1
|
Cheng HM, Ning XL, Zhang SF, Zhang H, Lin L, Liu SQ, Wang DZ. Metaproteomics reveals metabolic activities potentially involved in bloom formation and succession during a mixed dinoflagellate bloom of Prorocentrum obtusidens and Karenia mikimotoi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178479. [PMID: 39848157 DOI: 10.1016/j.scitotenv.2025.178479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/17/2024] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
Understanding metabolic activities involved in bloom formation during a single-species algal bloom has improved greatly. However, little is known about metabolic activities during a multi-species algal bloom. Here, we investigated protein expression profiles at different bloom stages of a mixed dinoflagellate bloom caused by Karenia mikimotoi and Prorocentrum obtusidens (syn. Prorocentrum donghaiense) using a metaproteomic approach. Our results indicated that both P. obtusidens and K. mikimotoi cells highly expressed proteins associated with essential cellular metabolisms such as cell growth and nutrient acquisition before their respective bloom occurrence. P. obtusidens preferentially enhanced uptake and utilization of ammonium, amino acid and organophosphorus-like phospholipid at the early bloom stage, and expressed highly abundant chloroplast peridinin-chlorophyll a-binding protein at the early and the P. obtusidens-dominated bloom stages, indicating their important roles in preferential occurrence and maintenance of P. obtusidens bloom. While absorption and utilization of nutrients, especially ammonium, urea, cyanate, phospholipid, and nucleotide, as well as endocytosis, in K. mikimotoi cells, were enhanced. Notably, both species increased photosynthesis, energy generation, cell proliferation, cell motility and cell defense before their respective blooms, which were beneficial to dealing with adverse external stresses, enabling them to be more competitive and advantageous in complex environments. Interestingly, diatom groups (Skeletonema, Pseudo-nitzschia, and Thalassiosira) decreased uptake and utilization of ambient nutrients and cell proliferation during the bloom period. This study demonstrates that niche differentiation and functional complementarity among phytoplankton species regulate bloom formation and succession during the mixed bloom.
Collapse
Affiliation(s)
- Hua-Min Cheng
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Xiao-Lian Ning
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Hao Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Si-Qi Liu
- BGI-Shenzhen, Beishan Industrial Zone 11th building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
2
|
Chen S, Xie ZX, Yan KQ, Chen JW, Li DX, Wu PF, Peng L, Lin L, Dong CM, Zhao Z, Fan GY, Liu SQ, Herndl GJ, Wang DZ. Functional vertical connectivity of microbial communities in the ocean. SCIENCE ADVANCES 2024; 10:eadj8184. [PMID: 38781332 PMCID: PMC11114224 DOI: 10.1126/sciadv.adj8184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Sinking particles are a critical conduit for the transport of surface microbes to the ocean's interior. Vertical connectivity of phylogenetic composition has been shown; however, the functional vertical connectivity of microbial communities has not yet been explored in detail. We investigated protein and taxa profiles of both free-living and particle-attached microbial communities from the surface to 3000 m depth using a combined metaproteomic and 16S rRNA amplicon sequencing approach. A clear compositional and functional vertical connectivity of microbial communities was observed throughout the water column with Oceanospirillales, Alteromonadales, and Rhodobacterales as key taxa. The surface-derived particle-associated microbes increased the expression of proteins involved in basic metabolism, organic matter processing, and environmental stress response in deep waters. This study highlights the functional vertical connectivity between surface and deep-sea microbial communities via sinking particles and reveals that a considerable proportion of the deep-sea microbes might originate from surface waters and have a major impact on the biogeochemical cycles in the deep sea.
Collapse
Affiliation(s)
- Shi Chen
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Zhang-Xian Xie
- School of Resource and Environmental Sciences, Quanzhou Normal University, Quanzhou 362000, China
| | - Ke-Qiang Yan
- BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Wei Chen
- Qingdao Key Laboratory of Marine Genomics, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
| | - Dong-Xu Li
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Peng-Fei Wu
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Ling Peng
- Qingdao Key Laboratory of Marine Genomics, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Chun-Ming Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No. 184, Daxue Road, Siming District, Xiamen 361005, Fujian, China
| | - Zihao Zhao
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Guang-Yi Fan
- BGI-Shenzhen, Shenzhen 518083, China
- Qingdao Key Laboratory of Marine Genomics, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
| | - Si-Qi Liu
- BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, 1790 AB Den Burg, Texel, Netherlands
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| |
Collapse
|
3
|
Cheng HM, Zhang SF, Ning XL, Peng JX, Li DX, Zhang H, Zhang K, Lin L, Liu SQ, Smith WO, Wang DZ. Elucidating colony bloom formation mechanism of a harmful alga Phaeocystis globosa (Prymnesiophyceae) using metaproteomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161846. [PMID: 36709898 DOI: 10.1016/j.scitotenv.2023.161846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Phaeocystis is a globally distributed Prymnesiophyte genus and usually forms massive harmful colony blooms, which impact marine ecosystem, mariculture, human health, and even threaten coastal nuclear power plant safety. However, the mechanisms behind the colony formation from the solitary cells remain poorly understood. Here, we investigated metabolic processes of both solitary and non-flagellated colonial cells of Phaeocystis globosa at different colony bloom stages in the subtropical Beibu Gulf using a metaproteomic approach. Temperature was significantly correlated with Phaeocystis colony bloom formation, and the flagellated motile solitary cells with abundant flagellum-associated proteins, such as tubulin and dynein, were the exclusive cellular morphotype at the solitary cell stage featured with temperatures ≥21 °C. When the temperature decreased to <21 °C, tiny colonies appeared and the flagellum-associated proteins were down-regulated in both solitary and non-flagellated colonial cells, while proteins involved in biosynthesis, chain polymerization and aggregation of glycosaminoglycan (GAG), a key constituent of gelatinous matrix, were up-regulated, indicating the central role of active GAG biosynthesis during the colony formation. Furthermore, light utilization, carbon fixation, nitrogen assimilation, and amino acid and protein synthesis were also enhanced to provide sufficient energy and substrates for GAG biosynthesis. This study highlighted that temperature induced re-allocation of energy and substances toward GAG biosynthesis is essential for colony bloom formation of P. globosa.
Collapse
Affiliation(s)
- Hua-Min Cheng
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Xiao-Lian Ning
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Jian-Xiang Peng
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Dong-Xu Li
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Hao Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Kun Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Si-Qi Liu
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Walker O Smith
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200300, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
4
|
Wang D, Zhang S, Zhang H, Lin S. Omics study of harmful algal blooms in China: Current status, challenges, and future perspectives. HARMFUL ALGAE 2021; 107:102079. [PMID: 34456014 DOI: 10.1016/j.hal.2021.102079] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
In the past two decades, the frequency, scale, and scope of harmful algal blooms (HABs) have increased significantly in the coastal waters of China. HABs have become a major ecological and environmental problem in China that seriously threatens the structure and function of marine ecosystems, the sustainable development of mariculture, and the health of human beings. Much effort has been devoted to studying HABs in China, and great achievements have been made in understanding the oceanographic and ecological mechanisms of HABs as well as the biology and physiological ecology of HAB-causing species. Furthermore, state-of-the-art omics technologies, such as transcriptomics and proteomics, have been used to elucidate the physiological responses of HAB-causing species to environmental changes, the biosynthesis of paralytic shellfish toxin, and the mechanisms underlying the formation of HABs. This review summarizes omics studies of HABs in China over the past few years and discusses challenges and future perspectives of HAB research.
Collapse
Affiliation(s)
- Dazhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Shufeng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Hao Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science/College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
5
|
Zhang H, Zhou Y, Liu TQ, Yin XJ, Lin L, Lin Q, Wang DZ. Initiation of efficient C 4 pathway in response to low ambient CO 2 during the bloom period of a marine dinoflagellate. Environ Microbiol 2021; 23:3196-3211. [PMID: 33938118 DOI: 10.1111/1462-2920.15545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
Dinoflagellates are important primary producers and major causative agents of harmful algal blooms in the global ocean. Despite the great ecological significance, the photosynthetic carbon acquisition by dinoflagellates is still poorly understood. The pathways of photosynthetic carbon assimilation in a marine dinoflagellate Prorocentrum donghaiense under both in situ and laboratory-simulated bloom conditions were investigated using a combination of metaproteomics, qPCR, stable carbon isotope and targeted metabolomics approaches. A rapid consumption of dissolved CO2 to generate high biomass was observed as the bloom proceeded. The carbon assimilation genes and proteins including intracellular carbonic anhydrase 2, phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase and RubisCO as well as their enzyme activities were all highly expressed at the low CO2 level, indicating that C4 photosynthetic pathway functioned in the blooming P. donghaiense cells. Furthermore, δ13 C values and content of C4 compound (malate) significantly increased with the decreasing CO2 concentration. The transition from C3 to C4 pathway minimizes the internal CO2 leakage and guarantees efficient carbon fixation at the low CO2 level. This study demonstrates the existence of C4 photosynthetic pathway in a marine dinoflagellate and reveals its important complementary role to assist carbon assimilation for cell proliferation during the bloom period.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China.,CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Youping Zhou
- Isotopomics in Chemical Biology & Shaanxi Key Laboratory of Chemical Additives for Industry, School of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Tian-Qi Liu
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Xi-Jie Yin
- Laboratory of Marine & Coastal Geology, MNR Third Institute of Oceanology, Xiamen, 361005, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
6
|
Thangaraj S, Palanisamy SK, Zhang G, Sun J. Quantitative Proteomic Profiling of Marine Diatom Skeletonema dohrnii in Response to Temperature and Silicate Induced Environmental Stress. Front Microbiol 2021; 11:554832. [PMID: 33519723 PMCID: PMC7841394 DOI: 10.3389/fmicb.2020.554832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/23/2020] [Indexed: 11/17/2022] Open
Abstract
Global warming is expected to reduce the nutrient concentration in the upper ocean and affect the physiology of marine diatoms, but the underlying molecular mechanisms controlling these physiological changes are currently unknown. To understand these mechanisms, here we investigated iTRAQ based proteomic profiling of diatom Skeletonema dohrnii in a multifactorial experimental with a combining change of temperature and silicate concentrations. In total, 3369 differently abundant proteins were detected in four different environmental conditions, and the function of all proteins was identified using Gene Ontology and KEGG pathway analysis. For discriminating the proteome variation among samples, multivariate statistical analysis (PCA, PLS-DA) was performed by comparing the protein ratio differences. Further, performing pathway analysis on diatom proteomes, we here demonstrated downregulation of photosynthesis, carbon metabolism, and ribosome biogenesis in the cellular process that leads to decrease the oxidoreductase activity and affects the cell cycle of the diatom. Using PLS-DA VIP score plot analysis, we identified 15 protein biomarkers for discriminating studied samples. Of these, five proteins or gene (rbcL, PRK, atpB, DNA-binding, and signal transduction) identified as key biomarkers, induced by temperature and silicate stress in diatom metabolism. Our results show that proteomic finger-printing of S. dohrnii with different environmental conditions adds biological information that strengthens marine phytoplankton proteome analysis.
Collapse
Affiliation(s)
| | - Satheesh Kumar Palanisamy
- Department of Zoology, School of Natural Science, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Guicheng Zhang
- Research Center for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin, China
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences, Wuhan, China
| |
Collapse
|
7
|
Zhang H, He YB, Wu PF, Zhang SF, Xie ZX, Li DX, Lin L, Chen F, Wang DZ. Functional Differences in the Blooming Phytoplankton Heterosigma akashiwo and Prorocentrum donghaiense Revealed by Comparative Metaproteomics. Appl Environ Microbiol 2019; 85:e01425-19. [PMID: 31375486 PMCID: PMC6752027 DOI: 10.1128/aem.01425-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/07/2019] [Indexed: 12/21/2022] Open
Abstract
Phytoplankton blooms are natural phenomena in the ocean, which are the results of rapid cell growth of some phytoplankton species in a unique environment. However, little is known about the molecular events occurring during the bloom. Here, we compared metaproteomes of two phytoplankton Heterosigma akashiwo and Prorocentrum donghaiense in the coastal East China Sea. H. akashiwo and P. donghaiense accounted for 7.82% and 4.74% of the phytoplankton community protein abundances in the nonbloom sample, whereas they contributed to 60.13% and 78.09%, respectively, in their individual blooming samples. Compared with P. donghaiense, H. akashiwo possessed a significantly higher abundance of light-harvesting complex proteins, carbonic anhydrasem and RuBisCO. The blooming H. akashiwo cells expressed more proteins related to external nutrient acquisition, such as bicarbonate transporter SLC4, ammonium transporter, nitrite transporter, and alkaline phosphatase, while the blooming P. donghaiense cells highly expressed proteins related to extra- and intracellular organic nutrient utilization, such as amino acid transporter, 5'-nucleotidase, acid phosphatase, and tripeptidyl-peptidase. The strong capabilities of light harvesting, as well as acquisition and assimilation of inorganic carbon, nitrogen, and phosphorus, facilitated the formation of the H. akashiwo bloom under the high turbidity and inorganic nutrient-sufficient condition, whereas the competitive advantages in organic nutrient acquisition and reallocation guaranteed the occurrence of the P. donghaiense bloom under the inorganic nutrient-insufficient condition. This study highlights the power of metaproteomics for revealing the underlying molecular behaviors of different coexisting phytoplankton species and advances our knowledge on the formation of phytoplankton blooms.IMPORTANCE A deep understanding of the mechanisms driving bloom formation is a prerequisite for effective bloom management. Metaproteomics was applied in this study to reveal the adaptive and responsive strategies of two coexisting phytoplankton species, H. akashiwo and P. donghaiense, during their bloom periods. Metabolic features and niche divergence in light harvesting, as well as carbon, nitrogen, and phosphorus acquisition and assimilation likely promoted the bloom occurrence under different environments. The molecular behaviors of coexisting bloom-causing species will give clues for bloom monitoring and management in the oceans.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yan-Bin He
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Peng-Fei Wu
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Dong-Xu Li
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Morse D, Tse SPK, Lo SCL. Exploring dinoflagellate biology with high-throughput proteomics. HARMFUL ALGAE 2018; 75:16-26. [PMID: 29778222 DOI: 10.1016/j.hal.2018.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Dinoflagellates are notorious for their ability to form the harmful algal blooms known as "red tides," yet the mechanisms underlying bloom formation remain poorly understood. Despite recent advances in nucleic acid sequencing, which have generated transcriptomes from a wide range of species exposed to a variety of different conditions, measuring changes in RNA levels have not generally produced great insight into dinoflagellate cell biology or environmental physiology, nor do we have a thorough grasp on the molecular events underpinning bloom formation. Not only is the transcriptomic response of dinoflagellates to environmental change generally muted, but there is a markedly low degree of congruency between mRNA expression and protein expression in dinoflagellates. Herein we discuss the application of high-throughput proteomics to the study of dinoflagellate biology. By profiling the cellular protein complement (the proteome) instead of mRNA (the transcriptome), the biomolecular events that underlie the changes of phenotypes can be more readily evaluated, as proteins directly determine the structure and the function of the cell. Recent advances in proteomics have seen this technique become a high-throughput method that is now able to provide a perspective different from the more commonly employed nucleic acid sequencing. We suggest that the time is ripe to exploit these new technologies in addressing the many mysteries of dinoflagellate biology, such as how the symbiotic dinoflagellate inhabiting reef corals acclimate to increases in temperature, as well as how harmful algal blooms are initiated at the sub-cellular level. Furthermore, as dinoflagellates are not the only eukaryotes that demonstrate muted transcriptional responses, the techniques addressed within this review are amenable to a wide array of organisms.
Collapse
Affiliation(s)
- David Morse
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada.
| | - Sirius P K Tse
- Shenzhen Key Laboratory of Food Biological Safety Control, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Samuel C L Lo
- Shenzhen Key Laboratory of Food Biological Safety Control, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
9
|
Li DX, Zhang H, Chen XH, Xie ZX, Zhang Y, Zhang SF, Lin L, Chen F, Wang DZ. Metaproteomics reveals major microbial players and their metabolic activities during the blooming period of a marine dinoflagellate Prorocentrum donghaiense. Environ Microbiol 2017; 20:632-644. [PMID: 29124849 DOI: 10.1111/1462-2920.13986] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/12/2017] [Accepted: 10/27/2017] [Indexed: 01/04/2023]
Abstract
Interactions between bacteria and phytoplankton during bloom events are essential for both partners, which impacts their physiology, alters ambient chemistry and shapes ecosystem diversity. Here, we investigated the community structure and metabolic activities of free-living bacterioplankton in different blooming phases of a dinoflagellate Prorocentrum donghaiense using a metaproteomic approach. The Fibrobacteres-Chlorobi-Bacteroidetes group, Rhodobacteraceae, SAR11 and SAR86 clades contributed largely to the bacterial community in the middle-blooming phase while the Pseudoalteromonadaceae exclusively dominated in the late-blooming phase. Transporters and membrane proteins, especially TonB-dependent receptors were highly abundant in both blooming phases. Proteins involved in carbon metabolism, energy metabolism and stress response were frequently detected in the middle-blooming phase while proteins participating in proteolysis and central carbon metabolism were abundant in the late-blooming phase. Beta-glucosidase with putative algicidal capability was identified from the Pseudoalteromonadaceae only in the late-blooming phase, suggesting an active role of this group in lysing P. donghaiense cells. Our results indicated that diverse substrate utilization strategies and different capabilities for environmental adaptation among bacteria shaped their distinct niches in different bloom phases, and certain bacterial species from the Pseudoalteromonadaceae might be crucial for the termination of a dinoflagellate bloom.
Collapse
Affiliation(s)
- Dong-Xu Li
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Hao Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xiao-Huang Chen
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Macchi M, Martinez M, Tauil RMN, Valacco MP, Morelli IS, Coppotelli BM. Insights into the genome and proteome of Sphingomonas paucimobilis strain 20006FA involved in the regulation of polycyclic aromatic hydrocarbon degradation. World J Microbiol Biotechnol 2017; 34:7. [DOI: 10.1007/s11274-017-2391-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022]
|
11
|
Tse SPK, Lo SCL. Comparative proteomic studies of a Scrippsiella acuminata bloom with its laboratory-grown culture using a 15N-metabolic labeling approach. HARMFUL ALGAE 2017; 67:26-35. [PMID: 28755718 DOI: 10.1016/j.hal.2017.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Comparative proteomic analysis was carried out using cells isolated from a natural bloom of Scrippsiella acuminata (formerly Scrippsiella trochoidea) in the early bloom (EB) and late bloom (LB) stages as well as with laboratory-grown cultures of cells isolated from the bloom in early growth (EG) and late growth (LG) stages. For quantitative proteomics, LG cells were grown for 20 generations in the presence of 15N as a reference (i.e. common denominator) for all comparison. In comparisons with early growth laboratory grown cells (EG/LG), nearly 64% of proteins identified had similar abundance levels, with the remaining 36% mostly more abundant in EG cells. Calvin cycle, amino acid metabolism, chlorophyll biosynthesis and transcription/translation were among the up-regulated processes. Cells from the early bloom (EB/LG) had a greater abundance of transporters and enzymes related to light harvesting and oxidative phosphorylation, while the abundance of these proteins decreased in late bloom cells (LB/LG). All natural bloom samples showed either constant or lower abundance levels of enzymes involved in sugar synthesis and glycolytic pathways compared to laboratory grown cells. Our results represent the first examination of the proteomic changes in the development of a natural dinoflagellate bloom. Importantly, our results demonstrate that the proteome of cells grown in the laboratory is distinctively different from cells in a natural bloom.
Collapse
Affiliation(s)
- Sirius P K Tse
- Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Samuel C L Lo
- Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
| |
Collapse
|
12
|
Zhang SF, Yuan CJ, Chen Y, Chen XH, Li DX, Liu JL, Lin L, Wang DZ. Comparative Transcriptomic Analysis Reveals Novel Insights into the Adaptive Response of Skeletonema costatum to Changing Ambient Phosphorus. Front Microbiol 2016; 7:1476. [PMID: 27703451 PMCID: PMC5028394 DOI: 10.3389/fmicb.2016.01476] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
Phosphorus (P) is a limiting macronutrient for diatom growth and productivity in the ocean. Much effort has been devoted to the physiological response of marine diatoms to ambient P change, however, the whole-genome molecular mechanisms are poorly understood. Here, we utilized RNA-Seq to compare the global gene expression patterns of a marine diatom Skeletonema costatum grown in inorganic P-replete, P-deficient, and inorganic- and organic-P resupplied conditions. In total 34,942 unique genes were assembled and 20.8% of them altered significantly in abundance under different P conditions. Genes encoding key enzymes/proteins involved in P utilization, nucleotide metabolism, photosynthesis, glycolysis, and cell cycle regulation were significantly up-regulated in P-deficient cells. Genes participating in circadian rhythm regulation, such as circadian clock associated 1, were also up-regulated in P-deficient cells. The response of S. costatum to ambient P deficiency shows several similarities to the well-described responses of other marine diatom species, but also has its unique features. S. costatum has evolved the ability to re-program its circadian clock and intracellular biological processes in response to ambient P deficiency. This study provides new insights into the adaptive mechanisms to ambient P deficiency in marine diatoms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, Department of Environmental Science and Engineering, College of the Environment and Ecology, Xiamen UniversityXiamen, China
| |
Collapse
|