1
|
Busigny V, Mathon FP, Jézéquel D, Bidaud CC, Viollier E, Bardoux G, Bourrand JJ, Benzerara K, Duprat E, Menguy N, Monteil CL, Lefevre CT. Mass collection of magnetotactic bacteria from the permanently stratified ferruginous Lake Pavin, France. Environ Microbiol 2021; 24:721-736. [PMID: 33687779 DOI: 10.1111/1462-2920.15458] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 01/16/2023]
Abstract
Obtaining high biomass yields of specific microorganisms for culture-independent approaches is a challenge faced by scientists studying organism's recalcitrant to laboratory conditions and culture. This difficulty is highly decreased when studying magnetotactic bacteria (MTB) since their unique behaviour allows their enrichment and purification from other microorganisms present in aquatic environments. Here, we use Lake Pavin, a permanently stratified lake in the French Massif Central, as a natural laboratory to optimize collection and concentration of MTB that thrive in the water column and sediments. A method is presented to separate MTB from highly abundant abiotic magnetic particles in the sediment of this crater lake. For the water column, different sampling approaches are compared such as in situ collection using a Niskin bottle and online pumping. By monitoring several physicochemical parameters of the water column, we identify the ecological niche where MTB live. Then, by focusing our sampling at the peak of MTB abundance, we show that the online pumping system is the most efficient for fast recovering of large volumes of water at a high spatial resolution, which is necessary considering the sharp physicochemical gradients observed in the water column. Taking advantage of aerotactic and magnetic MTB properties, we present an efficient method for MTB concentration from large volumes of water. Our methodology represents a first step for further multidisciplinary investigations of the diversity, metagenomic and ecology of MTB populations in Lake Pavin and elsewhere, as well as chemical and isotopic analyses of their magnetosomes.
Collapse
Affiliation(s)
- Vincent Busigny
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France.,Institut Universitaire de France, Paris, 75005, France
| | - François P Mathon
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France.,Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - Didier Jézéquel
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France.,INRAE & Université Savoie Mont Blanc, UMR CARRTEL, Thonon-les-Bains, 74200, France
| | - Cécile C Bidaud
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Eric Viollier
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France
| | - Gérard Bardoux
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France
| | - Jean-Jacques Bourrand
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France
| | - Karim Benzerara
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Elodie Duprat
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Nicolas Menguy
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Caroline L Monteil
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - Christopher T Lefevre
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| |
Collapse
|
2
|
Intracellular amorphous Ca-carbonate and magnetite biomineralization by a magnetotactic bacterium affiliated to the Alphaproteobacteria. ISME JOURNAL 2020; 15:1-18. [PMID: 32839547 DOI: 10.1038/s41396-020-00747-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 11/08/2022]
Abstract
Bacteria synthesize a wide range of intracellular submicrometer-sized inorganic precipitates of diverse chemical compositions and structures, called biominerals. Their occurrences, functions and ultrastructures are not yet fully described despite great advances in our knowledge of microbial diversity. Here, we report bacteria inhabiting the sediments and water column of the permanently stratified ferruginous Lake Pavin, that have the peculiarity to biomineralize both intracellular magnetic particles and calcium carbonate granules. Based on an ultrastructural characterization using transmission electron microscopy (TEM) and synchrotron-based scanning transmission X-ray microscopy (STXM), we showed that the calcium carbonate granules are amorphous and contained within membrane-delimited vesicles. Single-cell sorting, correlative fluorescent in situ hybridization (FISH), scanning electron microscopy (SEM) and molecular typing of populations inhabiting sediments affiliated these bacteria to a new genus of the Alphaproteobacteria. The partially assembled genome sequence of a representative isolate revealed an atypical structure of the magnetosome gene cluster while geochemical analyses indicate that calcium carbonate production is an active process that costs energy to the cell to maintain an environment suitable for their formation. This discovery further expands the diversity of organisms capable of intracellular Ca-carbonate biomineralization. If the role of such biomineralization is still unclear, cell behaviour suggests that it may participate to cell motility in aquatic habitats as magnetite biomineralization does.
Collapse
|
3
|
Wang Y, Casaburi G, Lin W, Li Y, Wang F, Pan Y. Genomic evidence of the illumination response mechanism and evolutionary history of magnetotactic bacteria within the Rhodospirillaceae family. BMC Genomics 2019; 20:407. [PMID: 31117953 PMCID: PMC6532209 DOI: 10.1186/s12864-019-5751-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Magnetotactic bacteria (MTB) are ubiquitous in natural aquatic environments. MTB can produce intracellular magnetic particles, navigate along geomagnetic field, and respond to light. However, the potential mechanism by which MTB respond to illumination and their evolutionary relationship with photosynthetic bacteria remain elusive. RESULTS We utilized genomes of the well-sequenced genus Magnetospirillum, including the newly sequenced MTB strain Magnetospirillum sp. XM-1 to perform a comprehensive genomic comparison with phototrophic bacteria within the family Rhodospirillaceae regarding the illumination response mechanism. First, photoreceptor genes were identified in the genomes of both MTB and phototrophic bacteria in the Rhodospirillaceae family, but no photosynthesis genes were found in the MTB genomes. Most of the photoreceptor genes in the MTB genomes from this family encode phytochrome-domain photoreceptors that likely induce red/far-red light phototaxis. Second, illumination also causes damage within the cell, and in Rhodospirillaceae, both MTB and phototrophic bacteria possess complex but similar sets of response and repair genes, such as oxidative stress response, iron homeostasis and DNA repair system genes. Lastly, phylogenomic analysis showed that MTB cluster closely with phototrophic bacteria in this family. One photoheterotrophic genus, Phaeospirillum, clustered within and displays high genomic similarity with Magnetospirillum. Moreover, the phylogenetic tree topologies of magnetosome synthesis genes in MTB and photosynthesis genes in phototrophic bacteria from the Rhodospirillaceae family were reasonably congruent with the phylogenomic tree, suggesting that these two traits were most likely vertically transferred during the evolution of their lineages. CONCLUSION Our new genomic data indicate that MTB and phototrophic bacteria within the family Rhodospirillaceae possess diversified photoreceptors that may be responsible for phototaxis. Their genomes also contain comprehensive stress response genes to mediate the negative effects caused by illumination. Based on phylogenetic studies, most of MTB and phototrophic bacteria in the Rhodospirillaceae family evolved vertically with magnetosome synthesis and photosynthesis genes. The ancestor of Rhodospirillaceae was likely a magnetotactic phototrophic bacteria, however, gain or loss of magnetotaxis and phototrophic abilities might have occurred during the evolution of ancestral Rhodospirillaceae lineages.
Collapse
Affiliation(s)
- Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Giorgio Casaburi
- Departments of Microbiology and Cell Science, Space Life Sciences Laboratory, University of Florida, Merritt Island, FL 32953 USA
| | - Wei Lin
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Ying Li
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yongxin Pan
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
4
|
Hershey OS, Kallmeyer J, Wallace A, Barton MD, Barton HA. High Microbial Diversity Despite Extremely Low Biomass in a Deep Karst Aquifer. Front Microbiol 2018; 9:2823. [PMID: 30534116 PMCID: PMC6275181 DOI: 10.3389/fmicb.2018.02823] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
Despite the importance of karst aquifers as a source of drinking water, little is known about the role of microorganisms in maintaining the quality of this water. One of the limitations in exploring the microbiology of these environments is access, which is usually limited to wells and surface springs. In this study, we compared the microbiology of the Madison karst aquifer sampled via the potentiometric lakes of Wind Cave with surface sampling wells and a spring. Our data indicated that only the Streeter Well (STR), which is drilled into the same hydrogeologic domain as the Wind Cave Lakes (WCL), allowed access to water with the same low biomass (1.56-9.25 × 103 cells mL-1). Filtration of ∼300 L of water from both of these sites through a 0.2 μm filter allowed the collection of sufficient cells for DNA extraction, PCR amplification of 16S rRNA gene sequences, and identification through pyrosequencing. The results indicated that bacteria (with limited archaea and no detectable eukaryotic organisms) dominated both water samples; however, there were significant taxonomic differences in the bacterial populations of the samples. The STR sample was dominated by a single phylotype within the Gammaproteobacteria (Order Acidithiobacillales), which dramatically reduced the overall diversity and species richness of the population. In WCL, despite less organic carbon, the bacterial population was significantly more diverse, including significant contributions from the Gammaproteobacteria, Firmicutes, Chloroflexi, Actinobacteria, Planctomycetes, Fusobacter, and Omnitrophica phyla. Comparisons with similar oligotrophic environments suggest that karst aquifers have a greater species richness than comparable surface environs. These data also demonstrate that Wind Cave provides a unique opportunity to sample a deep, subterranean aquifer directly, and that the microbiology of such aquifers may be more complex than previously anticipated.
Collapse
Affiliation(s)
- Olivia S Hershey
- Department of Biology, University of Akron, Akron, OH, United States
| | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Potsdam, Germany
| | - Andrew Wallace
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, United States
| | | | - Hazel A Barton
- Department of Biology, University of Akron, Akron, OH, United States.,Department of Geosciences, University of Akron, Akron, OH, United States
| |
Collapse
|
5
|
Matturro B, Cruz Viggi C, Aulenta F, Rossetti S. Cable Bacteria and the Bioelectrochemical Snorkel: The Natural and Engineered Facets Playing a Role in Hydrocarbons Degradation in Marine Sediments. Front Microbiol 2017; 8:952. [PMID: 28611751 PMCID: PMC5447156 DOI: 10.3389/fmicb.2017.00952] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/12/2017] [Indexed: 11/13/2022] Open
Abstract
The composition and metabolic traits of the microbial communities acting in an innovative bioelectrochemical system were here investigated. The system, known as Oil Spill Snorkel, was recently developed to stimulate the oxidative biodegradation of petroleum hydrocarbons in anoxic marine sediments. Next Generation Sequencing was used to describe the microbiome of the bulk sediment and of the biofilm growing attached to the surface of the electrode. The analysis revealed that sulfur cycling primarily drives the microbial metabolic activities occurring in the bioelectrochemical system. In the anoxic zone of the contaminated marine sediment, petroleum hydrocarbon degradation occurred under sulfate-reducing conditions and was lead by different families of Desulfobacterales (46% of total OTUs). Remarkably, the occurrence of filamentous Desulfubulbaceae, known to be capable to vehicle electrons deriving from sulfide oxidation to oxygen serving as a spatially distant electron acceptor, was demonstrated. Differently from the sediment, which was mostly colonized by Deltaproteobacteria, the biofilm at the anode hosted, at high extent, members of Alphaproteobacteria (59%) mostly affiliated to Rhodospirillaceae family (33%) and including several known sulfur- and sulfide-oxidizing genera. Overall, we showed the occurrence in the system of a variety of electroactive microorganisms able to sustain the contaminant biodegradation alone or by means of an external conductive support through the establishment of a bioelectrochemical connection between two spatially separated redox zones and the preservation of an efficient sulfur cycling.
Collapse
|
6
|
Bletz MC, Perl RGB, Bobowski BT, Japke LM, Tebbe CC, Dohrmann AB, Bhuju S, Geffers R, Jarek M, Vences M. Amphibian skin microbiota exhibits temporal variation in community structure but stability of predicted Bd-inhibitory function. ISME JOURNAL 2017; 11:1521-1534. [PMID: 28387770 DOI: 10.1038/ismej.2017.41] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 12/22/2022]
Abstract
Host-associated microbiomes are increasingly recognized to contribute to host disease resistance; the temporal dynamics of their community structure and function, however, are poorly understood. We investigated the cutaneous bacterial communities of three newt species, Ichthyosaura alpestris, Lissotriton vulgaris and Triturus cristatus, at approximately weekly intervals for 3 months using 16S ribosomal RNA amplicon sequencing. We hypothesized cutaneous microbiota would vary across time, and that such variation would be linked to changes in predicted fungal-inhibitory function. We observed significant temporal variation within the aquatic phase, and also between aquatic and terrestrial phase newts. By keeping T. cristatus in mesocosms, we demonstrated that structural changes occurred similarly across individuals, highlighting the non-stochastic nature of the bacterial community succession. Temporal changes were mainly associated with fluctuations in relative abundance rather than full turnover of bacterial operational taxonomic units (OTUs). Newt skin microbe fluctuations were not correlated with that of pond microbiota; however, a portion of community variation was explained by environmental temperature. Using a database of amphibian skin bacteria that inhibit the pathogen Batrachochytrium dendrobatidis (Bd), we found that the proportion of reads associated with 'potentially' Bd-inhibitory OTUs did not vary temporally for two of three newt species, suggesting that protective function may be maintained despite temporal variation in community structure.
Collapse
Affiliation(s)
- Molly C Bletz
- Zoologisches Institut, Technische Universität Braunschweig, Braunschweig, Germany
| | - R G Bina Perl
- Zoologisches Institut, Technische Universität Braunschweig, Braunschweig, Germany
| | - Bianca Tc Bobowski
- Zoologisches Institut, Technische Universität Braunschweig, Braunschweig, Germany
| | - Laura M Japke
- Zoologisches Institut, Technische Universität Braunschweig, Braunschweig, Germany
| | - Christoph C Tebbe
- Institut für Biodiversität, Thünen Institut für Ländliche Räume, Wald und Fischerei, Braunschweig, Germany
| | - Anja B Dohrmann
- Institut für Biodiversität, Thünen Institut für Ländliche Räume, Wald und Fischerei, Braunschweig, Germany
| | - Sabin Bhuju
- Genomanalytik, Helmholtz Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Robert Geffers
- Genomanalytik, Helmholtz Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Michael Jarek
- Genomanalytik, Helmholtz Zentrum für Infektionsforschung, Braunschweig, Germany
| | - Miguel Vences
- Zoologisches Institut, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
7
|
Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nat Commun 2016; 7:13699. [PMID: 27976718 PMCID: PMC5171763 DOI: 10.1038/ncomms13699] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023] Open
Abstract
Complex microbial communities inhabit vertebrate digestive systems but thorough understanding of the ecological dynamics and functions of host-associated microbiota within natural habitats is limited. We investigate the role of environmental conditions in shaping gut and skin microbiota under natural conditions by performing a field survey and reciprocal transfer experiments with salamander larvae inhabiting two distinct habitats (ponds and streams). We show that gut and skin microbiota are habitat-specific, demonstrating environmental factors mediate community structure. Reciprocal transfer reveals that gut microbiota, but not skin microbiota, responds differentially to environmental change. Stream-to-pond larvae shift their gut microbiota to that of pond-to-pond larvae, whereas pond-to-stream larvae change to a community structure distinct from both habitat controls. Predicted functions, however, match that of larvae from the destination habitats in both cases. Thus, microbial function can be matched without taxonomic coherence and gut microbiota appears to exhibit metagenomic plasticity.
Host-associated microbial communities can shift in structure or function when hosts change locations. Bletz et al. reciprocally transfer salamander larvae between pond and stream habitats to show that gut microbiomes shift in function, but not necessarily taxonomic identities, when hosts encounter a new environment.
Collapse
|
8
|
Mineralogical Diversity in Lake Pavin: Connections with Water Column Chemistry and Biomineralization Processes. MINERALS 2016. [DOI: 10.3390/min6020024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|