1
|
Inskeep WP, Jay ZJ, McKay LJ, Dlakić M. Respiratory processes of early-evolved hyperthermophiles in sulfidic and low-oxygen geothermal microbial communities. Nat Commun 2025; 16:277. [PMID: 39746973 PMCID: PMC11696919 DOI: 10.1038/s41467-024-55079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025] Open
Abstract
Thermophilic microbial communities growing in low-oxygen environments often contain early-evolved archaea and bacteria, which hold clues regarding mechanisms of cellular respiration relevant to early life. Here, we conducted replicate metagenomic, metatranscriptomic, microscopic, and geochemical analyses on two hyperthermophilic (82-84 °C) filamentous microbial communities (Conch and Octopus Springs, Yellowstone National Park, WY) to understand the role of oxygen, sulfur, and arsenic in energy conservation and community composition. We report that hyperthermophiles within the Aquificota (Thermocrinis), Pyropristinus (Caldipriscus), and Thermoproteota (Pyrobaculum) are abundant in both communities; however, higher oxygen results in a greater diversity of aerobic heterotrophs. Metatranscriptomics revealed major shifts in respiratory pathways of keystone chemolithotrophs due to differences in oxygen versus sulfide. Specifically, early-evolved hyperthermophiles express high levels of high-affinity cytochrome bd and CydAA' oxidases in suboxic sulfidic environments and low-affinity heme Cu oxidases under microaerobic conditions. These energy-conservation mechanisms using cytochrome oxidases in high-temperature, low-oxygen habitats likely played a crucial role in the early evolution of microbial life.
Collapse
Affiliation(s)
- William P Inskeep
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA.
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA.
| | - Zackary J Jay
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Luke J McKay
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA
- LanzaTech, Skokie, IL, USA
| | - Mensur Dlakić
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
2
|
Rowe L, Dowd SE, Davidson K, Kovarik C, VanAken M, Jarabek A, Taylor C. Comparing microbial populations from diverse hydrothermal features in Yellowstone National Park: hot springs and mud volcanoes. Front Microbiol 2024; 15:1409664. [PMID: 38993494 PMCID: PMC11236564 DOI: 10.3389/fmicb.2024.1409664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
Geothermal features, such as hot springs and mud volcanoes, host diverse microbial life, including many extremophile organisms. The physicochemical parameters of the geothermal feature, such as temperature, pH, and heavy metal concentration, can influence the alpha and beta diversity of microbial life in these environments, as can spatiotemporal differences between sites and sampling. In this study, water and sediment samples were collected and analyzed from eight geothermal sites at Yellowstone National Park, including six hot springs, a mud volcano, and an acidic lake within the same week in July 2019, and these geothermal sites varied greatly in their temperature, pH, and chemical composition. All samples were processed and analyzed with the same methodology and taxonomic profiles and alpha and beta diversity metrics determined with 16S rRNA sequencing. These microbial diversity results were then analyzed with respect to pH, temperature, and chemical composition of the geothermal features. Results indicated that predominant microbial species varied greatly depending on the physicochemical composition of the geothermal site, with decreases in pH and increases in dissolved heavy metals in the water corresponding to decreases in alpha diversity, especially in the sediment samples. Similarly, sites with acidic pH values had more similar microbial populations (beta diversity) to one another than to relatively neutral or alkaline pH geothermal sites. This study suggests that pH and/or heavy metal concentration is a more important driver for microbial diversity and population profile than the temperature for these sites and is also the first reported microbial diversity study for multiple geothermal sites in Yellowstone National Park, including the relatively new mud volcano Black Dragon's Caldron, which erupted in 1948.
Collapse
Affiliation(s)
- Laura Rowe
- Department of Chemistry, Eastern Kentucky University, Richmond, KY, United States
- Department of Chemistry, Valparaiso University, Valparaiso, IN, United States
| | - Scot E. Dowd
- Molecular Research LP (MR DNA Lab), Shallowater, TX, United States
| | - Kelly Davidson
- Department of Chemistry, Valparaiso University, Valparaiso, IN, United States
| | - Claire Kovarik
- Department of Chemistry, Valparaiso University, Valparaiso, IN, United States
| | - Michayla VanAken
- Department of Chemistry, Valparaiso University, Valparaiso, IN, United States
| | - Alyssa Jarabek
- Department of Chemistry, Valparaiso University, Valparaiso, IN, United States
| | - Churro Taylor
- Department of Chemistry, Eastern Kentucky University, Richmond, KY, United States
| |
Collapse
|
3
|
Zhang Z, Liu T, Li X, Ye Q, Bangash HI, Zheng J, Peng N. Metagenome-assembled genomes reveal carbohydrate degradation and element metabolism of microorganisms inhabiting Tengchong hot springs, China. ENVIRONMENTAL RESEARCH 2023; 238:117144. [PMID: 37716381 DOI: 10.1016/j.envres.2023.117144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
A hot spring is a distinctive aquatic environment that provides an excellent system to investigate microorganisms and their function in elemental cycling processes. Previous studies of terrestrial hot springs have been mostly focused on the microbial community, one special phylum or category, or genes involved in a particular metabolic step, while little is known about the overall functional metabolic profiles of microorganisms inhabiting the terrestrial hot springs. Here, we analyzed the microbial community structure and their functional genes based on metagenomic sequencing of six selected hot springs with different temperature and pH conditions. We sequenced a total of 11 samples from six hot springs and constructed 162 metagenome-assembled genomes (MAGs) with completeness above 70% and contamination lower than 10%. Crenarchaeota, Euryarchaeota and Aquificae were found to be the dominant phyla. Functional annotation revealed that bacteria encode versatile carbohydrate-active enzymes (CAZYmes) for the degradation of complex polysaccharides, while archaea tend to assimilate C1 compounds through carbon fixation. Under nitrogen-deficient conditions, there were correspondingly fewer genes involved in nitrogen metabolism, while abundant and diverse set of genes participating in sulfur metabolism, particularly those associated with sulfide oxidation and thiosulfate disproportionation. In summary, archaea and bacteria residing in the hot springs display distinct carbon metabolism fate, while sharing the common energy preference through sulfur metabolism. Overall, this research contributes to a better comprehension of biogeochemistry of terrestrial hot springs.
Collapse
Affiliation(s)
- Zhufeng Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Tao Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
| | - Xudong Li
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Qing Ye
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Hina Iqbal Bangash
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Colman DR, Veach A, Stefánsson A, Wurch L, Belisle BS, Podar PT, Yang Z, Klingeman D, Senba K, Murakami KS, Kristjánsson JK, Björnsdóttir SH, Boyd ES, Podar M. Tectonic and geological setting influence hot spring microbiology. Environ Microbiol 2023; 25:2481-2497. [PMID: 37553090 DOI: 10.1111/1462-2920.16472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023]
Abstract
Hydrothermal systems form at divergent and convergent boundaries of lithospheric plates and within plates due to weakened crust and mantle plumes, playing host to diverse microbial ecosystems. Little is known of how differences in tectonic setting influence the geochemical and microbial compositions of these hydrothermal ecosystems. Here, coordinated geochemical and microbial community analyses were conducted on 87 high-temperature (>65°C) water and sediment samples from hot springs in Yellowstone National Park, Wyoming, USA (n = 41; mantle plume setting), Iceland (n = 41, divergent boundary), and Japan (n = 5; convergent boundary). Region-specific variation in geochemistry and sediment-associated 16S rRNA gene amplicon sequence variant (ASV) composition was observed, with 16S rRNA gene assemblages being nearly completely distinguished by region and pH being the most explanatory parameter within regions. Several low abundance ASVs exhibited cosmopolitan distributions across regions, while most high-abundance ASVs were only identified in specific regions. The presence of some cosmopolitan ASVs across regions argues against dispersal limitation primarily shaping the distribution of taxa among regions. Rather, the results point to local tectonic and geologic characteristics shaping the geochemistry of continental hydrothermal systems that then select for distinct microbial assemblages. These results provide new insights into the co-evolution of hydrothermal systems and their microbial communities.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Allison Veach
- Department of Integrative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Andri Stefánsson
- Institute of Earth Sciences, University of Iceland, Reykjavik, Iceland
| | - Louie Wurch
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Biology, James Madison University, Harrisonburg, Virginia, USA
| | - B Shafer Belisle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Peter T Podar
- School of Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Zamin Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Dawn Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Kazuyo Senba
- Department of Microbiology, Beppu University, Beppu, Oita, Japan
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, State College, Pennsylvania, USA
| | | | | | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
5
|
Murali R, Gennis RB, Hemp J. Evolution of the cytochrome bd oxygen reductase superfamily and the function of CydAA' in Archaea. THE ISME JOURNAL 2021; 15:3534-3548. [PMID: 34145390 PMCID: PMC8630170 DOI: 10.1038/s41396-021-01019-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023]
Abstract
Cytochrome bd-type oxygen reductases (cytbd) belong to one of three enzyme superfamilies that catalyze oxygen reduction to water. They are widely distributed in Bacteria and Archaea, but the full extent of their biochemical diversity is unknown. Here we used phylogenomics to identify three families and several subfamilies within the cytbd superfamily. The core architecture shared by all members of the superfamily consists of four transmembrane helices that bind two active site hemes, which are responsible for oxygen reduction. While previously characterized cytochrome bd-type oxygen reductases use quinol as an electron donor to reduce oxygen, sequence analysis shows that only one of the identified families has a conserved quinol binding site. The other families are missing this feature, suggesting that they use an alternative electron donor. Multiple gene duplication events were identified within the superfamily, resulting in significant evolutionary and structural diversity. The CydAA' cytbd, found exclusively in Archaea, is formed by the co-association of two superfamily paralogs. We heterologously expressed CydAA' from Caldivirga maquilingensis and demonstrated that it performs oxygen reduction with quinol as an electron donor. Strikingly, CydAA' is the first isoform of cytbd containing only b-type hemes shown to be active when isolated from membranes, demonstrating that oxygen reductase activity in this superfamily is not dependent on heme d.
Collapse
Affiliation(s)
- Ranjani Murali
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - James Hemp
- The Metrodora Institute, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Zayulina KS, Elcheninov AG, Toshchakov SV, Kochetkova TV, Novikov AA, Blamey JM, Kublanov IV. Novel hyperthermophilic crenarchaeon Infirmifilum lucidum gen. nov. sp. nov., reclassification of Thermofilum uzonense as Infirmifilum uzonense comb. nov. and assignment of the family Thermofilaceae to the order Thermofilales ord. nov. Syst Appl Microbiol 2021; 44:126230. [PMID: 34293647 DOI: 10.1016/j.syapm.2021.126230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 02/01/2023]
Abstract
A novel hyperthermophilic crenarchaeon, strain 3507LTT, was isolated from a terrestrial hot spring near Tinguiririca volcano, Chile. Cells were non-motile thin, slightly curved filamentous rods. It grew at 73-93 °C and pH range of 5 to 7.5 with an optimum at 85 °C and pH 6.0-6.7. The presence of culture broth filtrate of another hyperthemophilic archaeon as well as yeast extract was obligatory for growth of the novel isolate. Strain 3507LTT is an anaerobic chemoorganoheterotroph, fermenting monosaccharides, disaccharides and polysaccharides (lichenan, starch, xanthan gum, xyloglucan, alpha-cellulose and amorphous cellulose). No growth stimulation was detected when nitrate, thiosulfate, selenate or elemental sulfur were added as the electron acceptors. The complete genome of strain 3507LTT consisted of a single circular chromosome with size of 1.63 Mbp. The DNA G+C content was 53.9%. According to the 16S rRNA gene sequence as well as conserved protein sequences phylogenetic analyses, strain 3507LTT together with Thermofilum uzonense formed a separate cluster within a Thermofilaceae family (Thermoproteales/Thermoprotei/Crenarchaeota). Based on phenotypic characteristics, phylogeny as well as AAI comparisons, a novel genus and species Infirmifilum lucidum strain 3507LTT (=VKM B-3376T = KCTC 15797T) gen. nov. sp. nov. was proposed. Its closest relative, Thermofilum uzonense strain 1807-2T should be reclassified as Infirmifilum uzonense strain 1807-2T comb. nov. Finally, based on phylogenomic and comparative genome analyses of representatives of Thermofilaceae family and other representatives of Thermoproteales order, a proposal of transfer of the family Thermofilaceae into a separate order Thermofilales ord. nov. was made.
Collapse
Affiliation(s)
- Kseniya S Zayulina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia.
| | - Alexander G Elcheninov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Stepan V Toshchakov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Tatiana V Kochetkova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Andrei A Novikov
- Gubkin University, 65-1, Leninsky prospect, 119991 Moscow, Russia
| | - Jenny M Blamey
- Fundacion Biociencia, Jose Domingo Cañas, 2280 Ñuñoa, Santiago, Chile; Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Estación Central, Santiago, Chile
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| |
Collapse
|
7
|
Microbe-Mineral Interaction and Novel Proteins for Iron Oxide Mineral Reduction in the Hyperthermophilic Crenarchaeon Pyrodictium delaneyi. Appl Environ Microbiol 2021; 87:AEM.02330-20. [PMID: 33419739 PMCID: PMC8105010 DOI: 10.1128/aem.02330-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/17/2020] [Indexed: 11/24/2022] Open
Abstract
Understanding iron reduction in the hyperthermophilic crenarchaeon Pyrodictium delaneyi provides insight into the diversity of mechanisms used for this process and its potential impact in geothermal environments. The ability of P. delaneyi to reduce Fe(III) oxide minerals through direct contact potentially using a novel cytochrome respiratory complex and a membrane-bound molybdopterin respiratory complex sets iron reduction in this organism apart from previously described iron reduction processes. Dissimilatory iron reduction by hyperthermophilic archaea occurs in many geothermal environments and generally relies on microbe-mineral interactions that transform various iron oxide minerals. In this study, the physiology of dissimilatory iron and nitrate reduction was examined in the hyperthermophilic crenarchaeon type strain Pyrodictium delaneyi Su06. Iron barrier experiments showed that P. delaneyi required direct contact with the Fe(III) oxide mineral ferrihydrite for reduction. The separate addition of an exogenous electron shuttle (anthraquinone-2,6-disulfonate), a metal chelator (nitrilotriacetic acid), and 75% spent cell-free supernatant did not stimulate growth with or without the barrier. Protein electrophoresis showed that the c-type cytochrome and general protein compositions of P. delaneyi changed when grown on ferrihydrite relative to nitrate. Differential proteomic analyses using tandem mass tagged protein fragments and mass spectrometry detected 660 proteins and differential production of 127 proteins. Among these, two putative membrane-bound molybdopterin-dependent oxidoreductase complexes increased in relative abundance 60- to 3,000-fold and 50- to 100-fold in cells grown on iron oxide. A putative 8-heme c-type cytochrome was 60-fold more abundant in iron-grown cells and was unique to the Pyrodictiaceae. There was also a >14,700-fold increase in a membrane transport protein in iron-grown cells. For flagellin proteins and a putative nitrate reductase, there were no changes in abundance, but a membrane nitric oxide reductase was more abundant on nitrate. These data help to elucidate the mechanisms by which hyperthermophilic crenarchaea generate energy and transfer electrons across the membrane to iron oxide minerals. IMPORTANCE Understanding iron reduction in the hyperthermophilic crenarchaeon Pyrodictium delaneyi provides insight into the diversity of mechanisms used for this process and its potential impact in geothermal environments. The ability of P. delaneyi to reduce Fe(III) oxide minerals through direct contact potentially using a novel cytochrome respiratory complex and a membrane-bound molybdopterin respiratory complex sets iron reduction in this organism apart from previously described iron reduction processes. A model is presented where obligatory H2 oxidation on the membrane coupled with electron transport and either Fe(III) oxide or nitrate reduction leads to the generation of a proton motive force and energy generation by oxidative phosphorylation. However, P. delaneyi cannot fix CO2 and relies on organic compounds from its environment for biosynthesis.
Collapse
|
8
|
Activity-based cell sorting reveals responses of uncultured archaea and bacteria to substrate amendment. ISME JOURNAL 2020; 14:2851-2861. [PMID: 32887944 PMCID: PMC7784905 DOI: 10.1038/s41396-020-00749-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/30/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
Metagenomic studies have revolutionized our understanding of the metabolic potential of uncultured microorganisms in various ecosystems. However, many of these genomic predictions have yet to be experimentally tested, and the functional expression of genomic potential often remains unaddressed. In order to obtain a more thorough understanding of cell physiology, novel techniques capable of testing microbial metabolism under close to in situ conditions must be developed. Here, we provide a benchmark study to demonstrate that bioorthogonal non-canonical amino acid tagging (BONCAT) in combination with fluorescence-activated cell sorting (FACS) and 16S rRNA gene sequencing can be used to identify anabolically active members of a microbial community incubated in the presence of various growth substrates or under changing physicochemical conditions. We applied this approach to a hot spring sediment microbiome from Yellowstone National Park (Wyoming, USA) and identified several microbes that changed their activity levels in response to substrate addition, including uncultured members of the phyla Thaumarchaeota, Acidobacteria, and Fervidibacteria. Because shifts in activity in response to substrate amendment or headspace changes are indicative of microbial preferences for particular growth conditions, results from this and future BONCAT-FACS studies could inform the development of cultivation media to specifically enrich uncultured microbes. Most importantly, BONCAT-FACS is capable of providing information on the physiology of uncultured organisms at as close to in situ conditions as experimentally possible.
Collapse
|
9
|
Discovery and Characterization of Thermoproteus Spherical Piliferous Virus 1: a Spherical Archaeal Virus Decorated with Unusual Filaments. J Virol 2020; 94:JVI.00036-20. [PMID: 32213609 DOI: 10.1128/jvi.00036-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/08/2020] [Indexed: 11/20/2022] Open
Abstract
We describe the discovery of an archaeal virus, one that infects archaea, tentatively named Thermoproteus spherical piliferous virus 1 (TSPV1), which was purified from a Thermoproteales host isolated from a hot spring in Yellowstone National Park (USA). TSPV1 packages an 18.65-kb linear double-stranded DNA (dsDNA) genome with 31 open reading frames (ORFs), whose predicted gene products show little homology to proteins with known functions. A comparison of virus particle morphologies and gene content demonstrates that TSPV1 is a new member of the Globuloviridae family of archaeal viruses. However, unlike other Globuloviridae members, TSPV1 has numerous highly unusual filaments decorating its surface, which can extend hundreds of nanometers from the virion. To our knowledge, similar filaments have not been observed in any other archaeal virus. The filaments are remarkably stable, remaining intact across a broad range of temperature and pH values, and they are resistant to chemical denaturation and proteolysis. A major component of the filaments is a glycosylated 35-kDa TSPV1 protein (TSPV1 GP24). The filament protein lacks detectable homology to structurally or functionally characterized proteins. We propose, given the low host cell densities of hot spring environments, that the TSPV1 filaments serve to increase the probability of virus attachment and entry into host cells.IMPORTANCE High-temperature environments have proven to be an important source for the discovery of new archaeal viruses with unusual particle morphologies and gene content. Our isolation of Thermoproteus spherical piliferous virus 1 (TSPV1), with numerous filaments extending from the virion surface, expands our understanding of viral diversity and provides new insight into viral replication in high-temperature environments.
Collapse
|
10
|
Nishiyama E, Higashi K, Mori H, Suda K, Nakamura H, Omori S, Maruyama S, Hongoh Y, Kurokawa K. The Relationship Between Microbial Community Structures and Environmental Parameters Revealed by Metagenomic Analysis of Hot Spring Water in the Kirishima Area, Japan. Front Bioeng Biotechnol 2018; 6:202. [PMID: 30619848 PMCID: PMC6306410 DOI: 10.3389/fbioe.2018.00202] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/10/2018] [Indexed: 12/02/2022] Open
Abstract
Diverse microorganisms specifically inhabit extreme environments, such as hot springs and deep-sea hydrothermal vents. To test the hypothesis that the microbial community structure is predictable based on environmental factors characteristic of such extreme environments, we conducted correlation analyses of microbial taxa/functions and environmental factors using metagenomic and 61 types of physicochemical data of water samples from nine hot springs in the Kirishima area (Kyusyu, Japan), where hot springs with diverse chemical properties are distributed in a relatively narrow area. Our metagenomic analysis revealed that the samples can be classified into two major types dominated by either phylum Crenarchaeota or phylum Aquificae. The correlation analysis showed that Crenarchaeota dominated in nutrient-rich environments with high concentrations of ions and total carbons, whereas Aquificae dominated in nutrient-poor environments with low ion concentrations. These environmental factors were also important explanatory variables in the generalized linear models constructed to predict the abundances of Crenarchaeota or Aquificae. Functional enrichment analysis of genes also revealed that the separation of the two major types is primarily attributable to genes involved in autotrophic carbon fixation, sulfate metabolism and nitrate reduction. Our results suggested that Aquificae and Crenarchaeota play a vital role in the Kirishima hot spring water ecosystem through their metabolic pathways adapted to each environment. Our findings provide a basis to predict microbial community structures in hot springs from environmental parameters, and also provide clues for the exploration of biological resources in extreme environments.
Collapse
Affiliation(s)
- Eri Nishiyama
- Biotechnological Research Support Division, FASMAC Co. Ltd, Kanagawa, Japan.,Department of Biological Information, Tokyo Institute of Technology, Tokyo, Japan
| | - Koichi Higashi
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Hiroshi Mori
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Konomi Suda
- Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Hitomi Nakamura
- Department of Solid Earth Geochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Soichi Omori
- Faculty of Liberal Arts, The Open University of Japan, Chiba, Japan
| | - Shigenori Maruyama
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Japan
| | - Yuichi Hongoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Ken Kurokawa
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| |
Collapse
|
11
|
Jay ZJ, Beam JP, Dlakić M, Rusch DB, Kozubal MA, Inskeep WP. Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats. Nat Microbiol 2018; 3:732-740. [PMID: 29760463 DOI: 10.1038/s41564-018-0163-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 04/16/2018] [Indexed: 11/09/2022]
Abstract
The discovery of archaeal lineages is critical to our understanding of the universal tree of life and evolutionary history of the Earth. Geochemically diverse thermal environments in Yellowstone National Park provide unprecedented opportunities for studying archaea in habitats that may represent analogues of early Earth. Here, we report the discovery and characterization of a phylum-level archaeal lineage proposed and herein referred to as the 'Marsarchaeota', after the red planet. The Marsarchaeota contains at least two major subgroups prevalent in acidic, microaerobic geothermal Fe(III) oxide microbial mats across a temperature range from ~50-80 °C. Metagenomics, single-cell sequencing, enrichment culturing and in situ transcriptional analyses reveal their biogeochemical role as facultative aerobic chemoorganotrophs that may also mediate the reduction of Fe(III). Phylogenomic analyses of replicate assemblies corresponding to two groups of Marsarchaeota indicate that they branch between the Crenarchaeota and all other major archaeal lineages. Transcriptomic analyses of several Fe(III) oxide mat communities reveal that these organisms were actively transcribing two different terminal oxidase complexes in situ and genes comprising an F420-dependent butanal catabolism. The broad distribution of Marsarchaeota in geothermal, microaerobic Fe(III) oxide mats suggests that similar habitat types probably played an important role in the evolution of archaea.
Collapse
Affiliation(s)
- Zackary J Jay
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA.,Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Jacob P Beam
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA.,Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Mensur Dlakić
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Douglas B Rusch
- Center for Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Mark A Kozubal
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA.,Sustainable Bioproducts, Bozeman, MT, USA
| | - William P Inskeep
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
12
|
Chistoserdova L, Kalyuzhnaya MG. Current Trends in Methylotrophy. Trends Microbiol 2018; 26:703-714. [PMID: 29471983 DOI: 10.1016/j.tim.2018.01.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/18/2018] [Accepted: 01/30/2018] [Indexed: 11/26/2022]
Abstract
Methylotrophy is a field of study dealing with microorganisms capable of utilization of compounds devoid of carbon-carbon bonds (C1 compounds). In this review, we highlight several emerging trends in methylotrophy. First, we discuss the significance of the recent discovery of lanthanide-dependent alcohol dehydrogenases for understanding both the occurrence and the distribution of methylotrophy functions among bacteria, and then we discuss the newly appreciated role of lanthanides in biology. Next, we describe the detection of other methylotrophy pathways across novel bacterial taxa and insights into the evolution of methylotrophy. Further, data are presented on the occurrence and activity of aerobic methylotrophs in hypoxic and anoxic environments, questioning the prior assumptions on niche separation of aerobic and anaerobic methylotrophy. The concept of communal function in aerobic methane oxidation is also briefly discussed. Finally, we review recent research in engineering methylotrophs for biotechnological applications as well as recent progress in engineering synthetic methylotrophy.
Collapse
|
13
|
Jennings RDM, Moran JJ, Jay ZJ, Beam JP, Whitmore LM, Kozubal MA, Kreuzer HW, Inskeep WP. Integration of Metagenomic and Stable Carbon Isotope Evidence Reveals the Extent and Mechanisms of Carbon Dioxide Fixation in High-Temperature Microbial Communities. Front Microbiol 2017; 8:88. [PMID: 28217111 PMCID: PMC5289995 DOI: 10.3389/fmicb.2017.00088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/12/2017] [Indexed: 11/13/2022] Open
Abstract
Although the biological fixation of CO2 by chemolithoautotrophs provides a diverse suite of organic compounds utilized by chemoorganoheterotrophs as a carbon and energy source, the relative amounts of autotrophic C in chemotrophic microbial communities are not well-established. The extent and mechanisms of CO2 fixation were evaluated across a comprehensive set of high-temperature, chemotrophic microbial communities in Yellowstone National Park by combining metagenomic and stable 13C isotope analyses. Fifteen geothermal sites representing three distinct habitat types (iron-oxide mats, anoxic sulfur sediments, and filamentous “streamer” communities) were investigated. Genes of the 3-hydroxypropionate/4-hydroxybutyrate, dicarboxylate/4-hydroxybutyrate, and reverse tricarboxylic acid CO2 fixation pathways were identified in assembled genome sequence corresponding to the predominant Crenarchaeota and Aquificales observed across this habitat range. Stable 13C analyses of dissolved inorganic and organic C (DIC, DOC), and possible landscape C sources were used to interpret the 13C content of microbial community samples. Isotope mixing models showed that the minimum fractions of autotrophic C in microbial biomass were >50% in the majority of communities analyzed. The significance of CO2 as a C source in these communities provides a foundation for understanding community assembly and succession, and metabolic linkages among early-branching thermophilic autotrophs and heterotrophs.
Collapse
Affiliation(s)
- Ryan de Montmollin Jennings
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, USA; Thermal Biology Institute, Montana State UniversityBozeman, MT, USA
| | - James J Moran
- Pacific Northwest National Laboratories Richland, WA, USA
| | - Zackary J Jay
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, USA; Thermal Biology Institute, Montana State UniversityBozeman, MT, USA
| | - Jacob P Beam
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, USA; Thermal Biology Institute, Montana State UniversityBozeman, MT, USA
| | | | - Mark A Kozubal
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | | | - William P Inskeep
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, USA; Thermal Biology Institute, Montana State UniversityBozeman, MT, USA
| |
Collapse
|
14
|
Chistoserdova L. Wide Distribution of Genes for Tetrahydromethanopterin/Methanofuran-Linked C1 Transfer Reactions Argues for Their Presence in the Common Ancestor of Bacteria and Archaea. Front Microbiol 2016; 7:1425. [PMID: 27679616 PMCID: PMC5020050 DOI: 10.3389/fmicb.2016.01425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/29/2016] [Indexed: 12/14/2022] Open
|