1
|
Ouboter HT, Mesman R, Sleutels T, Postma J, Wissink M, Jetten MSM, Ter Heijne A, Berben T, Welte CU. Mechanisms of extracellular electron transfer in anaerobic methanotrophic archaea. Nat Commun 2024; 15:1477. [PMID: 38368447 PMCID: PMC10874420 DOI: 10.1038/s41467-024-45758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024] Open
Abstract
Anaerobic methanotrophic (ANME) archaea are environmentally important, uncultivated microorganisms that oxidize the potent greenhouse gas methane. During methane oxidation, ANME archaea engage in extracellular electron transfer (EET) with other microbes, metal oxides, and electrodes through unclear mechanisms. Here, we cultivate ANME-2d archaea ('Ca. Methanoperedens') in bioelectrochemical systems and observe strong methane-dependent current (91-93% of total current) associated with high enrichment of 'Ca. Methanoperedens' on the anode (up to 82% of the community), as determined by metagenomics and transmission electron microscopy. Electrochemical and metatranscriptomic analyses suggest that the EET mechanism is similar at various electrode potentials, with the possible involvement of an uncharacterized short-range electron transport protein complex and OmcZ nanowires.
Collapse
Affiliation(s)
- Heleen T Ouboter
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Rob Mesman
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Tom Sleutels
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, The Netherlands
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Jelle Postma
- Department of General Instrumentation, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Martijn Wissink
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Tom Berben
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Ballesteros N, Páez L, Luna N, Reina A, Urrea V, Sánchez C, Ramírez A, Ramirez JD, Muñoz M. Characterization of microbial communities in seven wetlands with different anthropogenic burden using Next Generation Sequencing in Bogotá, Colombia. Sci Rep 2023; 13:16973. [PMID: 37813873 PMCID: PMC10562456 DOI: 10.1038/s41598-023-42970-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 09/17/2023] [Indexed: 10/11/2023] Open
Abstract
Wetlands represent key ecosystems due to their remarkable biodiversity, ecological functions and multiple ecosystem services provided. In Colombia, there are 31,702 wetlands, 13 of which are in Bogotá, capital of the country. Despite the fundamental socioecological support of these aquatic ecosystems, a tremendous loss and degradation of these ecosystems has been observed due to anthropogenic perturbations. Therefore, the aim of this study was to describe the status of seven Bogotá wetlands with variable anthropogenic interventions by measuring organoleptic, physicochemical, and microbiological parameters, using commercial kits, highly sensitive equipment, and next-generation sequencing of the 16S- and 18S-rRNA genes. Our findings describe the status of seven wetlands with different anthropogenic burden in Bogotá-Colombia where physicochemical and microbiology signals of contamination were observed. Additionally, some profiles in the composition of the microbial communities, together with certain physicochemical characteristics, may represent an insight into the environmental dynamics, where Beta Proteobacteria such as Malikia represent a potential keystone in aquatic ecosystems impacted by wastewater effluent discharges; the presence of nitrates and phosphates explain the abundance of bacteria capable of oxidizing these compounds, such as Polynucleobacter. Moreover, the presence of specific prokaryotic and eukaryotic organisms, such as Clostridium, Cryptococcus, Candida, and Naegleria, reported in one or more of the wetlands assessed here, could represent a possible pathogenic risk for human and animal health. This study performed a complete evaluation of seven Bogotá wetlands with different anthropogenic impacts for the first time, and our findings emphasize the importance of maintaining continuous monitoring of these water bodies given their remarkable ecological importance and potential spill-over of several pathogens to humans and animals.
Collapse
Affiliation(s)
- Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luisa Páez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Nicolas Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Ariana Reina
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Vanessa Urrea
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Catalina Sánchez
- Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Angie Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramirez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
3
|
Chen L, Shi Y, Wang S, Sun M, Wang M, Ren X, Gao Z, Zhou Y, Zhang J, Zhuang W, Su X, Fu Y, Wu M. Temperature and phosphorus: the main environmental factors affecting the seasonal variation of soil bacterial diversity in Nansi Lake Wetland. Front Microbiol 2023; 14:1169444. [PMID: 37455734 PMCID: PMC10348425 DOI: 10.3389/fmicb.2023.1169444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction The soil bacteria promote the circulation conversion of lake nutrients and play an important role in maintaining the balance of the lake ecosystem. Few studies have investigated the association of seasonal variation in bacteria and environmental factors in inland freshwater lake wetlands. Nansi Lake is a large shallow freshwater lake in northern China. It is an important hub of the eastern route of the South-to-North Water Diversion Project. Methods In this study, bacterial 16S rRNA genes were used to analyze the variation of soil bacterial community diversity in Nansi Lake Wetland and its influencing factors in different seasons. Results It is showed that the phylum, family, and genus with the largest relative abundance in the soil of Nansi Lake Wetland are Proteobacteria, Nitrosomonadaceae, and MND1, respectively. There were significant seasonal differences in soil bacterial diversity in Nansi Lake Wetland, which was significantly higher in summer than in winter. Seasonal variation in environmental factors was significantly correlated with the variation in bacterial communities. Temperature and the content of available phosphorus may be the key factors influencing seasonal variation in bacterial diversity. Discussion The results of this study further enhance our understanding of the relationship between bacterial community diversity and environmental factors in the lake wetland ecosystem, which can provide scientific data for the conservation of Nansi Lake Wetland.
Collapse
Affiliation(s)
- Lei Chen
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Yuying Shi
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Shen Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Mengyao Sun
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Meng Wang
- Lunan Geo-Engineering Exploration Institute of Shandong Province, Yanzhou, Shandong, China
| | - Xiaoyue Ren
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Zenghao Gao
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Yiping Zhou
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Jie Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Weijing Zhuang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Xinyue Su
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Yongchao Fu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Mengmeng Wu
- Shandong Freshwater Fisheries Research Institute, Jinan, Shandong, China
| |
Collapse
|
4
|
Liang S, Li H, Wu H, Yan B, Song A. Microorganisms in coastal wetland sediments: a review on microbial community structure, functional gene, and environmental potential. Front Microbiol 2023; 14:1163896. [PMID: 37333635 PMCID: PMC10272453 DOI: 10.3389/fmicb.2023.1163896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Coastal wetlands (CW) are the junction of the terrestrial and marine ecosystems and have special ecological compositions and functions, which are important for maintaining biogeochemical cycles. Microorganisms inhabiting in sediments play key roles in the material cycle of CW. Due to the variable environment of CW and the fact that most CW are affected by human activities and climate change, CW are severely degraded. In-depth understanding of the community structure, function, and environmental potential of microorganisms in CW sediments is essential for wetland restoration and function enhancement. Therefore, this paper summarizes microbial community structure and its influencing factors, discusses the change patterns of microbial functional genes, reveals the potential environmental functions of microorganisms, and further proposes future prospects about CW studies. These results provide some important references for promoting the application of microorganisms in material cycling and pollution remediation of CW.
Collapse
Affiliation(s)
- Shen Liang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Haitao Wu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Aiwen Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Abstract
Members of candidate Asgardarchaeota superphylum appear to share numerous eukaryotic-like attributes thus being broadly explored for their relevance to eukaryogenesis. On the contrast, the ecological roles of Asgard archaea remains understudied. Asgard archaea have been frequently associated to low-oxygen aquatic sedimentary environments worldwide spanning a broad but not extreme salinity range. To date, the available information on diversity and potential biogeochemical roles of Asgardarchaeota mostly sourced from marine habitats and to a much lesser extend from true saline environments (i.e., > 3% w/v total salinity). Here, we provide an overview on diversity and ecological implications of Asgard archaea distributed across saline environments and briefly explore their metagenome-resolved potential for osmoadaptation. Loki-, Thor- and Heimdallarchaeota are the dominant Asgard clades in saline habitats where they might employ anaerobic/microaerophilic organic matter degradation and autotrophic carbon fixation. Homologs of primary solute uptake ABC transporters seemingly prevail in Thorarchaeota, whereas those putatively involved in trehalose and ectoine biosynthesis were mostly inferred in Lokiarchaeota. We speculate that Asgardarchaeota might adopt compatible solute-accumulating ('salt-out') strategy as response to salt stress. Our current understanding on the distribution, ecology and salt-adaptive strategies of Asgardarchaeota in saline environments are, however, limited by insufficient sampling and incompleteness of the available metagenome-assembled genomes. Extensive sampling combined with 'omics'- and cultivation-based approaches seem, therefore, crucial to gain deeper knowledge on this particularly intriguing archaeal lineage.
Collapse
|
6
|
Blais MA, Matveev A, Lovejoy C, Vincent WF. Size-Fractionated Microbiome Structure in Subarctic Rivers and a Coastal Plume Across DOC and Salinity Gradients. Front Microbiol 2022; 12:760282. [PMID: 35046910 PMCID: PMC8762315 DOI: 10.3389/fmicb.2021.760282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Little is known about the microbial diversity of rivers that flow across the changing subarctic landscape. Using amplicon sequencing (rRNA and rRNA genes) combined with HPLC pigment analysis and physicochemical measurements, we investigated the diversity of two size fractions of planktonic Bacteria, Archaea and microbial eukaryotes along environmental gradients in the Great Whale River (GWR), Canada. This large subarctic river drains an extensive watershed that includes areas of thawing permafrost, and discharges into southeastern Hudson Bay as an extensive plume that gradually mixes with the coastal marine waters. The microbial communities differed by size-fraction (separated with a 3-μm filter), and clustered into three distinct environmental groups: (1) the GWR sites throughout a 150-km sampling transect; (2) the GWR plume in Hudson Bay; and (3) small rivers that flow through degraded permafrost landscapes. There was a downstream increase in taxonomic richness along the GWR, suggesting that sub-catchment inputs influence microbial community structure in the absence of sharp environmental gradients. Microbial community structure shifted across the salinity gradient within the plume, with changes in taxonomic composition and diversity. Rivers flowing through degraded permafrost had distinct physicochemical and microbiome characteristics, with allochthonous dissolved organic carbon explaining part of the variation in community structure. Finally, our analyses of the core microbiome indicated that while a substantial part of all communities consisted of generalists, most taxa had a more limited environmental range and may therefore be sensitive to ongoing change.
Collapse
Affiliation(s)
- Marie-Amélie Blais
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS) and Takuvik Joint International Laboratory, Université Laval, Quebec City, QC, Canada.,Centre for Northern Studies (CEN), Université Laval, Quebec City, QC, Canada
| | - Alex Matveev
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS) and Takuvik Joint International Laboratory, Université Laval, Quebec City, QC, Canada.,Centre for Northern Studies (CEN), Université Laval, Quebec City, QC, Canada
| | - Connie Lovejoy
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS) and Takuvik Joint International Laboratory, Université Laval, Quebec City, QC, Canada.,Québec-Océan, Université Laval, Quebec City, QC, Canada
| | - Warwick F Vincent
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS) and Takuvik Joint International Laboratory, Université Laval, Quebec City, QC, Canada.,Centre for Northern Studies (CEN), Université Laval, Quebec City, QC, Canada
| |
Collapse
|
7
|
Pelsma KAJ, In 't Zandt MH, Op den Camp HJM, Jetten MSM, Dean JF, Welte CU. Amsterdam urban canals contain novel niches for methane-cycling microorganisms. Environ Microbiol 2021; 24:82-97. [PMID: 34863018 PMCID: PMC9299808 DOI: 10.1111/1462-2920.15864] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 01/04/2023]
Abstract
Urbanised environments have been identified as hotspots of anthropogenic methane emissions. Especially urban aquatic ecosystems are increasingly recognised as important sources of methane. However, the microbiology behind these emissions remains unexplored. Here, we applied microcosm incubations and molecular analyses to investigate the methane‐cycling community of the Amsterdam canal system in the Netherlands. The sediment methanogenic communities were dominated by Methanoregulaceae and Methanosaetaceae, with co‐occurring methanotrophic Methanoperedenaceae and Methylomirabilaceae indicating the potential for anaerobic methane oxidation. Methane was readily produced after substrate amendment, suggesting an active but substrate‐limited methanogenic community. Bacterial 16S rRNA gene amplicon sequencing of the sediment revealed a high relative abundance of Thermodesulfovibrionia. Canal wall biofilms showed the highest initial methanotrophic potential under oxic conditions compared to the sediment. During prolonged incubations the maximum methanotrophic rate increased to 8.08 mmol gDW−1 d−1 that was concomitant with an enrichment of Methylomonadaceae bacteria. Metagenomic analysis of the canal wall biofilm lead to the recovery of a single methanotroph metagenome‐assembled genome. Taxonomic analysis showed that this methanotroph belongs to the genus Methyloglobulus. Our results underline the importance of previously unidentified and specialised environmental niches at the nexus of the natural and human‐impacted carbon cycle.
Collapse
Affiliation(s)
- Koen A J Pelsma
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Netherlands Earth System Science Centre, Utrecht University, Heidelberglaan 2, Utrecht, 3584 CS, The Netherlands
| | - Michiel H In 't Zandt
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Netherlands Earth System Science Centre, Utrecht University, Heidelberglaan 2, Utrecht, 3584 CS, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Netherlands Earth System Science Centre, Utrecht University, Heidelberglaan 2, Utrecht, 3584 CS, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Joshua F Dean
- School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
8
|
Villa JA, Ju Y, Yazbeck T, Waldo S, Wrighton KC, Bohrer G. Ebullition dominates methane fluxes from the water surface across different ecohydrological patches in a temperate freshwater marsh at the end of the growing season. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144498. [PMID: 33421641 DOI: 10.1016/j.scitotenv.2020.144498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/15/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Measurements of the spatial heterogeneity of methane fluxes in wetlands are critical to better understand and predict methane emissions at the ecosystem scale. However, the within-wetland spatial heterogeneity of fluxes is rarely assessed. Here, we use a spatially balanced rapid chamber-based survey of methane at different ecohydrological patches within a temperate freshwater marsh. We measured fluxes exclusively from the water surface without including vegetation. We further used the data from chamber measurements to partition diffusive and ebullitive fluxes. Three ecohydrological patches were distinguishable in the marsh, defined by the type and presence/absence of vegetation. These patches were emergent vegetation, floating-leaved, and open water. Net methane fluxes from the water surface (diffusion plus ebullition) in emergent vegetation patches were larger than in the floating-leaved vegetation and open water patches (p < 0.05). Diffusive fluxes, representing a sizable smaller fraction of net fluxes, were larger in vegetated than in unvegetated patches (p < 0.05), while ebullitive fluxes mirrored the magnitude and differences observed in the net fluxes. Moreover, pooled net and ebullitive fluxes across patches (but not diffusive fluxes) were negatively correlated with water levels, the primary variable affecting patch distribution. Altogether, our results indicate that the differences among ecohydrological patches are driven by ebullition, ultimately highlighting challenges faced by scientists and practitioners in the field and modelers seeking to improve the predictability and resolution of wetland biogeochemical models.
Collapse
Affiliation(s)
- Jorge A Villa
- School of Geosciences, University of Louisiana at Lafayette, Lafayette, LA 70504, USA.
| | - Yang Ju
- Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA
| | - Theresia Yazbeck
- Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA
| | - Sarah Waldo
- USEPA, Office of Research and Development, Cincinnati, OH 45268, USA; USEPA, Region 10, Air Planning, WA 98101, USA
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 8523, USA
| | - Gil Bohrer
- Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Zhang CJ, Pan J, Liu Y, Duan CH, Li M. Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments. MICROBIOME 2020; 8:94. [PMID: 32552798 PMCID: PMC7302380 DOI: 10.1186/s40168-020-00876-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/26/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Methanogens are crucial to global methane budget and carbon cycling. Methanogens from the phylum Euryarchaeota are currently classified into one class and seven orders, including two novel methanogen taxa, Methanofastidiosa and Methanomassiliicoccales. The relative importance of the novel methanogens to methane production in the natural environment is poorly understood. RESULTS Here, we used a combined metagenomic and metatranscriptomic approach to investigate the metabolic activity of methanogens in mangrove sediments in Futian Nature Reserve, Shenzhen. We obtained 13 metagenome-assembled genomes (MAGs) representing one class (Methanofastidiosa) and five orders (Methanomassiliicoccales, Methanomicrobiales, Methanobacteriales, Methanocellales, and Methanosarcinales) of methanogens, including the two novel methanogens. Comprehensive annotation indicated the presence of an H2-dependent methylotrophic methanogenesis pathway in Methanofastidiosa and Methanomassiliicoccales. Based on the functional gene analysis, hydrogenotrophic and methylotrophic methanogenesis are the dominant pathways in mangrove sediments. MAG mapping revealed that hydrogenotrophic Methanomicrobiales were the most abundant methanogens and that methylotrophic Methanomassiliicoccales were the most active methanogens in the analyzed sediment profile, suggesting their important roles in methane production. CONCLUSIONS Partial or near-complete genomes of two novel methanogen taxa, Methanofastidiosa and Methanomassiliicoccales, in natural environments were recovered and analyzed here for the first time. The presented findings highlight the ecological importance of the two novel methanogens and complement knowledge of how methane is produced in mangrove ecosystem. This study implies that two novel methanogens play a vital role in carbon cycle. Video Abstract.
Collapse
Affiliation(s)
- Cui-Jing Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jie Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yang Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Chang-Hai Duan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
10
|
Juottonen H, Fontaine L, Wurzbacher C, Drakare S, Peura S, Eiler A. Archaea in boreal Swedish lakes are diverse, dominated by Woesearchaeota and follow deterministic community assembly. Environ Microbiol 2020; 22:3158-3171. [PMID: 32372550 DOI: 10.1111/1462-2920.15058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/22/2020] [Accepted: 05/02/2020] [Indexed: 01/04/2023]
Abstract
Despite their key role in biogeochemical processes, particularly the methane cycle, archaea are widely underrepresented in molecular surveys because of their lower abundance compared with bacteria and eukaryotes. Here, we use parallel high-resolution small subunit rRNA gene sequencing to explore archaeal diversity in 109 Swedish lakes and correlate archaeal community assembly mechanisms to large-scale latitudinal, climatic (nemoral to arctic) and nutrient (oligotrophic to eutrophic) gradients. Sequencing with universal primers showed the contribution of archaea was on average 0.8% but increased up to 1.5% of the three domains in forest lakes. Archaea-specific sequencing revealed that freshwater archaeal diversity could be partly explained by lake variables associated with nutrient status. Combined with deterministic co-occurrence patterns this finding suggests that ecological drift is overridden by environmental sorting, as well as other deterministic processes such as biogeographic and evolutionary history, leading to lake-specific archaeal biodiversity. Acetoclastic, hydrogenotrophic and methylotrophic methanogens as well as ammonia-oxidizing archaea were frequently detected across the lakes. Archaea-specific sequencing also revealed representatives of Woesearchaeota and other phyla of the DPANN superphylum. This study adds to our understanding of the ecological range of key archaea in freshwaters and links these taxa to hypotheses about processes governing biogeochemical cycles in lakes.
Collapse
Affiliation(s)
- Heli Juottonen
- Limnology, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, Uppsala, 75234, Sweden.,Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Jyväskylä, 40014, Finland
| | - Laurent Fontaine
- Section for Aquatic Biology and Toxicology, Centre for Biogeochemistry in the Anthropocene, Department of Biosciences, University of Oslo, Blindernv. 31, Oslo, 0371, Norway
| | - Christian Wurzbacher
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, Göteborg, 405 30, Sweden.,Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, Garching, 85748, Germany
| | - Stina Drakare
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SLU, Box 7050, Uppsala, 750 07, Sweden
| | - Sari Peura
- Limnology, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, Uppsala, 75234, Sweden.,Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Almas allé 5, Uppsala, 75007, Sweden
| | - Alexander Eiler
- Limnology, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, Uppsala, 75234, Sweden.,Section for Aquatic Biology and Toxicology, Centre for Biogeochemistry in the Anthropocene, Department of Biosciences, University of Oslo, Blindernv. 31, Oslo, 0371, Norway.,eDNA solutions AB, Björkåsgatan 16, Mölndal, 43131, Sweden
| |
Collapse
|
11
|
Zhang CJ, Chen YL, Pan J, Wang YM, Li M. Spatial and seasonal variation of methanogenic community in a river-bay system in South China. Appl Microbiol Biotechnol 2020; 104:4593-4603. [PMID: 32306050 DOI: 10.1007/s00253-020-10613-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 10/24/2022]
Abstract
River-bay system is a transitional zone connecting land and ocean and an important natural source for methane emission. Methanogens play important roles in the global greenhouse gas budget and carbon cycle since they produce methane. The abundance and community assemblage of methanogens in such a dynamic system are not well understood. Here, we used quantitative PCR and high-throughput sequencing of the mcrA gene to investigate the abundance and community composition of methanogens in the Shenzhen River-Bay system, a typical subtropical river-bay system in Southern of China, during the wet and dry seasons. Results showed that mcrA gene abundance was significantly higher in the sediments of river than those of estuary, and was higher in wet season than dry season. Sequences of mcrA gene were mostly assigned to three orders, including Methanosarcinales, Methanomicrobiales, and Methanobacteriales. Specifically, Methanosarcina, Methanosaeta, and Methanobacterium were the most abundant and ubiquitous genera. Methanogenic communities generally clustered according to habitat (river vs. estuary), and salinity was the major factor driving the methanogenic community assemblage. Furthermore, the indicator groups for two habitats were identified. For example, Methanococcoides, Methanoculleus, and Methanogenium preferentially existed in estuarine sediments, whereas Methanomethylovorans, Methanolinea, Methanoregula, and Methanomassiliicoccales were more abundant in riverine sediments, indicating distinct ecological niches. Overall, these findings reveal the distribution patterns of methanogens and expand our understanding of methanogenic community assemblage in the river-bay system. Key Points • Abundance of methanogens was relatively higher in riverine sediments. • Methanogenic community in estuarine habitat separated from that in riverine habitat. • Salinity played a vital role in regulating methanogenic community assemblage.
Collapse
Affiliation(s)
- Cui-Jing Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yu-Lian Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.,College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jie Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Yong-Ming Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
12
|
Griffin JS, Haug LA, Rivera VA, Gonzalez LMH, Kelly JJ, Miller WM, Wells GF, Packman AI. Soil hydrology drives ecological niche differentiation in a native prairie microbiome. FEMS Microbiol Ecol 2020; 96:5593953. [PMID: 31626296 DOI: 10.1093/femsec/fiz163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/16/2019] [Indexed: 11/14/2022] Open
Abstract
While the impacts of soil moisture on soil microbiome diversity and composition are well characterized, the influence of hydrological regime has been overlooked. As precipitation patterns are altered by climate change, understanding the impact of soil hydrology on community structure and function is critical. In this work, water level was continuously monitored for over a year in a Midwestern prairie-wetland at 10 cm depth increments up to a depth of 120 cm in 10 locations. We analyzed microbiome composition and edaphic factors in soil cores collected from this unique spatially distributed, longitudinal data set. We demonstrate that the fraction of time that each sample was inundated explains more variability in diversity and composition across this site than other commonly assessed edaphic factors, such as soil pH or depth. Finally, we show that these compositional changes influence abundance of ammonia oxidizers. The observed patterns in community composition and diversity are fundamentally regulated by the interaction of water with a structured landscape, particularly an elevated sand ridge characterized by drier conditions and a lower-lying wetland with more clayey soils. Similar processes are generally expected to influence the biogeography of many terrestrial environments, as morphology, hydrology and soil properties generally co-vary.
Collapse
Affiliation(s)
- James S Griffin
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Loren A Haug
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Vivien A Rivera
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Liliana M Hernandez Gonzalez
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - John J Kelly
- Department of Biology, Loyola University Chicago, 1032 W Sheridan Rd., Chicago, IL 60660, USA
| | - William M Miller
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - George F Wells
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Aaron I Packman
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| |
Collapse
|
13
|
Abstract
Understanding the sources and controls on microbial methane production from wetland soils is critical to global methane emission predictions, particularly in light of changing climatic conditions. Current biogeochemical models of methanogenesis consider only acetoclastic and hydrogenotrophic sources and exclude methylotrophic methanogenesis, potentially underestimating microbial contributions to methane flux. Our multi-omic results demonstrated that methylotrophic methanogens of the family Methanomassiliicoccaceae were present and active in a freshwater wetland, with metatranscripts indicating that methanol, not methylamines, was the likely substrate under the conditions measured here. However, laboratory experiments indicated the potential for other methanogens to become enriched in response to trimethylamine, revealing the reservoir of methylotrophic methanogenesis potential residing in these soils. Collectively, our approach used coupled field and laboratory investigations to illuminate metabolisms influencing the terrestrial microbial methane cycle, thereby offering direction for increased realism in predictive process-oriented models of methane flux in wetland soils. Wetland soils are one of the largest natural contributors to the emission of methane, a potent greenhouse gas. Currently, microbial contributions to methane emissions from these systems emphasize the roles of acetoclastic and hydrogenotrophic methanogens, while less frequently considering methyl-group substrates (e.g., methanol and methylamines). Here, we integrated laboratory and field experiments to explore the potential for methylotrophic methanogenesis in Old Woman Creek (OWC), a temperate freshwater wetland located in Ohio, USA. We first demonstrated the capacity for methylotrophic methanogenesis in these soils using laboratory soil microcosms amended with trimethylamine. However, subsequent field porewater nuclear magnetic resonance (NMR) analyses to identify methanogenic substrates failed to detect evidence for methylamine compounds in soil porewaters, instead noting the presence of the methylotrophic substrate methanol. Accordingly, our wetland soil-derived metatranscriptomic data indicated that methanol utilization by the Methanomassiliicoccaceae was the likely source of methylotrophic methanogenesis. Methanomassiliicoccaceae relative contributions to mcrA transcripts nearly doubled with depth, accounting for up to 8% of the mcrA transcripts in 25-cm-deep soils. Longitudinal 16S rRNA amplicon and mcrA gene surveys demonstrated that Methanomassiliicoccaceae were stably present over 2 years across lateral and depth gradients in this wetland. Meta-analysis of 16S rRNA sequences similar (>99%) to OWC Methanomassiliicoccaceae in public databases revealed a global distribution, with a high representation in terrestrial soils and sediments. Together, our results demonstrate that methylotrophic methanogenesis likely contributes to methane flux from climatically relevant wetland soils. IMPORTANCE Understanding the sources and controls on microbial methane production from wetland soils is critical to global methane emission predictions, particularly in light of changing climatic conditions. Current biogeochemical models of methanogenesis consider only acetoclastic and hydrogenotrophic sources and exclude methylotrophic methanogenesis, potentially underestimating microbial contributions to methane flux. Our multi-omic results demonstrated that methylotrophic methanogens of the family Methanomassiliicoccaceae were present and active in a freshwater wetland, with metatranscripts indicating that methanol, not methylamines, was the likely substrate under the conditions measured here. However, laboratory experiments indicated the potential for other methanogens to become enriched in response to trimethylamine, revealing the reservoir of methylotrophic methanogenesis potential residing in these soils. Collectively, our approach used coupled field and laboratory investigations to illuminate metabolisms influencing the terrestrial microbial methane cycle, thereby offering direction for increased realism in predictive process-oriented models of methane flux in wetland soils.
Collapse
|
14
|
Guðmundsdóttir R, Kreiling AK, Kristjánsson BK, Marteinsson VÞ, Pálsson S. Bacterial diversity in Icelandic cold spring sources and in relation to the groundwater amphipod Crangonyx islandicus. PLoS One 2019; 14:e0222527. [PMID: 31577799 PMCID: PMC6774475 DOI: 10.1371/journal.pone.0222527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/02/2019] [Indexed: 11/18/2022] Open
Abstract
Crangonyx islandicus is a groundwater amphipod endemic to Iceland, considered to have survived the Ice Ages in subglacial refugia. Currently the species is found in spring sources in lava fields along the tectonic plate boundary of the country. The discovery of a groundwater species in this inaccessible habitat indicates a hidden ecosystem possibly based on chemoautotrophic microorganisms as primary producers. To explore this spring ecosystem, we assessed its microbial diversity and analysed whether and how the diversity varied between the amphipods and the spring water, and if was dependent on environmental factors and geological settings. Isolated DNA from spring water and from amphipods was analysed using metabarcoding methods, targeting the 16S rRNA gene. Two genera of bacteria, Halomonas and Shewanella were dominating in the amphipod samples in terms of relative abundance, but not in the groundwater samples where Flavobacterium, Pseudomonas and Alkanindiges among others were dominating. The richness of the bacteria taxa in the microbial community of the groundwater spring sources was shaped by pH level and the beta diversity was shaped by geographic locations.
Collapse
Affiliation(s)
| | - Agnes-Katharina Kreiling
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- Department of Aquaculture and Fish Biology, Hólar University, Sauðárkrókur, Iceland
| | | | - Viggó Þór Marteinsson
- Matis ohf./Icelandic Food and Biotech R&D, Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavík, Iceland
| | - Snæbjörn Pálsson
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
15
|
High-Level Abundances of Methanobacteriales and Syntrophobacterales May Help To Prevent Corrosion of Metal Sheet Piles. Appl Environ Microbiol 2019; 85:AEM.01369-19. [PMID: 31420342 DOI: 10.1128/aem.01369-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/11/2019] [Indexed: 11/20/2022] Open
Abstract
Iron sheet piles are widely used in flood protection, dike construction, and river bank reinforcement. Their corrosion leads to gradual deterioration and often makes replacement necessary. Natural deposit layers on these sheet piles can prevent degradation and significantly increase their life span. However, little is known about the mechanisms of natural protective layer formation. Here, we studied the microbially diverse populations of corrosion-protective deposit layers on iron sheet piles at the Gouderak pumping station in Zuid-Holland, the Netherlands. Deposit layers, surrounding sediment and top sediment samples were analyzed for soil physicochemical parameters, microbially diverse populations, and metabolic potential. Methanogens appeared to be enriched 18-fold in the deposit layers. After sequencing, metagenome assembly and binning, we obtained four nearly complete draft genomes of microorganisms (Methanobacteriales, two Coriobacteriales, and Syntrophobacterales) that were highly enriched in the deposit layers, strongly indicating a potential role in corrosion protection. Coriobacteriales and Syntrophobacterales could be part of a microbial food web degrading organic matter to supply methanogenic substrates. Methane-producing Methanobacteriales could metabolize iron, which may initially lead to mild corrosion but potentially stimulates the formation of a carbonate-rich protective deposit layer in the long term. In addition, Methanobacteriales and Coriobacteriales have the potential to interact with metal surfaces via direct interspecies or extracellular electron transfer. In conclusion, our study provides valuable insights into microbial populations involved in iron corrosion protection and potentially enables the development of novel strategies for in situ screening of iron sheet piles in order to reduce risks and develop more sustainable replacement practices.IMPORTANCE Iron sheet piles are widely used to reinforce dikes and river banks. Damage due to iron corrosion poses a significant safety risk and has significant economic impact. Different groups of microorganisms are known to either stimulate or inhibit the corrosion process. Recently, natural corrosion-protective deposit layers were found on sheet piles. Analyses of the microbial composition indicated a potential role for methane-producing archaea. However, the full metabolic potential of the microbial communities within these protective layers has not been determined. The significance of this work lies in the reconstruction of the microbial food web of natural corrosion-protective layers isolated from noncorroding metal sheet piles. With this work, we provide insights into the microbiological mechanisms that potentially promote corrosion protection in freshwater ecosystems. Our findings could support the development of screening protocols to assess the integrity of iron sheet piles to decide whether replacement is required.
Collapse
|
16
|
Kujala K, Mikkonen A, Saravesi K, Ronkanen AK, Tiirola M. Microbial diversity along a gradient in peatlands treating mining-affected waters. FEMS Microbiol Ecol 2019; 94:5066165. [PMID: 30137344 DOI: 10.1093/femsec/fiy145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 08/02/2018] [Indexed: 01/27/2023] Open
Abstract
Peatlands are used for the purification of mining-affected waters in Northern Finland. In Northern climate, microorganisms in treatment peatlands (TPs) are affected by long and cold winters, but studies about those microorganisms are scarce. Thus, the bacterial, archaeal and fungal communities along gradients of mine water influence in two TPs were investigated. The TPs receive waters rich in contaminants, including arsenic (As), sulfate (SO42-) and nitrate (NO3-). Microbial diversity was high in both TPs, and microbial community composition differed between the studied TPs. Bacterial communities were dominated by Proteobacteria, Actinobacteria, Chloroflexi and Acidobacteria, archaeal communities were dominated by Methanomicrobia and the Candidate phylum Bathyarchaeota, and fungal communities were dominated by Ascomycota (Leotiomycetes, Dothideomycetes, Sordariomycetes). The functional potential of the bacterial and archaeal communities in TPs was predicted using PICRUSt. Sampling points affected by high concentrations of As showed higher relative abundance of predicted functions related to As resistance. Functions potentially involved in nitrogen and SO42- turnover in TPs were predicted for both TPs. The results obtained in this study indicate that (i) diverse microbial communities exist in Northern TPs, (ii) the functional potential of the peatland microorganisms is beneficial for contaminant removal in TPs and (iii) microorganisms in TPs are likely well-adapted to high contaminant concentrations as well as to the Northern climate.
Collapse
Affiliation(s)
- Katharina Kujala
- Water Resources and Environmental Engineering Research Unit, University of Oulu, PO Box 4300, FI-90014 Oulu, Finland
| | - Anu Mikkonen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, PO Box 35, FI-40014 University of Jyväskylä, Finland
| | - Karita Saravesi
- Department of Ecology and Genetics, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - Anna-Kaisa Ronkanen
- Water Resources and Environmental Engineering Research Unit, University of Oulu, PO Box 4300, FI-90014 Oulu, Finland
| | - Marja Tiirola
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, PO Box 35, FI-40014 University of Jyväskylä, Finland
| |
Collapse
|
17
|
Guerrero-Cruz S, Stultiens K, van Kessel MAHJ, Versantvoort W, Jetten MSM, Op den Camp HJM, Kartal B. Key Physiology of a Nitrite-Dependent Methane-Oxidizing Enrichment Culture. Appl Environ Microbiol 2019; 85:e00124-19. [PMID: 30770408 PMCID: PMC6450021 DOI: 10.1128/aem.00124-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/11/2019] [Indexed: 11/20/2022] Open
Abstract
Nitrite-dependent methane-oxidizing bacteria couple the reduction of nitrite to the oxidation of methane via a unique oxygen-producing pathway. This process is carried out by members of the genus Methylomirabilis that belong to the NC10 phylum. Contrary to other known anaerobic methane oxidizers, they do not employ the reverse methanogenesis pathway for methane activation but instead a canonical particulate methane monooxygenase similar to those used by aerobic methanotrophs. Methylomirabilis-like bacteria are detected in many natural and manmade ecosystems, but their physiology is not well understood. Here, using continuous cultivation techniques, batch activity assays, and state-of-the-art membrane-inlet mass spectrometry, we determined growth rate, doubling time, and methane and nitrite affinities of the nitrite-dependent methane-oxidizing bacterium "Candidatus Methylomirabilis lanthanidiphila." Our results provide insight into understanding the interactions of these microorganisms with methanotrophs and other nitrite-reducing microorganisms, such as anaerobic ammonium-oxidizing bacteria. Furthermore, our data can be used in modeling studies as well as wastewater treatment plant design.IMPORTANCE Methane is an important greenhouse gas with a radiative forcing 28 times that of carbon dioxide over a 100-year time scale. The emission of methane to the atmosphere is controlled by aerobic and anaerobic methanotrophs, which are microorganisms that are able to oxidize methane to conserve energy. While aerobic methanotrophs have been studied for over a century, knowledge on the physiological characteristics of anaerobic methanotrophs is scarce. Here, we describe kinetic properties of "Candidatus Methylomirabilis lanthanidiphila," a nitrite-dependent methane-oxidizing microorganism, which is ecologically important and can be applied in wastewater treatment.
Collapse
Affiliation(s)
- Simon Guerrero-Cruz
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Karin Stultiens
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | | | - Wouter Versantvoort
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| | - Mike S M Jetten
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
- Soehngen Institute of Anaerobic Microbiology, Nijmegen, the Netherlands
| | | | - Boran Kartal
- Department of Microbiology, IWWR, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
18
|
Peoples LM, Grammatopoulou E, Pombrol M, Xu X, Osuntokun O, Blanton J, Allen EE, Nunnally CC, Drazen JC, Mayor DJ, Bartlett DH. Microbial Community Diversity Within Sediments from Two Geographically Separated Hadal Trenches. Front Microbiol 2019; 10:347. [PMID: 30930856 PMCID: PMC6428765 DOI: 10.3389/fmicb.2019.00347] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Abstract
Hadal ocean sediments, found at sites deeper than 6,000 m water depth, are thought to contain microbial communities distinct from those at shallower depths due to high hydrostatic pressures and higher abundances of organic matter. These communities may also differ from one other as a result of geographical isolation. Here we compare microbial community composition in surficial sediments of two hadal environments—the Mariana and Kermadec trenches—to evaluate microbial biogeography at hadal depths. Sediment microbial consortia were distinct between trenches, with higher relative sequence abundances of taxa previously correlated with organic matter degradation present in the Kermadec Trench. In contrast, the Mariana Trench, and deeper sediments in both trenches, were enriched in taxa predicted to break down recalcitrant material and contained other uncharacterized lineages. At the 97% similarity level, sequence-abundant taxa were not trench-specific and were related to those found in other hadal and abyssal habitats, indicating potential connectivity between geographically isolated sediments. Despite the diversity of microorganisms identified using culture-independent techniques, most isolates obtained under in situ pressures were related to previously identified piezophiles. Members related to these same taxa also became dominant community members when native sediments were incubated under static, long-term, unamended high-pressure conditions. Our results support the hypothesis that there is connectivity between sediment microbial populations inhabiting the Mariana and Kermadec trenches while showing that both whole communities and specific microbial lineages vary between trench of collection and sediment horizon depth. This in situ biodiversity is largely missed when incubating samples within pressure vessels and highlights the need for revised protocols for high-pressure incubations.
Collapse
Affiliation(s)
- Logan M Peoples
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Eleanna Grammatopoulou
- Oceanlab, The Institute of Biological and Environmental Sciences, King's College, The University of Aberdeen, Aberdeen, United Kingdom
| | - Michelle Pombrol
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Xiaoxiong Xu
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Oladayo Osuntokun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Jessica Blanton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Eric E Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Clifton C Nunnally
- Louisiana Universities Marine Consortium (LUMCON), Chauvin, LA, United States
| | - Jeffrey C Drazen
- Department of Oceanography, University of Hawai'i at Ma-noa, Honolulu, HI, United States
| | - Daniel J Mayor
- Oceanlab, The Institute of Biological and Environmental Sciences, King's College, The University of Aberdeen, Aberdeen, United Kingdom.,National Oceanography Centre, University of Southampton Waterfront Campus European Way, Southampton, United Kingdom
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
19
|
Horton DJ, Cooper MJ, Wing AJ, Kourtev PS, Uzarski DG, Learman DR. Microbial subnetworks related to short-term diel O2 fluxes within geochemically distinct freshwater wetlands. FEMS Microbiol Lett 2018; 365:5184454. [PMID: 30445437 DOI: 10.1093/femsle/fny269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/12/2018] [Indexed: 01/21/2023] Open
Abstract
Oxygen (O2) concentrations often fluctuate over diel timescales within wetlands, driven by temperature, sunlight, photosynthesis and respiration. These daily fluxes have been shown to impact biogeochemical transformations (e.g. denitrification), which are mediated by the residing microbial community. However, little is known about how resident microbial communities respond to diel physical and chemical fluxes in freshwater wetland ecosystems. In this study, total microbial (bacterial and archaeal) community structure was significantly related to diel time points in just one out of four distinct freshwater wetlands sampled. This suggests that daily environmental shifts may influence wetlands differentially based upon the resident microbial community and specific physical and chemical conditions of a freshwater wetland. When exploring the microbial communities within each wetland at finer resolutions, subcommunities of taxa within two wetlands were found to correspond to fluctuating O2 levels. Microbial taxa that were found to be susceptible to fluctuating O2 levels within these subnetworks may have intimate ties to metabolism and/or diel redox cycles. This study highlights that freshwater wetland microbial communities are often stable in community structure when confronted with short-term O2 fluxes; however, specialist taxa may be sensitive to these same fluxes.
Collapse
Affiliation(s)
- Dean J Horton
- Institute for Great Lakes Research, CMU Biological Station, and Department of Biology, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Matthew J Cooper
- Mary Griggs Burke Center for Freshwater Innovation, Northland College, Ashland, WI 54806, USA
| | - Anthony J Wing
- Institute for Great Lakes Research, CMU Biological Station, and Department of Biology, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Peter S Kourtev
- Institute for Great Lakes Research, CMU Biological Station, and Department of Biology, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Donald G Uzarski
- Institute for Great Lakes Research, CMU Biological Station, and Department of Biology, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Deric R Learman
- Institute for Great Lakes Research, CMU Biological Station, and Department of Biology, Central Michigan University, Mt. Pleasant, MI 48859, USA
| |
Collapse
|
20
|
Smith GJ, Angle JC, Solden LM, Borton MA, Morin TH, Daly RA, Johnston MD, Stefanik KC, Wolfe R, Gil B, Wrighton KC. Members of the Genus Methylobacter Are Inferred To Account for the Majority of Aerobic Methane Oxidation in Oxic Soils from a Freshwater Wetland. mBio 2018; 9:e00815-18. [PMID: 30401770 PMCID: PMC6222125 DOI: 10.1128/mbio.00815-18] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/01/2018] [Indexed: 11/20/2022] Open
Abstract
Microbial carbon degradation and methanogenesis in wetland soils generate a large proportion of atmospheric methane, a highly potent greenhouse gas. Despite their potential to mitigate greenhouse gas emissions, knowledge about methane-consuming methanotrophs is often limited to lower-resolution single-gene surveys that fail to capture the taxonomic and metabolic diversity of these microorganisms in soils. Here our objective was to use genome-enabled approaches to investigate methanotroph membership, distribution, and in situ activity across spatial and seasonal gradients in a freshwater wetland near Lake Erie. 16S rRNA gene analyses demonstrated that members of the methanotrophic Methylococcales were dominant, with the dominance largely driven by the relative abundance of four taxa, and enriched in oxic surface soils. Three methanotroph genomes from assembled soil metagenomes were assigned to the genus Methylobacter and represented the most abundant methanotrophs across the wetland. Paired metatranscriptomes confirmed that these Old Woman Creek (OWC) Methylobacter members accounted for nearly all the aerobic methanotrophic activity across two seasons. In addition to having the capacity to couple methane oxidation to aerobic respiration, these new genomes encoded denitrification potential that may sustain energy generation in soils with lower dissolved oxygen concentrations. We further show that Methylobacter members that were closely related to the OWC members were present in many other high-methane-emitting freshwater and soil sites, suggesting that this lineage could participate in methane consumption in analogous ecosystems. This work contributes to the growing body of research suggesting that Methylobacter may represent critical mediators of methane fluxes in freshwater saturated sediments and soils worldwide.IMPORTANCE Here we used soil metagenomics and metatranscriptomics to uncover novel members within the genus Methylobacter We denote these closely related genomes as members of the lineage OWC Methylobacter Despite the incredibly high microbial diversity in soils, here we present findings that unexpectedly showed that methane cycling was primarily mediated by a single genus for both methane production ("Candidatus Methanothrix paradoxum") and methane consumption (OWC Methylobacter). Metatranscriptomic analyses revealed that decreased methanotrophic activity rather than increased methanogenic activity possibly contributed to the greater methane emissions that we had previously observed in summer months, findings important for biogeochemical methane models. Although members of this Methylococcales order have been cultivated for decades, multi-omic approaches continue to illuminate the methanotroph phylogenetic and metabolic diversity harbored in terrestrial and marine ecosystems.
Collapse
Affiliation(s)
- Garrett J Smith
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Jordan C Angle
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Lindsey M Solden
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Mikayla A Borton
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
- Environmental Science Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Timothy H Morin
- Department of Environmental Resources Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Rebecca A Daly
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Michael D Johnston
- National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Kay C Stefanik
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Civil and Environmental Engineering and Geodetic Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Richard Wolfe
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Bohrer Gil
- Environmental Science Graduate Program, The Ohio State University, Columbus, Ohio, USA
- Department of Civil and Environmental Engineering and Geodetic Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Kelly C Wrighton
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
- Environmental Science Graduate Program, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
21
|
Narrowe AB, Spang A, Stairs CW, Caceres EF, Baker BJ, Miller CS, Ettema TJG. Complex Evolutionary History of Translation Elongation Factor 2 and Diphthamide Biosynthesis in Archaea and Parabasalids. Genome Biol Evol 2018; 10:2380-2393. [PMID: 30060184 PMCID: PMC6143161 DOI: 10.1093/gbe/evy154] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
Diphthamide is a modified histidine residue which is uniquely present in archaeal and eukaryotic elongation factor 2 (EF-2), an essential GTPase responsible for catalyzing the coordinated translocation of tRNA and mRNA through the ribosome. In part due to the role of diphthamide in maintaining translational fidelity, it was previously assumed that diphthamide biosynthesis genes (dph) are conserved across all eukaryotes and archaea. Here, comparative analysis of new and existing genomes reveals that some archaea (i.e., members of the Asgard superphylum, Geoarchaea, and Korarchaeota) and eukaryotes (i.e., parabasalids) lack dph. In addition, while EF-2 was thought to exist as a single copy in archaea, many of these dph-lacking archaeal genomes encode a second EF-2 paralog missing key residues required for diphthamide modification and for normal translocase function, perhaps suggesting functional divergence linked to loss of diphthamide biosynthesis. Interestingly, some Heimdallarchaeota previously suggested to be most closely related to the eukaryotic ancestor maintain dph genes and a single gene encoding canonical EF-2. Our findings reveal that the ability to produce diphthamide, once thought to be a universal feature in archaea and eukaryotes, has been lost multiple times during evolution, and suggest that anticipated compensatory mechanisms evolved independently.
Collapse
Affiliation(s)
- Adrienne B Narrowe
- Department of Integrative Biology, University of Colorado Denver, Denver
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, AB Den Burg, The Netherlands
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Courtney W Stairs
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Eva F Caceres
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Brett J Baker
- Department of Marine Science, Marine Science Institute, University of Texas Austin, Port Aransas
| | | | - Thijs J G Ettema
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Sweden
| |
Collapse
|
22
|
Li Q, Liu C, Wang X, Jin Z, Song A, Liang Y, Cao J, Müller WEG. Influence of Altered Microbes on Soil Organic Carbon Availability in Karst Agricultural Soils Contaminated by Pb-Zn Tailings. Front Microbiol 2018; 9:2062. [PMID: 30233539 PMCID: PMC6127319 DOI: 10.3389/fmicb.2018.02062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
Soil organic carbon (SOC) availability is determined via a complex bio-mediated process, and Pb-Zn tailings are toxic to the soil microbes that are involved in this process. Here, Pb-Zn-tailings- contaminated karst soils with different levels (paddy field > corn field > citrus field > control group) were collected to explore the intrinsic relationship between Pb-Zn tailings and microbes due to the limited microbial abundance in these soils. The SOC concentration in the paddy fields is the highest. However, based on the soil microbial diversity and sole-carbon-source utilization profiles, the rate of SOC availability, McIntosh index, Shannon-Wiener diversity index, Simpson's diversity index and species richness are the lowest in the rice paddy soils. According to the results of Illumina sequencing of the 16S rRNA gene, Acidobacteria and Proteobacteria are the dominant phyla in all samples, accounting for more than 70% of the reads, while the majority of the remaining reads belong to the phyla Verrucomicrobia, Chloroflexi, Actinobacteria, Bacteroidetes, and Nitrospirae. We also observed that their class, order, family, genus and operational taxonomic units (OTUs) were dependent on SOC availability. Pearson correlation analysis reveals that L-asparagine utilization profiles show significant positive correlation with OTUs 24, 75, and 109 (r = 0.383, 0.350, and 0.292, respectively), and malic acid utilization profiles show significant positive correlation with OTUs 4, 5, 19, 27 (Bradyrhizobium), 32 (Burkholderia), 75 and 109 (r = 0.286, 0.361, 0.387, 0.384, 0.363, 0.285, and 0.301, respectively), as also evidenced by the redundancy analysis (RDA) biplot and heat map. These results indicate that the most abundant groups of bacteria, especially the uncultured facultative Deltaproteobacteria GR-WP33-30 (OTU 24), after long-term acclimation in heavy metal-contaminated soil, are associated with the variance of labile carbon source such as L-asparagine and may have considerable control over the stability of the vast SOC pool in karst surface soils with different agricultural land-use practices. These findings can expand our understanding of global soil-carbon sequestration and storage via changes in microbial community structure of the most abundant species.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Karst Dynamics, Ministry of Land and Resources & Guangxi Zhuang Autonomous Region, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China
- The International Research Center on Karst under the Auspices of UNESCO, Guilin, China
| | - Chang Liu
- Key Laboratory of Karst Dynamics, Ministry of Land and Resources & Guangxi Zhuang Autonomous Region, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Zhenjiang Jin
- Environmental Sciences and Engineering College, Guilin University of Technology, Guilin, China
| | - Ang Song
- Key Laboratory of Karst Dynamics, Ministry of Land and Resources & Guangxi Zhuang Autonomous Region, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China
| | - Yueming Liang
- Key Laboratory of Karst Dynamics, Ministry of Land and Resources & Guangxi Zhuang Autonomous Region, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China
| | - Jianhua Cao
- Key Laboratory of Karst Dynamics, Ministry of Land and Resources & Guangxi Zhuang Autonomous Region, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China
- The International Research Center on Karst under the Auspices of UNESCO, Guilin, China
| | - Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
23
|
in ‘t Zandt MH, de Jong AEE, Slomp CP, Jetten MSM. The hunt for the most-wanted chemolithoautotrophic spookmicrobes. FEMS Microbiol Ecol 2018; 94:4966976. [PMID: 29873717 PMCID: PMC5989612 DOI: 10.1093/femsec/fiy064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 11/16/2022] Open
Abstract
Microorganisms are the drivers of biogeochemical methane and nitrogen cycles. Essential roles of chemolithoautotrophic microorganisms in these cycles were predicted long before their identification. Dedicated enrichment procedures, metagenomics surveys and single-cell technologies have enabled the identification of several new groups of most-wanted spookmicrobes, including novel methoxydotrophic methanogens that produce methane from methylated coal compounds and acetoclastic 'Candidatus Methanothrix paradoxum', which is active in oxic soils. The resultant energy-rich methane can be oxidized via a suite of electron acceptors. Recently, 'Candidatus Methanoperedens nitroreducens' ANME-2d archaea and 'Candidatus Methylomirabilis oxyfera' bacteria were enriched on nitrate and nitrite under anoxic conditions with methane as an electron donor. Although 'Candidatus Methanoperedens nitroreducens' and other ANME archaea can use iron citrate as an electron acceptor in batch experiments, the quest for anaerobic methane oxidizers that grow via iron reduction continues. In recent years, the nitrogen cycle has been expanded by the discovery of various ammonium-oxidizing prokaryotes, including ammonium-oxidizing archaea, versatile anaerobic ammonium-oxidizing (anammox) bacteria and complete ammonium-oxidizing (comammox) Nitrospira bacteria. Several biogeochemical studies have indicated that ammonium conversion occurs under iron-reducing conditions, but thus far no microorganism has been identified. Ultimately, iron-reducing and sulfate-dependent ammonium-oxidizing microorganisms await discovery.
Collapse
Affiliation(s)
- Michiel H in ‘t Zandt
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Anniek EE de Jong
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Caroline P Slomp
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
- Department of Earth Sciences, Geochemistry, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| | - Mike SM Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
24
|
Rice Paddy Nitrospirae Carry and Express Genes Related to Sulfate Respiration: Proposal of the New Genus "Candidatus Sulfobium". Appl Environ Microbiol 2018; 84:AEM.02224-17. [PMID: 29247059 PMCID: PMC5812927 DOI: 10.1128/aem.02224-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 12/08/2017] [Indexed: 01/16/2023] Open
Abstract
Nitrospirae spp. distantly related to thermophilic, sulfate-reducing Thermodesulfovibrio species are regularly observed in environmental surveys of anoxic marine and freshwater habitats. Here we present a metaproteogenomic analysis of Nitrospirae bacterium Nbg-4 as a representative of this clade. Its genome was assembled from replicated metagenomes of rice paddy soil that was used to grow rice in the presence and absence of gypsum (CaSO4·2H2O). Nbg-4 encoded the full pathway of dissimilatory sulfate reduction and showed expression of this pathway in gypsum-amended anoxic bulk soil as revealed by parallel metaproteomics. In addition, Nbg-4 encoded the full pathway of dissimilatory nitrate reduction to ammonia (DNRA), with expression of its first step being detected in bulk soil without gypsum amendment. The relative abundances of Nbg-4 were similar under both treatments, indicating that Nbg-4 maintained stable populations while shifting its energy metabolism. Whether Nbg-4 is a strict sulfate reducer or can couple sulfur oxidation to DNRA by operating the pathway of dissimilatory sulfate reduction in reverse could not be resolved. Further genome reconstruction revealed the potential to utilize butyrate, formate, H2, or acetate as an electron donor; the Wood-Ljungdahl pathway was expressed under both treatments. Comparison to publicly available Nitrospirae genome bins revealed the pathway for dissimilatory sulfate reduction also in related Nitrospirae recovered from groundwater. Subsequent phylogenomics showed that such microorganisms form a novel genus within the Nitrospirae, with Nbg-4 as a representative species. Based on the widespread occurrence of this novel genus, we propose for Nbg-4 the name “Candidatus Sulfobium mesophilum,” gen. nov., sp. nov. IMPORTANCE Rice paddies are indispensable for the food supply but are a major source of the greenhouse gas methane. If it were not counterbalanced by cryptic sulfur cycling, methane emission from rice paddy fields would be even higher. However, the microorganisms involved in this sulfur cycling are little understood. By using an environmental systems biology approach with Italian rice paddy soil, we could retrieve the population genome of a novel member of the phylum Nitrospirae. This microorganism encoded the full pathway of dissimilatory sulfate reduction and expressed it in anoxic paddy soil under sulfate-enriched conditions. Phylogenomics and comparison to the results of environmental surveys showed that such microorganisms are actually widespread in freshwater and marine environments. At the same time, they represent an undiscovered genus within the little-explored phylum Nitrospirae. Our results will be important for the design of enrichment strategies and postgenomic studies to further understanding of the contribution of these novel Nitrospirae spp. to the global sulfur cycle.
Collapse
|
25
|
Winkel M, Mitzscherling J, Overduin PP, Horn F, Winterfeld M, Rijkers R, Grigoriev MN, Knoblauch C, Mangelsdorf K, Wagner D, Liebner S. Anaerobic methanotrophic communities thrive in deep submarine permafrost. Sci Rep 2018; 8:1291. [PMID: 29358665 PMCID: PMC5778128 DOI: 10.1038/s41598-018-19505-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/22/2017] [Indexed: 11/09/2022] Open
Abstract
Thawing submarine permafrost is a source of methane to the subsurface biosphere. Methane oxidation in submarine permafrost sediments has been proposed, but the responsible microorganisms remain uncharacterized. We analyzed archaeal communities and identified distinct anaerobic methanotrophic assemblages of marine and terrestrial origin (ANME-2a/b, ANME-2d) both in frozen and completely thawed submarine permafrost sediments. Besides archaea potentially involved in anaerobic oxidation of methane (AOM) we found a large diversity of archaea mainly belonging to Bathyarchaeota, Thaumarchaeota, and Euryarchaeota. Methane concentrations and δ13C-methane signatures distinguish horizons of potential AOM coupled either to sulfate reduction in a sulfate-methane transition zone (SMTZ) or to the reduction of other electron acceptors, such as iron, manganese or nitrate. Analysis of functional marker genes (mcrA) and fluorescence in situ hybridization (FISH) corroborate potential activity of AOM communities in submarine permafrost sediments at low temperatures. Modeled potential AOM consumes 72-100% of submarine permafrost methane and up to 1.2 Tg of carbon per year for the total expected area of submarine permafrost. This is comparable with AOM habitats such as cold seeps. We thus propose that AOM is active where submarine permafrost thaws, which should be included in global methane budgets.
Collapse
Affiliation(s)
- Matthias Winkel
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, 14473, Potsdam, Germany.
| | - Julia Mitzscherling
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, 14473, Potsdam, Germany
| | - Pier P Overduin
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Periglacial Research, 14473, Potsdam, Germany
| | - Fabian Horn
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, 14473, Potsdam, Germany
| | - Maria Winterfeld
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Marine Geochemistry, 27570, Bremerhaven, Germany
| | - Ruud Rijkers
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, 14473, Potsdam, Germany
| | | | | | - Kai Mangelsdorf
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 3.2 Organic Geochemistry, 14473, Potsdam, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, 14473, Potsdam, Germany
| | - Susanne Liebner
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3 Geomicrobiology, 14473, Potsdam, Germany
| |
Collapse
|
26
|
Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nat Commun 2017; 8:1567. [PMID: 29146959 PMCID: PMC5691036 DOI: 10.1038/s41467-017-01753-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/11/2017] [Indexed: 01/04/2023] Open
Abstract
The current paradigm, widely incorporated in soil biogeochemical models, is that microbial methanogenesis can only occur in anoxic habitats. In contrast, here we show clear geochemical and biological evidence for methane production in well-oxygenated soils of a freshwater wetland. A comparison of oxic to anoxic soils reveal up to ten times greater methane production and nine times more methanogenesis activity in oxygenated soils. Metagenomic and metatranscriptomic sequencing recover the first near-complete genomes for a novel methanogen species, and show acetoclastic production from this organism was the dominant methanogenesis pathway in oxygenated soils. This organism, Candidatus Methanothrix paradoxum, is prevalent across methane emitting ecosystems, suggesting a global significance. Moreover, in this wetland, we estimate that up to 80% of methane fluxes could be attributed to methanogenesis in oxygenated soils. Together, our findings challenge a widely held assumption about methanogenesis, with significant ramifications for global methane estimates and Earth system modeling.
Collapse
|
27
|
Vaksmaa A, van Alen TA, Ettwig KF, Lupotto E, Valè G, Jetten MSM, Lüke C. Stratification of Diversity and Activity of Methanogenic and Methanotrophic Microorganisms in a Nitrogen-Fertilized Italian Paddy Soil. Front Microbiol 2017; 8:2127. [PMID: 29180985 PMCID: PMC5693880 DOI: 10.3389/fmicb.2017.02127] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/18/2017] [Indexed: 11/30/2022] Open
Abstract
Paddy fields are important ecosystems, as rice is the primary food source for about half of the world's population. Paddy fields are impacted by nitrogen fertilization and are a major anthropogenic source of methane. Microbial diversity and methane metabolism were investigated in the upper 60 cm of a paddy soil by qPCR, 16S rRNA gene amplicon sequencing and anoxic 13C-CH4 turnover with a suite of electron acceptors. The bacterial community consisted mainly of Acidobacteria, Chloroflexi, Proteobacteria, Planctomycetes, and Actinobacteria. Among archaea, Euryarchaeota and Bathyarchaeota dominated over Thaumarchaeota in the upper 30 cm of the soil. Bathyarchaeota constituted up to 45% of the total archaeal reads in the top 5 cm. In the methanogenic community, Methanosaeta were generally more abundant than the versatile Methanosarcina. The measured maximum methane production rate was 444 nmol gdwh-1, and the maximum rates of nitrate-, nitrite-, and iron-dependent anaerobic oxidation of methane (AOM) were 57 nmol, 55 nmol, and 56 nmol gdwh-1, respectively, at different depths. qPCR revealed a higher abundance of 'Candidatus Methanoperedens nitroreducens' than methanotrophic NC10 phylum bacteria at all depths, except at 60 cm. These results demonstrate that there is substantial potential for AOM in fertilized paddy fields, with 'Candidatus Methanoperedens nitroreducens' archaea as a potential important contributor.
Collapse
Affiliation(s)
- Annika Vaksmaa
- Department of Microbiology – Institute of Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Theo A. van Alen
- Department of Microbiology – Institute of Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Katharina F. Ettwig
- Department of Microbiology – Institute of Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Elisabetta Lupotto
- Research Centre for Food and Nutrition, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| | - Giampiero Valè
- Research Centre for Cereal and Industrial Crops, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Mike S. M. Jetten
- Department of Microbiology – Institute of Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Claudia Lüke
- Department of Microbiology – Institute of Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
28
|
Danovaro R, Rastelli E, Corinaldesi C, Tangherlini M, Dell'Anno A. Marine archaea and archaeal viruses under global change. F1000Res 2017; 6:1241. [PMID: 29034077 PMCID: PMC5532796 DOI: 10.12688/f1000research.11404.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2017] [Indexed: 01/08/2023] Open
Abstract
Global change is altering oceanic temperature, salinity, pH, and oxygen concentration, directly and indirectly influencing marine microbial food web structure and function. As microbes represent >90% of the ocean’s biomass and are major drivers of biogeochemical cycles, understanding their responses to such changes is fundamental for predicting the consequences of global change on ecosystem functioning. Recent findings indicate that marine archaea and archaeal viruses are active and relevant components of marine microbial assemblages, far more abundant and diverse than was previously thought. Further research is urgently needed to better understand the impacts of global change on virus–archaea dynamics and how archaea and their viruses can interactively influence the ocean’s feedbacks on global change.
Collapse
Affiliation(s)
- Roberto Danovaro
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy.,Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Eugenio Rastelli
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy.,Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cinzia Corinaldesi
- Department of Sciences and Engineering of Materials, Environment and Urbanistics, Polytechnic University of Marche, Ancona, Italy
| | - Michael Tangherlini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|