1
|
Mayo-Pérez S, Gama-Martínez Y, Dávila S, Rivera N, Hernández-Lucas I. LysR-type transcriptional regulators: state of the art. Crit Rev Microbiol 2024; 50:598-630. [PMID: 37635411 DOI: 10.1080/1040841x.2023.2247477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.
Collapse
Affiliation(s)
- S Mayo-Pérez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Y Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - S Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - N Rivera
- IPN: CICATA, Unidad Morelos del Instituto Politécnico Nacional, Atlacholoaya, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
2
|
Jaworska K, Konarska J, Gomza P, Rożen P, Nieckarz M, Krawczyk-Balska A, Brzostek K, Raczkowska A. Interplay between the RNA Chaperone Hfq, Small RNAs and Transcriptional Regulator OmpR Modulates Iron Homeostasis in the Enteropathogen Yersinia enterocolitica. Int J Mol Sci 2023; 24:11157. [PMID: 37446335 DOI: 10.3390/ijms241311157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Iron is both essential for and potentially toxic to bacteria, so the precise maintenance of iron homeostasis is necessary for their survival. Our previous study indicated that in the human enteropathogen Yersinia enterocolitica, the regulator OmpR directly controls the transcription of the fur, fecA and fepA genes, encoding the ferric uptake repressor and two transporters of ferric siderophores, respectively. This study was undertaken to determine the significance of the RNA chaperone Hfq and the small RNAs OmrA and RyhB1 in the post-transcriptional control of the expression of these OmpR targets. We show that Hfq silences fur, fecA and fepA expression post-transcriptionally and negatively affects the production of FLAG-tagged Fur, FecA and FepA proteins. In addition, we found that the fur gene is under the negative control of the sRNA RyhB1, while fecA and fepA are negatively regulated by the sRNA OmrA. Finally, our data revealed that the role of OmrA results from a complex interplay of transcriptional and post-transcriptional effects in the feedback circuit between the regulator OmpR and the sRNA OmrA. Thus, the expression of fur, fecA and fepA is subject to complex transcriptional and post-transcriptional regulation in order to maintain iron homeostasis in Y. enterocolitica.
Collapse
Affiliation(s)
- Karolina Jaworska
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Julia Konarska
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Patrycja Gomza
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Paula Rożen
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Marta Nieckarz
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agata Krawczyk-Balska
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Brzostek
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Adrianna Raczkowska
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
3
|
Wang YD, Gong JS, Guan YC, Zhao ZL, Cai YN, Shan XF. OmpR (TCS response regulator) of Aeromonas veronii plays a major role in drug resistance, stress resistance and virulence by regulating biofilm formation. Microb Pathog 2023; 181:106176. [PMID: 37244492 DOI: 10.1016/j.micpath.2023.106176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
Aeromonas veronii (A. veronii), a highly pathogenic bacteria with a wide range of hosts, widely exists in the environment of humans, animals and aquatic animals, and can cause a variety of diseases. In this study, the receptor regulator ompR in the envZ/ompR of two-component system was selected to construct a mutant strain (Δ ompR) and a complement strain (C-ompR) to explore the regulatory effect of ompR on the biological characteristics and virulence of TH0426. The results showed that the ability of biofilm formation and osmotic stress of TH0426 were significantly reduced (P < 0.001), the resistance to ceftriaxone and neomycin were slightly down-regulate when the ompR gene was deleted. At the same time, animal pathogenicity experiments showed that the virulence of TH0426 was significantly down-regulated (P < 0.001). These results indicated that ompR gene regulates the biofilm formation of TH0426, and regulates some biological characteristics of TH0426, including drug sensitivity, resistance to osmotic stress, and also affects its virulence.
Collapse
Affiliation(s)
- Ying-da Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Jin-Shuo Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Yong-Chao Guan
- Institute of Comparative Medicine College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ze-Lin Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Ya-Nan Cai
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, China.
| | - Xiao-Feng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, 130118, China.
| |
Collapse
|
4
|
The Essential Role of OmpR in Acidithiobacillus caldus Adapting to the High Osmolarity and Its Regulation on the Tetrathionate-Metabolic Pathway. Microorganisms 2022; 11:microorganisms11010035. [PMID: 36677326 PMCID: PMC9861516 DOI: 10.3390/microorganisms11010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Acidithiobacillus spp. are prevalent in acid mine drainage, and they have been widely used in biomining for extracting nonferrous metals from ores. The osmotic stress generated by elevated concentrations of inorganic ions is a severe challenge for the growth of Acidithiobacillus spp. in the bioleaching process; however, the adaptation mechanism of these bacteria to high osmotic pressure remains unclear. In this study, bioinformatics analysis indicated that the osmotic stress response two-component system EnvZ-OmpR is widely distributed in Acidithiobacillus spp., while OmpRs from Acidithiobacillus spp. exhibited a far more evolutionary relationship with the well-studied OmpRs in E. coli and Salmonella typhimurium. The growth measurement of an Acidithiobacillus caldus (A. caldus) ompR-knockout strain demonstrated that OmpR is essential in the adaptation of this bacterium to high osmotic stress. The overall impact of OmpR on the various metabolic and regulatory systems of A. caldus was revealed by transcriptome analysis. The OmpR binding sequences of differentially expressed genes (DEGs) were predicted, and the OmpR box motif in A. caldus was analysed. The direct and negative regulation of EnvZ-OmpR on the tetrathionate-metabolic (tetH) cluster in A. caldus was discovered for the first time, and a co-regulation mode mediated by EnvZ-OmpR and RsrS-RsrR for the tetrathionate intermediate thiosulfate-oxidizing (S4I) pathway in this microorganism was proposed. This study reveals that EnvZ-OmpR is an indispensable regulatory system for the ability of A. caldus to cope with high osmotic stress and the significance of EnvZ-OmpR on the regulation of sulfur metabolism in A. caldus adapting to the high-salt environment.
Collapse
|
5
|
Ma G, Ding Y, Wu Q, Zhang J, Liu M, Wang Z, Wang Z, Wu S, Yang X, Li Y, Wei X, Wang J. Yersinia enterocolitica-Derived Outer Membrane Vesicles Inhibit Initial Stage of Biofilm Formation. Microorganisms 2022; 10:microorganisms10122357. [PMID: 36557609 PMCID: PMC9786825 DOI: 10.3390/microorganisms10122357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Yersinia enterocolitica (Y. enterocolitica) is an important food-borne and zoonotic pathogen. It can form biofilm on the surface of food, increasing the risk to food safety. Generally, outer membrane vesicles (OMVs) are spherical nanostructures secreted by Gram-negative bacteria during growth. They play a role in biological processes because they contain biologically active molecules. Several studies have reported that OMVs secreted by various bacteria are associated with the formation of biofilms. However, the interactions between Y. enterocolitica OMVs and biofilm are unknown. This study aims to investigate the effect of Y. enterocolitica OMVs on biofilm formation. Firstly, OMVs were extracted from Y. enterocolitica Y1083, which has a strong biofilm-forming ability, at 15 °C, 28 °C and 37 °C and then characterized. The characterization results showed differences in the yield and protein content of three types of OMVs. Next, by co-culturing the OMVs with Y. enterocolitica, it was observed that the OMVs inhibited the initial stage of Y. enterocolitica biofilm formation but did not affect the growth of Y. enterocolitica. Furthermore, biofilm formation by Salmonella enteritidis and Staphylococcus aureus were also inhibited by OMVs. Subsequently, it was proved that lipopolysaccharides (LPS) in OMVs inhibited biofilm formation., The proteins, DNA or RNA in OMVs could not inhibit biofilm formation. Bacterial motility and the expression of the biofilm-related genes pgaABC, motB and flhBD were inhibited by LPS. LPS demonstrated good anti-biofilm activity against various bacteria. This study provides a new approach to the prevention and control of pathogenic bacterial biofilm.
Collapse
Affiliation(s)
- Guoxiang Ma
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ming Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhi Wang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zimeng Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shi Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaojuan Yang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Ying Li
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xianhu Wei
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
6
|
Guo J, Deng X, Zhang Y, Song S, Zhao T, Zhu D, Cao S, Baryshnikov PI, Cao G, Blair HT, Chen C, Gu X, Liu L, Zhang H. The Flagellar Transcriptional Regulator FtcR Controls Brucella melitensis 16M Biofilm Formation via a betI-Mediated Pathway in Response to Hyperosmotic Stress. Int J Mol Sci 2022; 23:ijms23179905. [PMID: 36077302 PMCID: PMC9456535 DOI: 10.3390/ijms23179905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
The expression of flagellar proteins in Brucella species likely evolved through genetic transference from other microorganisms, and contributed to virulence, adaptability, and biofilm formation. Despite significant progress in defining the molecular mechanisms behind flagellar gene expression, the genetic program controlling biofilm formation remains unclear. The flagellar transcriptional factor (FtcR) is a master regulator of the flagellar system’s expression, and is critical for B. melitensis 16M’s flagellar biogenesis and virulence. Here, we demonstrate that FtcR mediates biofilm formation under hyperosmotic stress. Chromatin immunoprecipitation with next-generation sequencing for FtcR and RNA sequencing of ftcR-mutant and wild-type strains revealed a core set of FtcR target genes. We identified a novel FtcR-binding site in the promoter region of the osmotic-stress-response regulator gene betI, which is important for the survival of B. melitensis 16M under hyperosmotic stress. Strikingly, this site autoregulates its expression to benefit biofilm bacteria’s survival under hyperosmotic stress. Moreover, biofilm reduction in ftcR mutants is independent of the flagellar target gene fliF. Collectively, our study provides new insights into the extent and functionality of flagellar-related transcriptional networks in biofilm formation, and presents phenotypic and evolutionary adaptations that alter the regulation of B. melitensis 16M to confer increased tolerance to hyperosmotic stress.
Collapse
Affiliation(s)
- Jia Guo
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xingmei Deng
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Yu Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Shengnan Song
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Tianyi Zhao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Dexin Zhu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Shuzhu Cao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Peter Ivanovic Baryshnikov
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- College of Veterinary, Altai State Agricultural University, 656000 Barnaul, Russia
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China
| | - Hugh T. Blair
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- International Sheep Research Center, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Chuangfu Chen
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xinli Gu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Liangbo Liu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- Correspondence: (L.L.); (H.Z.); Tel.: +86-0993-2057971 (L.L. & H.Z.)
| | - Hui Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- Correspondence: (L.L.); (H.Z.); Tel.: +86-0993-2057971 (L.L. & H.Z.)
| |
Collapse
|
7
|
The Regulatory Circuit Underlying Downregulation of a Type III Secretion System in Yersinia enterocolitica by Transcription Factor OmpR. Int J Mol Sci 2022; 23:ijms23094758. [PMID: 35563149 PMCID: PMC9100119 DOI: 10.3390/ijms23094758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022] Open
Abstract
In a previous study, differential proteomic analysis was used to identify membrane proteins of the human enteropathogen Yersinia enterocolitica, whose levels are influenced by OmpR, the transcriptional regulator in the two-component EnvZ/OmpR system. Interestingly, this analysis demonstrated that at 37 °C, OmpR negatively affects the level of over a dozen Ysc-Yop proteins, which constitute a type III secretion system (T3SS) that is essential for the pathogenicity of Y. enterocolitica. Here, we focused our analysis on the role of OmpR in the expression and secretion of Yops (translocators and effectors). Western blotting with anti-Yops antiserum and specific anti-YopD, -YopE and -YopH antibodies, confirmed that the production of Yops is down-regulated by OmpR with the greatest negative effect on YopD. The RT-qPCR analysis demonstrated that, while OmpR had a negligible effect on the activity of regulatory genes virF and yscM1, it highly repressed the expression of yopD. OmpR was found to bind to the promoter of the lcrGVsycD-yopBD operon, suggesting a direct regulatory effect. In addition, we demonstrated that the negative regulatory influence of OmpR on the Ysc-Yop T3SS correlated with its positive role in the expression of flhDC, the master regulator of the flagellar-associated T3SS.
Collapse
|
8
|
Fu D, Wu J, Gu Y, Li Q, Shao Y, Feng H, Song X, Tu J, Qi K. The response regulator OmpR contributes to the pathogenicity of avian pathogenic Escherichia coli. Poult Sci 2022; 101:101757. [PMID: 35240350 PMCID: PMC8892008 DOI: 10.1016/j.psj.2022.101757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/03/2022] Open
Abstract
Avian colibacillosis is a serious systemic infectious disease in poultry and caused by avian pathogenic Escherichia coli (APEC). Previous studies have shown that 2-component systems (TCSs) are involved in the pathogenicity of APEC. OmpR, a response regulator of OmpR/EnvZ TCS, plays an important role in E. coli K-12. However, whether OmpR correlates with APEC pathogenesis has not been established. In this study, we constructed an ompR gene mutant and complement strains by using the CRISPR-Cas9 system and found that the inactivation of the ompR gene attenuated bacterial motility, biofilm formation, and the production of curli. The resistance to environmental stress, serum sensitivity, adhesion, and invasion of DF-1 cells, and pathogenicity in chicks were all significantly reduced in the mutant strain AE17ΔompR. These phenotypes were restored in the complement strain AE17C-ompR. The qRT-PCR results showed that OmpR influences the expression of genes associated with the flagellum, biofilm formation, and virulence. These findings indicate that the regulator OmpR contributes to APEC pathogenicity by affecting the expression and function of virulence factors.
Collapse
|
9
|
Jaworska K, Ludwiczak M, Murawska E, Raczkowska A, Brzostek K. The Regulator OmpR in Yersinia enterocolitica Participates in Iron Homeostasis by Modulating Fur Level and Affecting the Expression of Genes Involved in Iron Uptake. Int J Mol Sci 2021; 22:ijms22031475. [PMID: 33540627 PMCID: PMC7867234 DOI: 10.3390/ijms22031475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, we found that the loss of OmpR, the response regulator of the two-component EnvZ/OmpR system, increases the cellular level of Fur, the master regulator of iron homeostasis in Y. enterocolitica. Furthermore, we demonstrated that transcription of the fur gene from the YePfur promoter is subject to negative OmpR-dependent regulation. Four putative OmpR-binding sites (OBSs) were indicated by in silico analysis of the fur promoter region, and their removal affected OmpR-dependent fur expression. Moreover, OmpR binds specifically to the predicted OBSs which exhibit a distinct hierarchy of binding affinity. Finally, the data demonstrate that OmpR, by direct binding to the promoters of the fecA, fepA and feoA genes, involved in the iron transport and being under Fur repressor activity, modulates their expression. It seems that the negative effect of OmpR on fecA and fepA transcription is sufficient to counteract the indirect, positive effect of OmpR resulting from decreasing the Fur repressor level. The expression of feoA was positively regulated by OmpR and this mode of action seems to be direct and indirect. Together, the expression of fecA, fepA and feoA in Y. enterocolitica has been proposed to be under a complex mode of regulation involving OmpR and Fur regulators.
Collapse
|
10
|
Nieckarz M, Kaczor P, Jaworska K, Raczkowska A, Brzostek K. Urease Expression in Pathogenic Yersinia enterocolitica Strains of Bio-Serotypes 2/O:9 and 1B/O:8 Is Differentially Regulated by the OmpR Regulator. Front Microbiol 2020; 11:607. [PMID: 32322248 PMCID: PMC7156557 DOI: 10.3389/fmicb.2020.00607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/19/2020] [Indexed: 12/31/2022] Open
Abstract
Yersinia enterocolitica exhibits a dual lifestyle, existing as both a saprophyte and a pathogen colonizing different niches within a host organism. OmpR has been recognized as a regulator that controls the expression of genes involved in many different cellular processes and the virulence of pathogenic bacteria. Here, we have examined the influence of OmpR and varying temperature (26°C vs. 37°C) on the cytoplasmic proteome of Y. enterocolitica Ye9N (bio-serotype 2/O:9, low pathogenicity). Differential label-free quantitative proteomic analysis indicated that OmpR affects the cellular abundance of a number of proteins including subunits of urease, an enzyme that plays a significant role in acid tolerance and the pathogenicity of Y. enterocolitica. The impact of OmpR on the expression of urease under different growth conditions was studied in more detail by comparing urease activity and the transcription of ure genes in Y. enterocolitica strains Ye9N and Ye8N (highly pathogenic bio-serotype 1B/O:8). Urease expression was higher in strain Ye9N than in Ye8N and in cells grown at 26°C compared to 37°C. However, low pH, high osmolarity and the presence of urea did not have a clear effect on urease expression in either strain. Further analysis showed that OmpR participates in the positive regulation of three transcriptional units encoding the multi-subunit urease (ureABC, ureEF, and ureGD) in strain Ye9N, but this was not the case in strain Ye8N. Binding of OmpR to the ureABC and ureEF promoter regions was confirmed using an electrophoretic mobility shift assay, suggesting that this factor plays a direct role in regulating the transcription of these operons. In addition, we determined that OmpR modulates the expression of a ureR-like gene encoding a putative regulator of the ure gene cluster, but in the opposite manner, i.e., positively in Ye9N and negatively in Ye8N. These findings provide some novel insights into the function of OmpR in adaptation strategies of Y. enterocolitica.
Collapse
Affiliation(s)
| | | | | | | | - Katarzyna Brzostek
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Zhao Z, Peng T, Oh JI, Glaeser J, Weber L, Li Q, Klug G. A response regulator of the OmpR family is part of the regulatory network controlling the oxidative stress response of Rhodobacter sphaeroides. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:118-128. [PMID: 30451391 DOI: 10.1111/1758-2229.12718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
As a free-living bacterium Rhodobacter sphaeroides needs to respond to many environmental stresses. Oxidative stress, membrane stress or heat stress induce the ompR-1 gene encoding a protein of the OmpR family. Overexpression of OmpR-1 results in increased resistance to organic peroxides and diamide. Our data demonstrate that OmpR-1 positively affects expression of several sRNAs with an established role in R. sphaeroides stress defences and negatively affects the promoter of the rpoHI gene. The RpoHI sigma factor has a main role in the activation of many stress responses. Thus OmpR-1 has a balancing effect on the activation of the RpoHI regulon. We present a model with OmpR-1 as part of a regulatory network controlling stress defences in R. sphaeroides.
Collapse
Affiliation(s)
- Zhiping Zhao
- Institut für Mikrobiologie und Molekularbiologie, Interdiziplinäres Forschungszentrum, Justus-Liebig-Universität Giessen, Giessen, Germany
- Department of Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong, China
| | | | - Jeong-Il Oh
- Department of Microbiology, Pusan National University, Busan, South Korea
| | - Jens Glaeser
- Institut für Mikrobiologie und Molekularbiologie, Interdiziplinäres Forschungszentrum, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Lennart Weber
- Institut für Mikrobiologie und Molekularbiologie, Interdiziplinäres Forschungszentrum, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Qingfeng Li
- Institut für Mikrobiologie und Molekularbiologie, Interdiziplinäres Forschungszentrum, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Gabriele Klug
- Institut für Mikrobiologie und Molekularbiologie, Interdiziplinäres Forschungszentrum, Justus-Liebig-Universität Giessen, Giessen, Germany
| |
Collapse
|
12
|
Jaworska K, Nieckarz M, Ludwiczak M, Raczkowska A, Brzostek K. OmpR-Mediated Transcriptional Regulation and Function of Two Heme Receptor Proteins of Yersinia enterocolitica Bio-Serotype 2/O:9. Front Cell Infect Microbiol 2018; 8:333. [PMID: 30294593 PMCID: PMC6158557 DOI: 10.3389/fcimb.2018.00333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/29/2018] [Indexed: 12/26/2022] Open
Abstract
We show that Yersinia enterocolitica strain Ye9 (bio-serotype 2/O:9) utilizes heme-containing molecules as an iron source. The Ye9 genome contains two multigenic clusters, hemPRSTUV-1 and hemPRST-2, encoding putative heme receptors HemR1 and HemR2, that share 62% amino acid identity. Expression of these proteins in an Escherichia coli mutant defective in heme biosynthesis allowed this strain to use hemin and hemoglobin as a source of porphyrin. The hemPRSTUV-1 and hemPRST-2 clusters are organized as operons, expressed from the phem−1 and weaker phem−2 promoters, respectively. Expression of both operons is negatively regulated by iron and the iron-responsive transcriptional repressor Fur. In addition, OmpR, the response regulator of two component system (TCSs) EnvZ/OmpR, represses transcription of both operons through interaction with binding sequences overlapping the −35 region of their promoters. Western blot analysis of the level of HemR1 in ompR, fur, and ompRfur mutants, showed an additive effect of these mutations, indicating that OmpR may regulate HemR expression independently of Fur. However, the effect of OmpR on the activity of the phem−1 promoter and on HemR1 production was observed in both iron-depleted and iron-replete conditions, i.e., when Fur represses the iron-regulated promoter. In addition, a hairpin RNA thermometer, composed of four uracil residues (FourU) that pair with the ribosome-binding site in the 5′-untranslated region (5′-UTR) of hemR1 was predicted by in silico analysis. However, thermoregulated expression of HemR1 could not be demonstrated. Taken together, these data suggest that Fur and OmpR control iron/heme acquisition via a complex mechanism based on negative regulation of hemR1 and hemR2 at the transcriptional level. This interplay could fine-tune the level of heme receptor proteins to allow Y. enterocolitica to fulfill its iron/heme requirements without over-accumulation, which might be important for pathogenic growth within human hosts.
Collapse
Affiliation(s)
- Karolina Jaworska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Nieckarz
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Ludwiczak
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Brzostek
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
The OmpR Regulator of Burkholderia multivorans Controls Mucoid-to-Nonmucoid Transition and Other Cell Envelope Properties Associated with Persistence in the Cystic Fibrosis Lung. J Bacteriol 2018; 200:JB.00216-18. [PMID: 29914989 DOI: 10.1128/jb.00216-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022] Open
Abstract
Bacteria from the Burkholderia cepacia complex grow in different natural and man-made environments and are feared opportunistic pathogens that cause chronic respiratory infections in cystic fibrosis patients. Previous studies showed that Burkholderia mucoid clinical isolates grown under stress conditions give rise to nonmucoid variants devoid of the exopolysaccharide cepacian. Here, we determined that a major cause of the nonmucoid morphotype involves nonsynonymous mutations and small indels in the ompR gene encoding a response regulator of a two-component regulatory system. In trans complementation of nonmucoid variants (NMVs) with the native gene restored exopolysaccharide production. The loss of functional Burkholderia multivorans OmpR had positive effects on growth, adhesion to lung epithelial cells, and biofilm formation in high-osmolarity medium, as well as an increase in swimming and swarming motilities. In contrast, phenotypes such as antibiotic resistance, biofilm formation at low osmolarity, and virulence in Galleria mellonella were compromised by the absence of functional OmpR. Transcriptomic studies indicated that loss of the ompR gene affects the expression of 701 genes, many associated with outer membrane composition, motility, stress response, iron acquisition, and the uptake of nutrients, consistent with starvation tolerance. Since the stresses here imposed on B. multivorans may strongly resemble the ones found in the cystic fibrosis (CF) airways and mutations in the ompR gene from longitudinally collected CF isolates have been found, this regulator might be important for the production of NMVs in the CF environment.IMPORTANCE Within the cystic fibrosis (CF) lung, bacteria experience high-osmolarity conditions due to an ion unbalance resulting from defects in CF transmembrane conductance regulator (CFTR) protein activity in epithelial cells. Understanding how bacterial CF pathogens thrive in this environment might help the development of new therapeutic interventions to prevent chronic respiratory infections. Here, we show that the OmpR response regulator of one of the species found in CF respiratory infections, Burkholderia multivorans, is involved in the emergence of nonmucoid colony variants and is important for osmoadaptation by regulating several cell envelope components. Specifically, genetic, phenotypic, genomic, and transcriptomic approaches uncover OmpR as a regulator of cell wall remodeling under stress conditions, with implications in several phenotypes such as exopolysaccharide production, motility, antibiotic resistance, adhesion, and virulence.
Collapse
|
14
|
Bancerz-Kisiel A, Pieczywek M, Łada P, Szweda W. The Most Important Virulence Markers of Yersinia enterocolitica and Their Role during Infection. Genes (Basel) 2018; 9:E235. [PMID: 29751540 PMCID: PMC5977175 DOI: 10.3390/genes9050235] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Yersinia enterocolitica is the causative agent of yersiniosis, a zoonotic disease of growing epidemiological importance with significant consequences for public health. This pathogenic species has been intensively studied for many years. Six biotypes (1A, 1B, 2, 3, 4, 5) and more than 70 serotypes of Y. enterocolitica have been identified to date. The biotypes of Y. enterocolitica are divided according to their pathogenic properties: the non-pathogenic biotype 1A, weakly pathogenic biotypes 2⁻5, and the highly pathogenic biotype 1B. Due to the complex pathogenesis of yersiniosis, further research is needed to expand our knowledge of the molecular mechanisms involved in the infection process and the clinical course of the disease. Many factors, both plasmid and chromosomal, significantly influence these processes. The aim of this study was to present the most important virulence markers of Y. enterocolitica and their role during infection.
Collapse
Affiliation(s)
- Agata Bancerz-Kisiel
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| | - Marta Pieczywek
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| | - Piotr Łada
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| | - Wojciech Szweda
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| |
Collapse
|
15
|
Nieckarz M, Raczkowska A, Jaworska K, Stefańska E, Skorek K, Stosio D, Brzostek K. The Role of OmpR in the Expression of Genes of the KdgR Regulon Involved in the Uptake and Depolymerization of Oligogalacturonides in Yersinia enterocolitica. Front Cell Infect Microbiol 2017; 7:366. [PMID: 28861396 PMCID: PMC5559549 DOI: 10.3389/fcimb.2017.00366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/28/2017] [Indexed: 01/25/2023] Open
Abstract
Oligogalacturonide (OGA)-specific porins of the KdgM family have previously been identified and characterized in enterobacterial plant pathogens. We found that deletion of the gene encoding response regulator OmpR causes the porin KdgM2 to become one of the most abundant proteins in the outer membrane of the human enteropathogen Yersinia enterocolitica. Reporter gene fusion and real-time PCR analysis confirmed that the expression of kdgM2 is repressed by OmpR. We also found that kdgM2 expression is subject to negative regulation by KdgR, a specific repressor of genes involved in the uptake and metabolism of pectin derivatives in plant pathogens. The additive effect of kdgR and ompR mutations suggested that KdgR and OmpR regulate kdgM2 expression independently. We confirmed that kdgM2 occurs in an operon with the pelP gene, encoding the periplasmic pectate lyase PelP. A pectinolytic assay showed strong upregulation of PelP production/activity in a Y. enterocolitica strain lacking OmpR and KdgR, which corroborates the repression exerted by these regulators on kdgM2. In addition, our data showed that OmpR is responsible for up regulation of the kdgM1 gene encoding the second specific oligogalacturonide porin KdgM1. This indicates the involvement of OmpR in the reciprocal regulation of both KdgM1 and KdgM2. Moreover, we demonstrated the negative impact of OmpR on kdgR transcription, which might positively affect the expression of genes of the KdgR regulon. Binding of OmpR to the promoter regions of the kdgM2-pelP-sghX operon, and kdgM1 and kdgR genes was confirmed using the electrophoretic mobility shift assay, suggesting that OmpR can directly regulate their transcription. We also found that the overexpression of porin KdgM2 increases outer membrane permeability. Thus, OmpR-mediated regulation of the KdgM porins may contribute to the fitness of Y. enterocolitica in particular local environments.
Collapse
Affiliation(s)
- Marta Nieckarz
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Karolina Jaworska
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Ewa Stefańska
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Karolina Skorek
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Dorota Stosio
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| | - Katarzyna Brzostek
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of WarsawWarsaw, Poland
| |
Collapse
|
16
|
The RNA Chaperone Hfq Is Essential for Virulence and Modulates the Expression of Four Adhesins in Yersinia enterocolitica. Sci Rep 2016; 6:29275. [PMID: 27387855 PMCID: PMC4937351 DOI: 10.1038/srep29275] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/16/2016] [Indexed: 12/13/2022] Open
Abstract
In Enterobacteriaceae, the RNA chaperone Hfq mediates the interaction of small RNAs with target mRNAs, thereby modulating transcript stability and translation. This post-transcriptional control helps bacteria adapt quickly to changing environmental conditions. Our previous mutational analysis showed that Hfq is involved in metabolism and stress survival in the enteropathogen Yersinia enterocolitica. In this study we demonstrate that Hfq is essential for virulence in mice and influences production of surface pathogenicity factors, in particular lipopolysaccharide and adhesins mediating interaction with host tissue. Hfq inhibited the production of Ail, the Ail-like protein OmpX and the MyfA pilin post-transcriptionally. In contrast Hfq promoted production of two major autotransporter adhesins YadA and InvA. While protein secretion in vitro was not affected, hfq mutants exhibited decreased protein translocation by the type III secretion system into host cells, consistent with decreased production of YadA and InvA. The influence of Hfq on YadA resulted from a complex interplay of transcriptional, post-transcriptional and likely post-translational effects. Hfq regulated invA by modulating the expression of the transcriptional regulators rovA, phoP and ompR. Therefore, Hfq is a global coordinator of surface virulence determinants in Y. enterocolitica suggesting that it constitutes an attractive target for developing new antimicrobial strategies.
Collapse
|
17
|
Chauhan N, Wrobel A, Skurnik M, Leo JC. Yersinia adhesins: An arsenal for infection. Proteomics Clin Appl 2016; 10:949-963. [PMID: 27068449 DOI: 10.1002/prca.201600012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/14/2016] [Accepted: 04/06/2016] [Indexed: 11/09/2022]
Abstract
The Yersiniae are a group of Gram-negative coccobacilli inhabiting a wide range of habitats. The genus harbors three recognized human pathogens: Y. enterocolitica and Y. pseudotuberculosis, which both cause gastrointestinal disease, and Y. pestis, the causative agent of plague. These three organisms have served as models for a number of aspects of infection biology, including adhesion, immune evasion, evolution of pathogenic traits, and retracing the course of ancient pandemics. The virulence of the pathogenic Yersiniae is heavily dependent on a number of adhesin molecules. Some of these, such as the Yersinia adhesin A and invasin of the enteropathogenic species, and the pH 6 antigen of Y. pestis, have been extensively studied. However, genomic sequencing has uncovered a host of other adhesins present in these organisms, the functions of which are only starting to be investigated. Here, we review the current state of knowledge on the adhesin molecules present in the Yersiniae, and their functions and putative roles in the infection process.
Collapse
Affiliation(s)
- Nandini Chauhan
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Agnieszka Wrobel
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland.,Central Hospital Laboratory Diagnostics, Helsinki University, Helsinki, Finland
| | - Jack C Leo
- Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|