disulfide bond between residues Cys53 and Cys153 of the enzyme. A partial deletion strain of Synechococcus sp. PCC7002 with decreased copy numbers of the prxI gene was more sensitive to S8 than was the wild type. Thus, peroxiredoxin is involved in maintaining the homeostasis of cellular sulfane sulfur in cyanobacteria. Given that peroxiredoxin evolved before the occurrence of O2 on Earth, its original function could have been to cope with reactive sulfur species stress, and that function has been preserved. IMPORTANCE Cyanobacteria are the earliest microorganisms that perform oxygenic photosynthesis, which has played a key role in the evolution of life on Earth, and they are the most important primary producers in the modern oceans. The cyanobacterium Synechococcus sp. PCC7002 uses peroxiredoxin to reduce high levels of sulfane sulfur. That function is possibly the original role of peroxiredoxin, as the enzyme evolved before the appearance of O2 on Earth. The preservation of the reduction of sulfane sulfur by peroxiredoxin5-type peroxiredoxins may offer cyanobacteria an advantage in the complex environment of the modern oceans.
Collapse
|
3
|
Chen M, Zhang YQ, Krumholz LR, Zhao LY, Yan ZS, Yang YJ, Li ZH, Hayat F, Chen HB, Huang R. Black blooms-induced adaptive responses of sulfate reduction bacteria in a shallow freshwater lake. ENVIRONMENTAL RESEARCH 2022; 209:112732. [PMID: 35077715 DOI: 10.1016/j.envres.2022.112732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Decomposing cyanobacterial bloom-induced black blooms been seen as an issue in the management of freshwater ecosystems, but its effect on sulfate-reducing bacteria (SRB) in shallow freshwater lakes is not clear. The objective of this study is to present an in-depth investigation of black bloom effects on the activities and composition of SRB, as well as the interactions between SRB and other bacteria. Water and surface sediments samples were collected from a shallow freshwater lake during black and non-black blooms. Sulfate reduction rates (SRRs) in the water column were determined from the linear regression of sulfate depletion with time. Quantitative real-time polymerase chain reactions (qPCRs), targeting the dsrA gene and Illumina sequencing of 16S rDNA, were used to estimate the SRB population and SRB community structures, respectively. Our data indicate that although a higher abundance of SRB was responsible for the higher SRR in the bottom water (34.09 ± 2.37 nmol mL-1 day-1) than in the surface water (14.57 ± 2.91 nmol mL-1 day-1) during black blooms, cell-specific sulfate reduction rates (csSRRs) in the distinct water layers were not significantly different (P = 0.95), with the value of approximately 0.017 fmol cell-1 day-1. Additionally, Desulfomicrobium and Desulfovibrio were the two main genera of SRB in the water column during black bloom season, while Desulfobulbus, Desulfobacca and Desulfatiglans genera were identified in the sediments of both the black and non-black blooms in genera pools. Each SRB genus preferentially associated with bacteria for specific functions in the bacterial co-occurrence network, regardless of whether black booms occurred or not. These results extend our knowledge on the importance of SRB during black blooms and the adaptation of SRB to environmental changes in freshwater lakes.
Collapse
Affiliation(s)
- Mo Chen
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Hubei Engineering Research Center for Rural Drinking Water Security, Hubei University, Wuhan, 430062, China.
| | - Ya-Qing Zhang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China
| | - Lee R Krumholz
- Department of Botany & Microbiology, University of Oklahoma, Norman, OK, USA
| | - Li-Ya Zhao
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China; Hubei Engineering Research Center for Rural Drinking Water Security, Hubei University, Wuhan, 430062, China
| | - Zai-Sheng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yu-Jing Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China; Hubei Engineering Research Center for Rural Drinking Water Security, Hubei University, Wuhan, 430062, China
| | - Zhao-Hua Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China; Hubei Engineering Research Center for Rural Drinking Water Security, Hubei University, Wuhan, 430062, China
| | - Faisal Hayat
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China
| | - Hong-Bing Chen
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China; Hubei Engineering Research Center for Rural Drinking Water Security, Hubei University, Wuhan, 430062, China
| | - Ran Huang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Sciences, Hubei University, Wuhan, 430062, China
| |
Collapse
|
4
|
Martín-Clemente E, Melero-Jiménez IJ, Bañares-España E, Flores-Moya A, García-Sánchez MJ. Photosynthetic performance in cyanobacteria with increased sulphide tolerance: an analysis comparing wild-type and experimentally derived strains. PHOTOSYNTHESIS RESEARCH 2022; 151:251-263. [PMID: 34807429 PMCID: PMC8940870 DOI: 10.1007/s11120-021-00882-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/28/2021] [Indexed: 06/02/2023]
Abstract
Sulphide is proposed to have influenced the evolution of primary stages of oxygenic photosynthesis in cyanobacteria. However, sulphide is toxic to most of the species of this phylum, except for some sulphide-tolerant species showing various sulphide-resistance mechanisms. In a previous study, we found that this tolerance can be induced by environmental sulphidic conditions, in which two experimentally derived strains with an enhanced tolerance to sulphide were obtained from Microcystis aeruginosa, a sensitive species, and Oscillatoria, a sulphide-tolerant genus. We have now analysed the photosynthetic performance of the wild-type and derived strains in the presence of sulphide to shed light on the characteristics underlying the increased tolerance. We checked whether the sulphide tolerance was a result of higher PSII sulphide resistance and/or the induction of sulphide-dependent anoxygenic photosynthesis. We observed that growth, maximum quantum yield, maximum electron transport rate and photosynthetic efficiency in the presence of sulphide were less affected in the derived strains compared to their wild-type counterparts. Nevertheless, in 14C photoincoporation assays, neither Oscillatoria nor M. aeruginosa exhibited anoxygenic photosynthesis using sulphide as an electron donor. On the other hand, the content of photosynthetic pigments in the derived strains was different to that observed in the wild-type strains. Thus, an enhanced PSII sulphide resistance appears to be behind the increased sulphide tolerance displayed by the experimentally derived strains, as observed in most natural sulphide-tolerant cyanobacterial strains. However, other changes in the photosynthetic machinery cannot be excluded.
Collapse
Affiliation(s)
- Elena Martín-Clemente
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain.
| | - Ignacio J Melero-Jiménez
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| | - Elena Bañares-España
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| | - Antonio Flores-Moya
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| | - María J García-Sánchez
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071, Málaga, Spain
| |
Collapse
|
5
|
Grim SL, Voorhies AA, Biddanda BA, Jain S, Nold SC, Green R, Dick GJ. Omics-Inferred Partitioning and Expression of Diverse Biogeochemical Functions in a Low-O 2 Cyanobacterial Mat Community. mSystems 2021; 6:e0104221. [PMID: 34874776 PMCID: PMC8651085 DOI: 10.1128/msystems.01042-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Cyanobacterial mats profoundly influenced Earth's biological and geochemical evolution and still play important ecological roles in the modern world. However, the biogeochemical functioning of cyanobacterial mats under persistent low-O2 conditions, which dominated their evolutionary history, is not well understood. To investigate how different metabolic and biogeochemical functions are partitioned among community members, we conducted metagenomics and metatranscriptomics on cyanobacterial mats in the low-O2, sulfidic Middle Island sinkhole (MIS) in Lake Huron. Metagenomic assembly and binning yielded 144 draft metagenome assembled genomes, including 61 of medium quality or better, and the dominant cyanobacteria and numerous Proteobacteria involved in sulfur cycling. Strains of a Phormidium autumnale-like cyanobacterium dominated the metagenome and metatranscriptome. Transcripts for the photosynthetic reaction core genes psaA and psbA were abundant in both day and night. Multiple types of psbA genes were expressed from each cyanobacterium, and the dominant psbA transcripts were from an atypical microaerobic type of D1 protein from Phormidium. Further, cyanobacterial transcripts for photosystem I genes were more abundant than those for photosystem II, and two types of Phormidium sulfide quinone reductase were recovered, consistent with anoxygenic photosynthesis via photosystem I in the presence of sulfide. Transcripts indicate active sulfur oxidation and reduction within the cyanobacterial mat, predominately by Gammaproteobacteria and Deltaproteobacteria, respectively. Overall, these genomic and transcriptomic results link specific microbial groups to metabolic processes that underpin primary production and biogeochemical cycling in a low-O2 cyanobacterial mat and suggest mechanisms for tightly coupled cycling of oxygen and sulfur compounds in the mat ecosystem. IMPORTANCE Cyanobacterial mats are dense communities of microorganisms that contain photosynthetic cyanobacteria along with a host of other bacterial species that play important yet still poorly understood roles in this ecosystem. Although such cyanobacterial mats were critical agents of Earth's biological and chemical evolution through geological time, little is known about how they function under the low-oxygen conditions that characterized most of their natural history. Here, we performed sequencing of the DNA and RNA of modern cyanobacterial mat communities under low-oxygen and sulfur-rich conditions from the Middle Island sinkhole in Lake Huron. The results reveal the organisms and metabolic pathways that are responsible for both oxygen-producing and non-oxygen-producing photosynthesis as well as interconversions of sulfur that likely shape how much O2 is produced in such ecosystems. These findings indicate tight metabolic reactions between community members that help to explain the limited the amount of O2 produced in cyanobacterial mat ecosystems.
Collapse
Affiliation(s)
- Sharon L. Grim
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander A. Voorhies
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Bopaiah A. Biddanda
- Annis Water Resources Institute, Grand Valley State University, Muskegon, Michigan, USA
| | - Sunit Jain
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen C. Nold
- Biology Department, University of Wisconsin—Stout, Menomonie, Wisconsin, USA
| | - Russ Green
- Thunder Bay National Marine Sanctuary, National Oceanic and Atmospheric Administration, Alpena, Michigan, USA
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Liu LJ, Jiang Z, Wang P, Qin YL, Xu W, Wang Y, Liu SJ, Jiang CY. Physiology, Taxonomy, and Sulfur Metabolism of the Sulfolobales, an Order of Thermoacidophilic Archaea. Front Microbiol 2021; 12:768283. [PMID: 34721370 PMCID: PMC8551704 DOI: 10.3389/fmicb.2021.768283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
The order Sulfolobales (phylum Crenarchaeota) is a group of thermoacidophilic archaea. The first member of the Sulfolobales was discovered in 1972, and current 23 species are validly named under the International Code of Nomenclature of Prokaryotes. The majority of members of the Sulfolobales is obligately or facultatively chemolithoautotrophic. When they grow autotrophically, elemental sulfur or reduced inorganic sulfur compounds are their energy sources. Therefore, sulfur metabolism is the most important physiological characteristic of the Sulfolobales. The functions of some enzymes and proteins involved in sulfur reduction, sulfur oxidation, sulfide oxidation, thiosulfate oxidation, sulfite oxidation, tetrathionate hydrolysis, and sulfur trafficking have been determined. In this review, we describe current knowledge about the physiology, taxonomy, and sulfur metabolism of the Sulfolobales, and note future challenges in this field.
Collapse
Affiliation(s)
- Li-Jun Liu
- School of Basic Medical Science, the Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, China.,Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Zhen Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Ling Qin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wen Xu
- School of Basic Medical Science, the Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, China.,Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Yang Wang
- School of Basic Medical Science, the Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an, China.,Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Meier DV, Greve AJ, Chennu A, van Erk MR, Muthukrishnan T, Abed RMM, Woebken D, de Beer D. Limitation of Microbial Processes at Saturation-Level Salinities in a Microbial Mat Covering a Coastal Salt Flat. Appl Environ Microbiol 2021; 87:e0069821. [PMID: 34160273 PMCID: PMC8357274 DOI: 10.1128/aem.00698-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
Hypersaline microbial mats are dense microbial ecosystems capable of performing complete element cycling and are considered analogs of early Earth and hypothetical extraterrestrial ecosystems. We studied the functionality and limits of key biogeochemical processes, such as photosynthesis, aerobic respiration, and sulfur cycling, in salt crust-covered microbial mats from a tidal flat at the coast of Oman. We measured light, oxygen, and sulfide microprofiles as well as sulfate reduction rates at salt saturation and in flood conditions and determined fine-scale stratification of pigments, biomass, and microbial taxa in the resident microbial community. The salt crust did not protect the mats against irradiation or evaporation. Although some oxygen production was measurable at salinities of ≤30% (wt/vol) in situ, at saturation-level salinity (40%), oxygenic photosynthesis was completely inhibited and only resumed 2 days after reducing the porewater salinity to 12%. Aerobic respiration and active sulfur cycling occurred at low rates under salt saturation and increased strongly upon salinity reduction. Apart from high relative abundances of Chloroflexi, photoheterotrophic Alphaproteobacteria, Bacteroidetes, and Archaea, the mat contained a distinct layer harboring filamentous Cyanobacteria, which is unusual for such high salinities. Our results show that the diverse microbial community inhabiting this salt flat mat ultimately depends on periodic salt dilution to be self-sustaining and is rather adapted to merely survive salt saturation than to thrive under the salt crust. IMPORTANCE Due to their abilities to survive intense radiation and low water availability, hypersaline microbial mats are often suggested to be analogs of potential extraterrestrial life. However, even the limitations imposed on microbial processes by saturation-level salinity found on Earth have rarely been studied in situ. While abundance and diversity of microbial life in salt-saturated environments are well documented, most of our knowledge on process limitations stems from culture-based studies, few in situ studies, and theoretical calculations. In particular, oxygenic photosynthesis has barely been explored beyond 5 M NaCl (28% wt/vol). By applying a variety of biogeochemical and molecular methods, we show that despite abundance of photoautotrophic microorganisms, oxygenic photosynthesis is inhibited in salt-crust-covered microbial mats at saturation salinities, while rates of other energy generation processes are decreased several-fold. Hence, the complete element cycling required for self-sustaining microbial communities only occurs at lower salt concentrations.
Collapse
Affiliation(s)
- Dimitri V. Meier
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | | | - Arjun Chennu
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | | | | | - Raeid M. M. Abed
- Biology Department, College of Science, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Dagmar Woebken
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
8
|
Lumian JE, Jungblut AD, Dillion ML, Hawes I, Doran PT, Mackey TJ, Dick GJ, Grettenberger CL, Sumner DY. Metabolic Capacity of the Antarctic Cyanobacterium Phormidium pseudopriestleyi That Sustains Oxygenic Photosynthesis in the Presence of Hydrogen Sulfide. Genes (Basel) 2021; 12:genes12030426. [PMID: 33809699 PMCID: PMC8002359 DOI: 10.3390/genes12030426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 01/11/2023] Open
Abstract
Sulfide inhibits oxygenic photosynthesis by blocking electron transfer between H2O and the oxygen-evolving complex in the D1 protein of Photosystem II. The ability of cyanobacteria to counter this effect has implications for understanding the productivity of benthic microbial mats in sulfidic environments throughout Earth history. In Lake Fryxell, Antarctica, the benthic, filamentous cyanobacterium Phormidium pseudopriestleyi creates a 1–2 mm thick layer of 50 µmol L−1 O2 in otherwise sulfidic water, demonstrating that it sustains oxygenic photosynthesis in the presence of sulfide. A metagenome-assembled genome of P. pseudopriestleyi indicates a genetic capacity for oxygenic photosynthesis, including multiple copies of psbA (encoding the D1 protein of Photosystem II), and anoxygenic photosynthesis with a copy of sqr (encoding the sulfide quinone reductase protein that oxidizes sulfide). The genomic content of P. pseudopriestleyi is consistent with sulfide tolerance mechanisms including increasing psbA expression or directly oxidizing sulfide with sulfide quinone reductase. However, the ability of the organism to reduce Photosystem I via sulfide quinone reductase while Photosystem II is sulfide-inhibited, thereby performing anoxygenic photosynthesis in the presence of sulfide, has yet to be demonstrated.
Collapse
Affiliation(s)
- Jessica E. Lumian
- Microbiology Graduate Group, University of California, Davis, CA 95616, USA;
| | - Anne D. Jungblut
- Life Sciences Department, The Natural History Museum, London SW7 5BD, UK;
| | - Megan L. Dillion
- Genomics and Bioinformatics, Novozymes, Inc., Davis, CA 95616, USA;
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, Tauranga 3110, New Zealand;
| | - Peter T. Doran
- Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Tyler J. Mackey
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA;
| | | | - Dawn Y. Sumner
- Department of Earth and Planetary Sciences, University of California, Davis, CA 95616, USA;
- Correspondence: ; Tel.: +1-530-752-5353
| |
Collapse
|
9
|
Lin YS, Lin HT, Wang BS, Huang WJ, Lin LH, Tsai AY. Intense but variable autotrophic activity in a rapidly flushed shallow-water hydrothermal plume (Kueishantao Islet, Taiwan). GEOBIOLOGY 2021; 19:87-101. [PMID: 33043601 DOI: 10.1111/gbi.12418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/11/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Shallow-water hydrothermal plumes concomitantly host both photosynthetic and chemoautotrophic organisms in a single biotope. Yet, rate measurements to quantify the contributions of different autotrophic activity types are scarce. Herein, we measured the light and dark dissolved inorganic carbon (DIC) uptake rates in the plume water of the Kueishantao hydrothermal field using the 13 C-labeling approach. Seventy percent of the plume-water samples had chemoautotrophy as the dominant mode of carbon fixation, with the dark DIC uptake rates (up to 18.6 mg C/m3 /h) within the range of the primary production in productive inner-shelf waters. When considered alongside the geochemical and microbiological observations, the rate data reveal the distribution of different trophic activities in the hydrothermal plume. The autotrophic activity at the initial phase of plume dispersal is low. This is explained by the short response time the chemoautotrophs have to the stimulation from vent-fluid discharge, and the harmful effects of hydrothermal substances on phytoplankton. As plume dispersal and mixing continue, chemoautotrophic activities begin to rise and peak in waters that have low-to-moderate Si(OH)4 content. Toward the plume margin, chemoautotrophy declines to background levels, whereas photosynthesis by phytoplankton regains importance. Our results also provide preliminary indication to the loci of enhanced heterotrophy in the plume. Results of artificial mixing experiments suggest that previously formed plume water is the primary source of microbial inoculum for new plume water. This self-inoculation mechanism, in combination with the intense DIC uptake, helps to sustain a distinct planktonic autotrophic community in this rapidly flushed hydrothermal plume.
Collapse
Affiliation(s)
- Yu-Shih Lin
- Department of Oceanography, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Huei-Ting Lin
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Bo-Shian Wang
- Taiwan Ocean Research Institute, National Applied Research Laboratories, Kaohsiung, Taiwan
- National Academy of Marine Research, Kaohsiung, Taiwan
| | - Wei-Jen Huang
- Department of Oceanography, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Li-Hung Lin
- Department of Geosciences, National Taiwan University, Taipei, Taiwan
- Research Center for Future Earth, National Taiwan University, Taipei, Taiwan
| | - An-Yi Tsai
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
10
|
Klatt JM, Gomez-Saez GV, Meyer S, Ristova PP, Yilmaz P, Granitsiotis MS, Macalady JL, Lavik G, Polerecky L, Bühring SI. Versatile cyanobacteria control the timing and extent of sulfide production in a Proterozoic analog microbial mat. THE ISME JOURNAL 2020; 14:3024-3037. [PMID: 32770117 PMCID: PMC7784965 DOI: 10.1038/s41396-020-0734-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 11/15/2022]
Abstract
Cyanobacterial mats were hotspots of biogeochemical cycling during the Precambrian. However, mechanisms that controlled O2 release by these ecosystems are poorly understood. In an analog to Proterozoic coastal ecosystems, the Frasassi sulfidic springs mats, we studied the regulation of oxygenic and sulfide-driven anoxygenic photosynthesis (OP and AP) in versatile cyanobacteria, and interactions with sulfur reducing bacteria (SRB). Using microsensors and stable isotope probing we found that dissolved organic carbon (DOC) released by OP fuels sulfide production, likely by a specialized SRB population. Increased sulfide fluxes were only stimulated after the cyanobacteria switched from AP to OP. O2 production triggered migration of large sulfur-oxidizing bacteria from the surface to underneath the cyanobacterial layer. The resultant sulfide shield tempered AP and allowed OP to occur for a longer duration over a diel cycle. The lack of cyanobacterial DOC supply to SRB during AP therefore maximized O2 export. This mechanism is unique to benthic ecosystems because transitions between metabolisms occur on the same time scale as solute transport to functionally distinct layers, with the rearrangement of the system by migration of microorganisms exaggerating the effect. Overall, cyanobacterial versatility disrupts the synergistic relationship between sulfide production and AP, and thus enhances diel O2 production.
Collapse
Affiliation(s)
- Judith M Klatt
- Microsensor Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Gonzalo V Gomez-Saez
- Hydrothermal Geomicrobiology, MARUM, University of Bremen, Bremen, Germany
- Alfred Wegener Institute-Helmholtz Centre for Polar and Marine Sciences, Bremerhaven, Germany
| | - Steffi Meyer
- Microsensor Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
- Thünen Institute of Baltic Sea Fisheries, Thünen Institute, Rostock, Germany
| | - Petra Pop Ristova
- Hydrothermal Geomicrobiology, MARUM, University of Bremen, Bremen, Germany
| | - Pelin Yilmaz
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Michael S Granitsiotis
- Research Unit Environmental Genomics, Helmholtz Zentrum Munich, Munich, Germany
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
- DOE, Joint Genome Institute, Lawerence Berkeley National Lab, Berkeley, CA, USA
| | | | - Gaute Lavik
- Biogeochemistry Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Lubos Polerecky
- Microsensor Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
- Department of Earth Sciences-Geochemistry, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
| | - Solveig I Bühring
- Hydrothermal Geomicrobiology, MARUM, University of Bremen, Bremen, Germany
| |
Collapse
|
11
|
The Effect of Chemical Sulfide Oxidation on the Oxygenic Activity of an Alkaliphilic Microalgae Consortium Deployed for Biogas Upgrading. SUSTAINABILITY 2020. [DOI: 10.3390/su12166610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The oxygenic photosynthetic activity (OPA) of an alkaliphilic microalgae consortium was evaluated at different concentrations of dissolved sulfide under room temperature and well-defined conditions of irradiance and pH in a tubular closed photobioreactor. The kinetic assays showed that it was optimal at a sulfide concentration of 3.2 mg/L under an external photosynthetically active radiation of 50 and 120 μE/m2 s together with a pH of 8.5 and 9.2. In contrast, the oxygenic photosynthetic activity was insignificant at 15 μE/m2 s with a pH of 7.3, both in the absence and presence of sulfide. Consecutive pulse additions of dissolved sulfide evidenced that the accumulation rate of dissolved oxygen was decreased by the spontaneous chemical oxidation of sulfide with dissolved oxygen in alkaline culture media, mainly at high sulfide levels. At 3.2 mg/L of sulfide, the oxygenic photosynthetic activity was improved by around 60% compared to the treatment without sulfide at external irradiances of 120 μE/m2 s, 30 °C, and pH of 8.5 and 9.2. Additionally, an even higher OPA enhancement (around 85%) was observed in the same previous conditions but using 16 mg/L of sulfide. Thiosulfate was the major end-product of sulfide by oxic chemical reaction, both in biotic and abiotic assays with yields of 0.80 and 0.68, respectively.
Collapse
|
12
|
Zhao D, Zhang S, Xue Q, Chen J, Zhou J, Cheng F, Li M, Zhu Y, Yu H, Hu S, Zheng Y, Liu S, Xiang H. Abundant Taxa and Favorable Pathways in the Microbiome of Soda-Saline Lakes in Inner Mongolia. Front Microbiol 2020; 11:1740. [PMID: 32793172 PMCID: PMC7393216 DOI: 10.3389/fmicb.2020.01740] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Soda-saline lakes are a special type of alkaline lake in which the chloride concentration is greater than the carbonate/bicarbonate concentration. Due to the high pH and a usually higher osmotic pressure than that of a normal soda lake, the microbes may need more energy to thrive in such a double-extreme environment. In this study, we systematically investigated the microbiome of the brine and sediment samples of nine artificially separated ponds (salinities from 5.5% to saturation) within two soda-saline lakes in Inner Mongolia of China, assisted by deep metagenomic sequencing. The main inorganic ions shaped the microbial community in both the brines and sediments, and the chloride concentration exhibited the most significant effect. A total of 385 metagenome-assembled genomes (MAGs) were generated, in which 38 MAGs were revealed as the abundant species in at least one of the eighteen different samples. Interestingly, these abundant species also represented the most branches of the microbiome of the soda-saline lakes at the phylum level. These abundant taxa were close relatives of microorganisms from classic soda lakes and neutral saline environments, but forming a combination of both habitats. Notably, approximately half of the abundant MAGs had the potential to drive dissimilatory sulfur cycling. These MAGs included four autotrophic Ectothiorhodospiraceae MAGs, one Cyanobacteria MAG and nine heterotrophic MAGs with the potential to oxidize sulfur, as well as four abundant MAGs containing genes for elemental sulfur respiration. The possible reason is that reductive sulfur compounds could provide additional energy for the related species, and reductions of oxidative sulfur compounds are more prone to occur under alkaline conditions which support the sulfur cycling. In addition, a unique 1,4-alpha-glucan phosphorylation pathway, but not a normal hydrolysis one, was found in the abundant Candidatus Nanohaloarchaeota MAG NHA-1, which would produce more energy in polysaccharide degradation. In summary, this work has revealed the abundant taxa and favorable pathways in the soda-saline lakes, indicating that efficient energy regeneration pathway may increase the capacity for environmental adaptation in such saline-alkaline environments. These findings may help to elucidate the relationship between microbial metabolism and adaptation to extreme environments.
Collapse
Affiliation(s)
- Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shengjie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junyu Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feiyue Cheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanning Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Liu D, Zhang J, Lü C, Xia Y, Liu H, Jiao N, Xun L, Liu J. Synechococcus sp. Strain PCC7002 Uses Sulfide:Quinone Oxidoreductase To Detoxify Exogenous Sulfide and To Convert Endogenous Sulfide to Cellular Sulfane Sulfur. mBio 2020; 11:e03420-19. [PMID: 32098824 PMCID: PMC7042703 DOI: 10.1128/mbio.03420-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
Eutrophication and deoxygenation possibly occur in coastal waters due to excessive nutrients from agricultural and aquacultural activities, leading to sulfide accumulation. Cyanobacteria, as photosynthetic prokaryotes, play significant roles in carbon fixation in the ocean. Although some cyanobacteria can use sulfide as the electron donor for photosynthesis under anaerobic conditions, little is known on how they interact with sulfide under aerobic conditions. In this study, we report that Synechococcus sp. strain PCC7002 (PCC7002), harboring an sqr gene encoding sulfide:quinone oxidoreductase (SQR), oxidized self-produced sulfide to S0, present as persulfide and polysulfide in the cell. The Δsqr mutant contained less cellular S0 and had increased expression of key genes involved in photosynthesis, but it was less competitive than the wild type in cocultures. Further, PCC7002 with SQR and persulfide dioxygenase (PDO) oxidized exogenous sulfide to tolerate high sulfide levels. Thus, SQR offers some benefits to cyanobacteria even under aerobic conditions, explaining the common presence of SQR in cyanobacteria.IMPORTANCE Cyanobacteria are a major force for primary production via oxygenic photosynthesis in the ocean. A marine cyanobacterium, PCC7002, is actively involved in sulfide metabolism. It uses SQR to detoxify exogenous sulfide, enabling it to survive better than its Δsqr mutant in sulfide-rich environments. PCC7002 also uses SQR to oxidize endogenously generated sulfide to S0, which is required for the proper expression of key genes involved in photosynthesis. Thus, SQR has at least two physiological functions in PCC7002. The observation provides a new perspective for the interplays of C and S cycles.
Collapse
Affiliation(s)
- Daixi Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
| | - Jiajie Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Nianzhi Jiao
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
- Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
- Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| |
Collapse
|
14
|
Reid T, Droppo IG, Chaganti SR, Weisener CG. Microbial metabolic strategies for overcoming low-oxygen in naturalized freshwater reservoirs surrounding the Athabasca Oil Sands: A proxy for End-Pit Lakes? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:113-124. [PMID: 30772540 DOI: 10.1016/j.scitotenv.2019.02.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
The success and sustainability of aquatic ecosystems are driven by the complex, cooperative metabolism of microbes. Ecological engineering strategies often strive to harness this syntrophic synergy of microbial metabolism for the reclamation of contaminated environments worldwide. Currently, there is a significant knowledge gap in our understanding of how the natural microbial ecology overcomes thermodynamic limitations in recovering contaminated environments. Here, we used in-situ metatranscriptomics and associated metataxonomic analyses on sediments collected from naturalized freshwater man-made reservoirs within the Athabasca Oil Sands region of Alberta, Canada. These reservoirs are unique since they are untouched by industrial mining processes and serve as representative endpoints for model landscape reconstruction. Results indicate that a microbial syntrophic cooperation has been established represented by the oxygenic and anoxygenic phototrophs, sustained through the efficient use of novel cellular mechanistic adaptations tailored to these unique thermodynamic conditions. Specifically, chemotaxis transcripts (cheY & MCPs-methyl-accepting chemotaxis proteins) were highly expressed, suggesting a highly active microbial response to gradients in environmental stimuli, resulting indirectly from hydrocarbon compound alteration. A high expression of photosynthetic activity, likely sustaining nutrient delivery to the similarly highly expressed methanogenic community acting in syntrophy during the breakdown of organics. Overall the more diversified functionality within sub-oxic sample locations indicates an ability to maintain efficient metabolism under thermodynamic constraints. This is the first study to holistically identify and characterize these types of in-situ, metabolic processes and address their thermodynamic feasibility within a global context for large landscape reconstruction. These characterizations of regional, natural landscapes surrounding the oil sands mining operation are severely lacking, but truly provide invaluable insight into end-point goals and targets for reclamation procedures.
Collapse
Affiliation(s)
- Thomas Reid
- Great Lakes Institute for Environmental Research, 401 Sunset Ave, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | - Ian G Droppo
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Subba Rao Chaganti
- Great Lakes Institute for Environmental Research, 401 Sunset Ave, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Christopher G Weisener
- Great Lakes Institute for Environmental Research, 401 Sunset Ave, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
15
|
Burganskaya EI, Bryantseva IA, Krutkina MS, Grouzdev DS, Gorlenko VM. Bacterial communities of the microbial mats of Chokrak sulfide springs. Arch Microbiol 2019; 201:795-805. [DOI: 10.1007/s00203-019-01648-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/01/2022]
|
16
|
Li Y, Tang K, Zhang L, Zhao Z, Xie X, Chen CTA, Wang D, Jiao N, Zhang Y. Coupled Carbon, Sulfur, and Nitrogen Cycles Mediated by Microorganisms in the Water Column of a Shallow-Water Hydrothermal Ecosystem. Front Microbiol 2018; 9:2718. [PMID: 30555427 PMCID: PMC6282030 DOI: 10.3389/fmicb.2018.02718] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
Shallow-water hydrothermal vent ecosystems are distinctly different from deep-sea vents, as other than geothermal, sunlight is one of their primary sources of energy, so their resulting microbial communities differ to some extent. Yet compared with deep-sea systems, less is known about the active microbial community in shallow-water ecosystems. Thus, we studied the community compositions, their metabolic pathways, and possible coupling of microbially driven biogeochemical cycles in a shallow-water hydrothermal vent system off Kueishantao Islet, Taiwan, using high-throughput 16S rRNA sequences and metatranscriptome analyses. Gammaproteobacteria and Epsilonbacteraeota were the major active bacterial groups in the 16S rRNA libraries and the metatranscriptomes, and involved in the carbon, sulfur, and nitrogen metabolic pathways. As core players, Thiomicrospira, Thiomicrorhabdus, Thiothrix, Sulfurovum, and Arcobacter derived energy from the oxidation of reduced sulfur compounds and fixed dissolved inorganic carbon (DIC) by the Calvin-Benson-Bassham (CBB) or reverse tricarboxylic acid cycles. Sox-dependent and reverse sulfate reduction were the main pathways of energy generation, and probably coupled to denitrification by providing electrons to nitrate and nitrite. Sulfur-reducing Nautiliaceae members, accounting for a small proportion in the community, obtained energy by the oxidation of hydrogen, which also supplies metabolic energy for some sulfur-oxidizing bacteria. In addition, ammonia and nitrite oxidation is another type of energy generation in this hydrothermal system, with marker gene sequences belonging to Thaumarchaeota/Crenarchaeota and Nitrospina, respectively, and ammonia and nitrite oxidation was likely coupled to denitrification by providing substrate for nitrate and nitrite reduction to nitric oxide. Moreover, unlike the deep-sea systems, cyanobacteria may also actively participate in major metabolic pathways. This study helps us to better understand biogeochemical processes mediated by microorganisms and possible coupling of the carbon, sulfur, and nitrogen cycles in these unique ecosystems.
Collapse
Affiliation(s)
- Yufang Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lianbao Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zihao Zhao
- Department of Limnology and Bio-Oceanography, University of Vienna, Vienna, Austria
| | - Xiabing Xie
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | | | - Deli Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
17
|
Ruuskanen MO, St Pierre KA, St Louis VL, Aris-Brosou S, Poulain AJ. Physicochemical Drivers of Microbial Community Structure in Sediments of Lake Hazen, Nunavut, Canada. Front Microbiol 2018; 9:1138. [PMID: 29922252 PMCID: PMC5996194 DOI: 10.3389/fmicb.2018.01138] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
The Arctic is undergoing rapid environmental change, potentially affecting the physicochemical constraints of microbial communities that play a large role in both carbon and nutrient cycling in lacustrine environments. However, the microbial communities in such Arctic environments have seldom been studied, and the drivers of their composition are poorly characterized. To address these gaps, we surveyed the biologically active surface sediments in Lake Hazen, the largest lake by volume north of the Arctic Circle, and a small lake and shoreline pond in its watershed. High-throughput amplicon sequencing of the 16S rRNA gene uncovered a community dominated by Proteobacteria, Bacteroidetes, and Chloroflexi, similar to those found in other cold and oligotrophic lake sediments. We also show that the microbial community structure in this Arctic polar desert is shaped by pH and redox gradients. This study lays the groundwork for predicting how sediment microbial communities in the Arctic could respond as climate change proceeds to alter their physicochemical constraints.
Collapse
Affiliation(s)
| | - Kyra A St Pierre
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Vincent L St Louis
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Stéphane Aris-Brosou
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.,Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
18
|
Cyanobacterial photosynthesis under sulfidic conditions: insights from the isolate Leptolyngbya sp. strain hensonii. ISME JOURNAL 2018; 12:568-584. [PMID: 29328062 PMCID: PMC5776472 DOI: 10.1038/ismej.2017.193] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 09/01/2017] [Accepted: 10/09/2017] [Indexed: 01/10/2023]
Abstract
We report the isolation of a pinnacle-forming cyanobacterium isolated from a microbial mat covering the sediment surface at Little Salt Spring—a flooded sinkhole in Florida with a perennially microoxic and sulfidic water column. The draft genome of the isolate encodes all of the enzymatic machinery necessary for both oxygenic and anoxygenic photosynthesis, as well as genes for methylating hopanoids at the C-2 position. The physiological response of the isolate to H2S is complex: (i) no induction time is necessary for anoxygenic photosynthesis; (ii) rates of anoxygenic photosynthesis are regulated by both H2S and irradiance; (iii) O2 production is inhibited by H2S concentrations as low as 1 μM and the recovery rate of oxygenic photosynthesis is dependent on irradiance; (iv) under the optimal light conditions for oxygenic photosynthesis, rates of anoxygenic photosynthesis are nearly double those of oxygenic photosynthesis. We hypothesize that the specific adaptation mechanisms of the isolate to H2S emerged from a close spatial interaction with sulfate-reducing bacteria. The new isolate, Leptolyngbya sp. strain hensonii, is not closely related to other well-characterized Cyanobacteria that can perform anoxygenic photosynthesis, which further highlights the need to characterize the diversity and biogeography of metabolically versatile Cyanobacteria. The isolate will be an ideal model organism for exploring the adaptation of Cyanobacteria to sulfidic conditions.
Collapse
|
19
|
Cytoplasmic Localization of Sulfide:Quinone Oxidoreductase and Persulfide Dioxygenase of Cupriavidus pinatubonensis JMP134. Appl Environ Microbiol 2017; 83:AEM.01820-17. [PMID: 28939597 DOI: 10.1128/aem.01820-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022] Open
Abstract
Heterotrophic bacteria have recently been reported to oxidize sulfide to sulfite and thiosulfate by using sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO). In chemolithotrophic bacteria, both SQR and PDO have been reported to function in the periplasmic space, with SQR as a peripheral membrane protein whose C terminus inserts into the cytoplasmic membrane and PDO as a soluble protein. Cupriavidus pinatubonensis JMP134, best known for its ability to degrade 2,4-dichlorophenoxyacetic acid and other aromatic pollutants, has a gene cluster of sqr and pdo encoding C. pinatubonensis SQR (CpSQR) and CpPDO2. When cloned in Escherichia coli, the enzymes are functional. Here we investigated whether they function in the periplasmic space or in the cytoplasm in heterotrophic bacteria. By using sequence analysis, biochemical detection, and green fluorescent protein (GFP)/PhoA fusion proteins, we found that CpSQR was located on the cytoplasmic side of the membrane and CpPDO2 was a soluble protein in the cytoplasm with a tendency to be peripherally located near the membrane. The location proximity of these proteins near the membrane in the cytoplasm may facilitate sulfide oxidation in heterotrophic bacteria. The information may guide the use of heterotrophic bacteria in bioremediation of organic pollutants as well as H2S.IMPORTANCE Sulfide (H2S, HS-, and S2-), which is common in natural gas and wastewater, causes a serious malodor at low levels and is deadly at high levels. Microbial oxidation of sulfide is a valid bioremediation method, in which chemolithotrophic bacteria that use sulfide as the energy source are often used to remove sulfide. Heterotrophic bacteria with SQR and PDO have recently been reported to oxidize sulfide to sulfite and thiosulfate. Cupriavidus pinatubonensis JMP134 has been extensively characterized for its ability to degrade organic pollutants, and it also contains SQR and PDO. This paper shows the localization of SQR and PDO inside the cytoplasm in the vicinity of the membrane. The information may provide guidance for using heterotrophic bacteria in sulfide bioremediation.
Collapse
|
20
|
Kinsman-Costello LE, Sheik CS, Sheldon ND, Allen Burton G, Costello DM, Marcus D, Uyl PAD, Dick GJ. Groundwater shapes sediment biogeochemistry and microbial diversity in a submerged Great Lake sinkhole. GEOBIOLOGY 2017; 15:225-239. [PMID: 27671809 DOI: 10.1111/gbi.12215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/25/2016] [Indexed: 06/06/2023]
Abstract
For a large part of earth's history, cyanobacterial mats thrived in low-oxygen conditions, yet our understanding of their ecological functioning is limited. Extant cyanobacterial mats provide windows into the putative functioning of ancient ecosystems, and they continue to mediate biogeochemical transformations and nutrient transport across the sediment-water interface in modern ecosystems. The structure and function of benthic mats are shaped by biogeochemical processes in underlying sediments. A modern cyanobacterial mat system in a submerged sinkhole of Lake Huron (LH) provides a unique opportunity to explore such sediment-mat interactions. In the Middle Island Sinkhole (MIS), seeping groundwater establishes a low-oxygen, sulfidic environment in which a microbial mat dominated by Phormidium and Planktothrix that is capable of both anoxygenic and oxygenic photosynthesis, as well as chemosynthesis, thrives. We explored the coupled microbial community composition and biogeochemical functioning of organic-rich, sulfidic sediments underlying the surface mat. Microbial communities were diverse and vertically stratified to 12 cm sediment depth. In contrast to previous studies, which used low-throughput or shotgun metagenomic approaches, our high-throughput 16S rRNA gene sequencing approach revealed extensive diversity. This diversity was present within microbial groups, including putative sulfate-reducing taxa of Deltaproteobacteria, some of which exhibited differential abundance patterns in the mats and with depth in the underlying sediments. The biological and geochemical conditions in the MIS were distinctly different from those in typical LH sediments of comparable depth. We found evidence for active cycling of sulfur, methane, and nutrients leading to high concentrations of sulfide, ammonium, and phosphorus in sediments underlying cyanobacterial mats. Indicators of nutrient availability were significantly related to MIS microbial community composition, while LH communities were also shaped by indicators of subsurface groundwater influence. These results show that interactions between the mats and sediments are crucial for sustaining this hot spot of biological diversity and biogeochemical cycling.
Collapse
Affiliation(s)
| | - C S Sheik
- Department of Biology, Large Lakes Observatory, University of Minnesota Duluth, Duluth, MN, USA
| | - N D Sheldon
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - G Allen Burton
- School of Natural Resources and the Environment, University of Michigan, Ann Arbor, MI, USA
| | - D M Costello
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - D Marcus
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - P A Den Uyl
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - G J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Unraveling the microbial processes of black band disease in corals through integrated genomics. Sci Rep 2017; 7:40455. [PMID: 28094312 PMCID: PMC5240343 DOI: 10.1038/srep40455] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/29/2016] [Indexed: 11/08/2022] Open
Abstract
Coral disease outbreaks contribute to the ongoing degradation of reef ecosystems, however, microbial mechanisms underlying the onset and progression of most coral diseases are poorly understood. Black band disease (BBD) manifests as a cyanobacterial-dominated microbial mat that destroys coral tissues as it rapidly spreads over coral colonies. To elucidate BBD pathogenesis, we apply a comparative metagenomic and metatranscriptomic approach to identify taxonomic and functional changes within microbial lesions during in-situ development of BBD from a comparatively benign stage termed cyanobacterial patches. Results suggest that photosynthetic CO2-fixation in Cyanobacteria substantially enhances productivity of organic matter within the lesion during disease development. Photosynthates appear to subsequently promote sulfide-production by Deltaproteobacteria, facilitating the major virulence factor of BBD. Interestingly, our metagenome-enabled transcriptomic analysis reveals that BBD-associated cyanobacteria have a putative mechanism that enables them to adapt to higher levels of hydrogen sulfide within lesions, underpinning the pivotal roles of the dominant cyanobacterium within the polymicrobial lesions during the onset of BBD. The current study presents sequence-based evidence derived from whole microbial communities that unravel the mechanism of development and progression of BBD.
Collapse
|
22
|
Klatt JM, de Beer D, Häusler S, Polerecky L. Cyanobacteria in Sulfidic Spring Microbial Mats Can Perform Oxygenic and Anoxygenic Photosynthesis Simultaneously during an Entire Diurnal Period. Front Microbiol 2016; 7:1973. [PMID: 28018309 PMCID: PMC5156726 DOI: 10.3389/fmicb.2016.01973] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/24/2016] [Indexed: 12/04/2022] Open
Abstract
We used microsensors to study the regulation of anoxygenic and oxygenic photosynthesis (AP and OP, respectively) by light and sulfide in a cyanobacterium dominating microbial mats from cold sulfidic springs. Both photosynthetic modes were performed simultaneously over all H2S concentrations (1–2200 μM) and irradiances (4–52 μmol photons m-2 s-1) tested. AP increased with H2S concentration while the sum of oxygenic and anoxygenic photosynthetic rates was constant at each light intensity. Thus, the total photosynthetically driven electron transport rate was solely controlled by the irradiance level. The partitioning between the rates of these two photosynthetic modes was regulated by both light and H2S concentration. The plastoquinone pool (PQ) receives electrons from sulfide:quinone:reductase (SQR) in AP and from photosystem II (PSII) in OP. It is thus the link in the electron transport chain where both pathways intersect, and the compound that controls their partitioning. We fitted our data with a model of the photosynthetic electron transport that includes the kinetics of plastoquinone reduction and oxidation. The model results confirmed that the observed partitioning between photosynthetic modes can be explained by a simple kinetic control based on the affinity of SQR and PSII toward PQ. The SQR enzyme and PSII have similar affinities toward PQ, which explains the concurrent OP and AP over an astonishingly wide range of H2S concentrations and irradiances. The elegant kinetic control of activity makes the cyanobacterium successful in the fluctuating spring environment. We discuss how these specific regulation mechanisms may have played a role in ancient H2S-rich oceans.
Collapse
Affiliation(s)
- Judith M Klatt
- Microsensor Group, Max-Planck-Institute for Marine MicrobiologyBremen, Germany; Geomicrobiology Lab, Department of Earth and Environmental Sciences, University of Michigan, Ann ArborMI, USA
| | - Dirk de Beer
- Microsensor Group, Max-Planck-Institute for Marine Microbiology Bremen, Germany
| | - Stefan Häusler
- Microsensor Group, Max-Planck-Institute for Marine Microbiology Bremen, Germany
| | - Lubos Polerecky
- Microsensor Group, Max-Planck-Institute for Marine MicrobiologyBremen, Germany; Department of Earth Sciences - Geochemistry, Faculty of Geosciences, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
23
|
Grim SL, Dick GJ. Photosynthetic Versatility in the Genome of Geitlerinema sp. PCC 9228 (Formerly Oscillatoria limnetica 'Solar Lake'), a Model Anoxygenic Photosynthetic Cyanobacterium. Front Microbiol 2016; 7:1546. [PMID: 27790189 PMCID: PMC5061849 DOI: 10.3389/fmicb.2016.01546] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/15/2016] [Indexed: 12/27/2022] Open
Abstract
Anoxygenic cyanobacteria that use sulfide as the electron donor for photosynthesis are a potentially influential but poorly constrained force on Earth's biogeochemistry. Their versatile metabolism may have boosted primary production and nitrogen cycling in euxinic coastal margins in the Proterozoic. In addition, they represent a biological mechanism for limiting the accumulation of atmospheric oxygen, especially before the Great Oxidation Event and in the low-oxygen conditions of the Proterozoic. In this study, we describe the draft genome sequence of Geitlerinema sp. PCC 9228, formerly Oscillatoria limnetica 'Solar Lake', a mat-forming diazotrophic cyanobacterium that can switch between oxygenic photosynthesis and sulfide-based anoxygenic photosynthesis (AP). Geitlerinema possesses three variants of psbA, which encodes protein D1, a core component of the photosystem II reaction center. Phylogenetic analyses indicate that one variant is closely affiliated with cyanobacterial psbA genes that code for a D1 protein used for oxygen-sensitive processes. Another version is phylogenetically similar to cyanobacterial psbA genes that encode D1 proteins used under microaerobic conditions, and the third variant may be cued to high light and/or elevated oxygen concentrations. Geitlerinema has the canonical gene for sulfide quinone reductase (SQR) used in cyanobacterial AP and a putative transcriptional regulatory gene in the same operon. Another operon with a second, distinct sqr and regulatory gene is present, and is phylogenetically related to sqr genes used for high sulfide concentrations. The genome has a comprehensive nif gene suite for nitrogen fixation, supporting previous observations of nitrogenase activity. Geitlerinema possesses a bidirectional hydrogenase rather than the uptake hydrogenase typically used by cyanobacteria in diazotrophy. Overall, the genome sequence of Geitlerinema sp. PCC 9228 highlights potential cyanobacterial strategies to cope with fluctuating redox gradients and nitrogen availability that occur in benthic mats over a diel cycle. Such dynamic geochemical conditions likely also challenged Proterozoic cyanobacteria, modulating oxygen production. The genetic repertoire that underpins flexible oxygenic/anoxygenic photosynthesis in cyanobacteria provides a foundation to explore the regulation, evolutionary context, and biogeochemical implications of these co-occurring metabolisms in Earth history.
Collapse
Affiliation(s)
- Sharon L. Grim
- Department of Earth and Environmental Sciences, University of Michigan, Ann ArborMI, USA
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann ArborMI, USA
| |
Collapse
|
24
|
Xin Y, Liu H, Cui F, Liu H, Xun L. Recombinant Escherichia coli
with sulfide:quinone oxidoreductase and persulfide dioxygenase rapidly oxidises sulfide to sulfite and thiosulfate via a new pathway. Environ Microbiol 2016; 18:5123-5136. [DOI: 10.1111/1462-2920.13511] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/24/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Yufeng Xin
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 People's Republic of China
| | - Honglei Liu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 People's Republic of China
| | - Feifei Cui
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 People's Republic of China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 People's Republic of China
- School of Molecular Biosciences; Washington State University; Pullman WA 991647520 USA
| |
Collapse
|