1
|
Lipus D, Jia Z, Sondermann M, Bussert R, Bartholomäus A, Yang S, Wagner D, Kallmeyer J. Microbial diversity and biogeochemical interactions in the seismically active and CO 2- rich Eger Rift ecosystem. ENVIRONMENTAL MICROBIOME 2024; 19:113. [PMID: 39722025 DOI: 10.1186/s40793-024-00651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 12/01/2024] [Indexed: 12/28/2024]
Abstract
The Eger Rift subsurface is characterized by frequent seismic activity and consistently high CO2 concentrations, making it a unique deep biosphere ecosystem and a suitable site to study the interactions between volcanism, tectonics, and microbiological activity. Pulses of geogenic H2 during earthquakes may provide substrates for methanogenic and chemolithoautotrophic processes, but very little is currently known about the role of subsurface microorganisms and their cellular processes in this type of environment. To assess the impact of geologic activity on microbial life, we analyzed the geological, geochemical, and microbiological composition of rock and sediment samples from a 238 m deep drill core, running across six lithostratigraphic zones. We evaluated the diversity and distribution of bacterial and archaeal communities. Our investigation revealed a distinct low-biomass community, with a surprisingly diverse archaeal population, providing strong support that methanogenic archaea reside in the Eger subsurface. Geochemical analysis demonstrated that ion concentrations (mostly sodium and sulfate) were highest in sediments from 50 to 100 m depth and in weathered rock below 200 m, indicating an elevated potential for ion solution in these areas. Microbial communities were dominated by common soil and water bacteria. Together with the occurrence of freshwater cyanobacteria at specific depths, these observations emphasize the heterogenous character of the sediments and are indicators for vertical groundwater movement across the Eger Rift subsurface. Our investigations also found evidence for anaerobic, autotrophic, and acidophilic communities in Eger Rift sediments, as sulfur-cycling taxa like Thiohalophilus and Desulfosporosinus were specifically enriched at depths below 100 m. The detection of methanogenic, halophilic, and ammonia-oxidizing archaeal populations demonstrate that the unique features of the Eger Rift subsurface environment provide the foundation for diverse types of microbial life, including the microbial utilization of geologically derived CO2 and, when available, H2, as a primary energy source.
Collapse
Affiliation(s)
- Daniel Lipus
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany.
- Department of Biological and Chemical Sciences, College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Zeyu Jia
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Megan Sondermann
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Robert Bussert
- Section Applied Geochemistry, Institute of Applied Geosciences, Technische Universität Berlin, Berlin, Germany
| | | | - Sizhong Yang
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
- University of Potsdam, Institute of Geosciences, Potsdam, Germany
| | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| |
Collapse
|
2
|
Song X, Li C, Qiu Z, Wang C, Zeng Q. Ecotoxicological effects of polyethylene microplastics and lead (Pb) on the biomass, activity, and community diversity of soil microbes. ENVIRONMENTAL RESEARCH 2024; 252:119012. [PMID: 38704010 DOI: 10.1016/j.envres.2024.119012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Microplastics and heavy metals are ubiquitous and persistent contaminants that are widely distributed worldwide, yet little is known about the effects of their interaction on soil ecosystems. A soil incubation experiment was conducted to investigate the individual and combined effects of polyethylene microplastics (PE-MPs) and lead (Pb) on soil enzymatic activities, microbial biomass, respiration rate, and community diversity. The results indicate that the presence of PE-MPs notably reduced soil pH and elevated soil Pb bioavailability, potentially exacerbated the combined toxicity on the biogeochemical cycles of soil nutrients, microbial biomass carbon and nitrogen, and the activities of soil urease, sucrase, and alkaline phosphatase. Soil CO2 emissions increased by 7.9% with PE-MPs alone, decreased by 46.3% with single Pb, and reduced by 69.4% with PE-MPs and Pb co-exposure, compared to uncontaminated soils. Specifically, the presence of PE-MPs and Pb, individually and in combination, facilitated the soil metabolic quotient, leading to reduced microbial metabolic efficiency. Moreover, the addition of Pb and PE-MPs modified the composition of the microbial community, leading to the enrichment of specific taxa. Tax4Fun analysis showed the effects of Pb, PE-MPs and their combination on the biogeochemical processes and ecological functions of microbes were mainly by altering amino acid metabolism, carbohydrate metabolism, membrane transport, and signal transduction. These findings offer valuable insights into the ecotoxicological effects of combined PE-MPs and Pb on soil microbial dynamics, reveals key assembly mechanisms and environmental drivers, and highlights the potential threat of MPs and heavy metals to the multifunctionality of soil ecosystems.
Collapse
Affiliation(s)
- Xiliang Song
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Changjiang Li
- School of Environment Science & Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China
| | - Zhennan Qiu
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Chenghui Wang
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Qiangcheng Zeng
- College of Life Sciences, Dezhou University, De'zhou, 253023, China.
| |
Collapse
|
3
|
Tyagi I, Tyagi K, Gupta V, Dutta R, Singhvi N, Kumar V, Bhutiani R, Prakash O. Microbial diversity characterizations, associated pathogenesis and antimicrobial resistance profiling of Najafgarh drain. ENVIRONMENTAL RESEARCH 2023; 238:117140. [PMID: 37716389 DOI: 10.1016/j.envres.2023.117140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
The Najafgarh drain plays a significant role in the pollution of the Yamuna River, accounting for 40% of the total pollution. Therefore, it is crucial to investigate and analyze the microbial diversity, metabolic functional capacity, and antibiotic resistance genes (ARGs) present in the Najafgarh drain. Additionally, studying the water quality and its relationship with the proliferation of microorganisms in the drain is of utmost importance. Results obtained confirmed the deteriorated water quality as physico-chemical parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO), and total suspended solids (TSS) in the range of 125-140, 400-460, 0-0.2, 25-140.4 mg/l respectively violated the standard permissible national and global standards. In addition, the next generation sequencing (NGS) analysis confirm the presence of genus such as Thauera, Arcobacter, Pseudomonas, Geobacter, Dechloromonas, Tolumonas, Sulfurospirullum, Desulfovibrio, Aeromonas, Bacteroides, Prevotella, Cloacibacterium, Bifidobacterium, Clostridium etc. along with 864 ARGs in the wastewater obtained from the Najafgarh drain. Findings confirm that the pathogenic species reported from this dataset possess severe detrimental impact on faunal and human health. Further, Pearson's r correlation analysis indicated that environmental variables, mainly total dissolved solids (TDS) and chemical oxygen demand (COD), play a pivotal role in driving microbial community structure of this heavily polluted drain. Thus, the poor water quality, presence of a microbial nexus, pathogenic markers, and ARGs throughout this drain confirmed that it would be one potential contributor to the dissemination of disease-causing agents (pathogens) to the household and drinking water supplies in the near future.
Collapse
Affiliation(s)
- Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, 700 053, West Bengal, India.
| | - Koamud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, 700 053, West Bengal, India
| | - Vipin Gupta
- Ministry of Environment Forest and Climate Change, Integrated Regional Office-Dehradun, India, 248001, Uttarakhand, India
| | - Ritesh Dutta
- Kiit School of Biotechnology, Bhubaneswar, 751024, Odisha, India
| | - Nirjara Singhvi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, 700 053, West Bengal, India.
| | - Rakesh Bhutiani
- Limnology and Ecological Modelling Lab, Department of Zoology and Environmental Science, Gurukul Kangri (Deemed to be University), Haridwar, 249404, UK, India
| | - Om Prakash
- Symbiosis Centre for Climate Change and Sustainability (SCCCS), Symbiosis International (Deemed University), Lavale, Pune, 412115, Maharastra, India
| |
Collapse
|
4
|
Jia Z, Lipus D, Burckhardt O, Bussert R, Sondermann M, Bartholomäus A, Wagner D, Kallmeyer J. Enrichment of rare methanogenic Archaea shows their important ecological role in natural high-CO 2 terrestrial subsurface environments. Front Microbiol 2023; 14:1105259. [PMID: 37293225 PMCID: PMC10246774 DOI: 10.3389/fmicb.2023.1105259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/25/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Long-term stability of underground CO2 storage is partially affected by microbial activity but our knowledge of these effects is limited, mainly due to a lack of sites. A consistently high flux of mantle-derived CO2 makes the Eger Rift in the Czech Republic a natural analogue to underground CO2 storage. The Eger Rift is a seismically active region and H2 is produced abiotically during earthquakes, providing energy to indigenous microbial communities. Methods To investigate the response of a microbial ecosystem to high levels of CO2 and H2, we enriched microorganisms from samples from a 239.5 m long drill core from the Eger Rift. Microbial abundance, diversity and community structure were assessed using qPCR and 16S rRNA gene sequencing. Enrichment cultures were set up with minimal mineral media and H2/CO2 headspace to simulate a seismically active period with elevated H2. Results and discussion Methane headspace concentrations in the enrichments indicated that active methanogens were almost exclusively restricted to enrichment cultures from Miocene lacustrine deposits (50-60 m), for which we observed the most significant growth. Taxonomic assessment showed microbial communities in these enrichments to be less diverse than those with little or no growth. Active enrichments were especially abundant in methanogens of the taxa Methanobacterium and Methanosphaerula. Concurrent to the emergence of methanogenic archaea, we also observed sulfate reducers with the metabolic ability to utilize H2 and CO2, specifically the genus Desulfosporosinus, which were able to outcompete methanogens in several enrichments. Low microbial abundance and a diverse non-CO2 driven microbial community, similar to that in drill core samples, also reflect the inactivity in these cultures. Significant growth of sulfate reducing and methanogenic microbial taxa, which make up only a small fraction of the total microbial community, emphasize the need to account for rare biosphere taxa when assessing the metabolic potential of microbial subsurface populations. The observation that CO2 and H2-utilizing microorganisms could only be enriched from a narrow depth interval suggests that factors such as sediment heterogeneity may also be important. This study provides new insight on subsurface microbes under the influence of high CO2 concentrations, similar to those found in CCS sites.
Collapse
Affiliation(s)
- Zeyu Jia
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Daniel Lipus
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Oliver Burckhardt
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Robert Bussert
- Applied Geochemistry, Institute of Applied Geosciences, Technische Universität Berlin, Berlin, Germany
| | - Megan Sondermann
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | | | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
- Institute of Geosciences, University of Potsdam, Potsdam, Germany
| | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| |
Collapse
|
5
|
Park T, Yoon S, Jung J, Kwon TH. Effect of Fluid-Rock Interactions on In Situ Bacterial Alteration of Interfacial Properties and Wettability of CO 2-Brine-Mineral Systems for Geologic Carbon Storage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15355-15365. [PMID: 33186009 DOI: 10.1021/acs.est.0c05772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study explored the feasibility of biosurfactant amendment in modifying the interfacial characteristics of carbon dioxide (CO2) with rock minerals under high-pressure conditions for GCS. In particular, while varying the CO2 phase and the rock mineral, we quantitatively examined the production of biosurfactants by Bacillus subtilis and their effects on interfacial tension (IFT) and wettability in CO2-brine-mineral systems. The results demonstrated that surfactin produced by B. subtilis caused the reduction of CO2-brine IFT and modified the wettability of both quartz and calcite minerals to be more CO2-wet. The production yield of surfactin was substantially greater with the calcite mineral than with the quartz mineral. The calcite played the role of a pH buffer, consistently maintaining the brine pH above 6. By contrast, an acidic condition in CO2-brine-quartz systems caused the precipitation of surfactin, and hence surfactin lost its ability as a surface-active agent. Meanwhile, the CO2-driven mineral dissolution and precipitation in CO2-brine-calcite systems under a non-equilibrium system altered the solid substrates, produced surface roughness, and caused contact angle variations. These results provide unique experimental data on biosurfactant-mediated interfacial properties and wettability in GCS-relevant conditions, which support the exploitation of in situ biosurfactant production for biosurfactant-aided CO2 injection.
Collapse
Affiliation(s)
- Taehyung Park
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Jongwon Jung
- School of Civil Engineering, Chungbuk National University, Chungbuk 28644, Korea
| | - Tae-Hyuk Kwon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| |
Collapse
|
6
|
Abstract
Acetogens are anaerobic bacteria capable of fixing CO2 or CO to produce acetyl-CoA and ultimately acetate using the Wood-Ljungdahl pathway (WLP). This autotrophic metabolism plays a major role in the global carbon cycle and, if harnessed, can help reduce greenhouse gas emissions. Overall, the data presented here provide a framework for examining the ecology and evolution of the Acetobacterium genus and highlight the potential of these species as a source for production of fuels and chemicals from CO2 feedstocks. Acetogens are anaerobic bacteria capable of fixing CO2 or CO to produce acetyl coenzyme A (acetyl-CoA) and ultimately acetate using the Wood-Ljungdahl pathway (WLP). Acetobacterium woodii is the type strain of the Acetobacterium genus and has been critical for understanding the biochemistry and energy conservation in acetogens. Members of the Acetobacterium genus have been isolated from a variety of environments or have had genomes recovered from metagenome data, but no systematic investigation has been done on the unique and various metabolisms of the genus. To gain a better appreciation for the metabolic breadth of the genus, we sequenced the genomes of 4 isolates (A. fimetarium, A. malicum, A. paludosum, and A. tundrae) and conducted a comparative genome analysis (pan-genome) of 11 different Acetobacterium genomes. A unifying feature of the Acetobacterium genus is the carbon-fixing WLP. The methyl (cluster II) and carbonyl (cluster III) branches of the Wood-Ljungdahl pathway are highly conserved across all sequenced Acetobacterium genomes, but cluster I encoding the formate dehydrogenase is not. In contrast to A. woodii, all but four strains encode two distinct Rnf clusters, Rnf being the primary respiratory enzyme complex. Metabolism of fructose, lactate, and H2:CO2 was conserved across the genus, but metabolism of ethanol, methanol, caffeate, and 2,3-butanediol varied. Additionally, clade-specific metabolic potential was observed, such as amino acid transport and metabolism in the psychrophilic species, and biofilm formation in the A. wieringae clade, which may afford these groups an advantage in low-temperature growth or attachment to solid surfaces, respectively. IMPORTANCE Acetogens are anaerobic bacteria capable of fixing CO2 or CO to produce acetyl-CoA and ultimately acetate using the Wood-Ljungdahl pathway (WLP). This autotrophic metabolism plays a major role in the global carbon cycle and, if harnessed, can help reduce greenhouse gas emissions. Overall, the data presented here provide a framework for examining the ecology and evolution of the Acetobacterium genus and highlight the potential of these species as a source for production of fuels and chemicals from CO2 feedstocks.
Collapse
|
7
|
Abstract
Soil degradation is a global concern, decreasing the soil’s ability to perform a multitude of functions. In Europe, one of the leading causes of soil degradation is unsustainable agricultural practices. Hence, there is a need to explore alternative production systems for enhanced agronomic productivity and environmental performance, such as agroforestry systems (AFS). Given this, the objective of the study is to enumerate the major benefits and challenges in the adoption of AFS. AFS can improve agronomic productivity, carbon sequestration, nutrient cycling, soil biodiversity, water retention, and pollination. Furthermore, they can reduce soil erosion and incidence of fire and provide recreational and cultural benefits. There are several challenges to the adoption and uptake of AFS in Europe, including high costs for implementation, lack of financial incentives, limited AFS product marketing, lack of education, awareness, and field demonstrations. Policies for financial incentives such as subsidies and payments for ecosystem services provided by AFS must be introduced or amended. Awareness of AFS products must be increased for consumers through appropriate marketing strategies, and landowners need more opportunities for education on how to successfully manage diverse, economically viable AFS. Finally, field-based evidence is required for informed decision-making by farmers, advisory services, and policy-making bodies.
Collapse
|
8
|
Gulliver D, Lipus D, Ross D, Bibby K. Insights into microbial community structure and function from a shallow, simulated CO 2 -leakage aquifer demonstrate microbial selection and adaptation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:338-351. [PMID: 29984552 DOI: 10.1111/1758-2229.12675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/30/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Geological carbon storage is likely to be a part of a comprehensive strategy to minimize the atmospheric release of carbon dioxide (CO2 ), raising concerns that injected CO2 will leak into overlying freshwater aquifers. CO2(aq) leakage may impact the dominant microbial community responsible for important ecosystem functions such as nutrient cycling, metal cycling and carbon conversion. Here, we examined the impact of an experimental in situ CO2 -leakage on a freshwater aquifer microbial community. High-throughput 16S rRNA gene sequencing demonstrated lower microbial diversity in freshwater wells with CO2 concentrations above 1.15 g l-1 . Metagenomic sequencing and population genome binning were used to evaluate the metabolic potential of microbial populations across four CO2 exposed samples and one control sample. Population genome binning resulted in the recovery and annotation of three metagenome assembled genomes (MAGs). Two of the MAGs, most closely related to Curvibacter and Sulfuricurvum, had the functional capacity for CO2 utilization via carbon fixation coupled to sulfur and iron oxidation. The third draft genome was an Archaea, most closely related to Methanoregula, characterized by the metabolic potential for methanogenesis. Together, these findings show that CO2 leakage in a freshwater aquifer poses a strong selection, driving both microbial community structure and metabolic function.
Collapse
Affiliation(s)
- Djuna Gulliver
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, USA
| | - Daniel Lipus
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Daniel Ross
- National Energy Technology Laboratory (NETL), Pittsburgh, PA, USA
- AECOM, Pittsburgh, PA, USA
| | - Kyle Bibby
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, South Bend, IN, USA
| |
Collapse
|
9
|
Boock JT, Freedman AJE, Tompsett GA, Muse SK, Allen AJ, Jackson LA, Castro-Dominguez B, Timko MT, Prather KLJ, Thompson JR. Engineered microbial biofuel production and recovery under supercritical carbon dioxide. Nat Commun 2019; 10:587. [PMID: 30718495 PMCID: PMC6361901 DOI: 10.1038/s41467-019-08486-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/11/2019] [Indexed: 12/16/2022] Open
Abstract
Culture contamination, end-product toxicity, and energy efficient product recovery are long-standing bioprocess challenges. To solve these problems, we propose a high-pressure fermentation strategy, coupled with in situ extraction using the abundant and renewable solvent supercritical carbon dioxide (scCO2), which is also known for its broad microbial lethality. Towards this goal, we report the domestication and engineering of a scCO2-tolerant strain of Bacillus megaterium, previously isolated from formation waters from the McElmo Dome CO2 field, to produce branched alcohols that have potential use as biofuels. After establishing induced-expression under scCO2, isobutanol production from 2-ketoisovalerate is observed with greater than 40% yield with co-produced isopentanol. Finally, we present a process model to compare the energy required for our process to other in situ extraction methods, such as gas stripping, finding scCO2 extraction to be potentially competitive, if not superior.
Collapse
Affiliation(s)
- Jason T Boock
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemical, Paper, and Biomedical Engineering, Miami University, Oxford, OH, 45056, USA
| | - Adam J E Freedman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Geoffrey A Tompsett
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Sarah K Muse
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Audrey J Allen
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Luke A Jackson
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Bernardo Castro-Dominguez
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Michael T Timko
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Janelle R Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
10
|
Reconstruction of the Genomes of Drug-Resistant Pathogens for Outbreak Investigation through Metagenomic Sequencing. mSphere 2019; 4:4/1/e00529-18. [PMID: 30651402 PMCID: PMC6336080 DOI: 10.1128/msphere.00529-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The study results reported here perfectly demonstrate the power and promise of clinical metagenomics to recover genome sequences of important drug-resistant bacteria and to rapidly provide rich data that inform outbreak investigations and treatment decisions, independently of the need to culture the organisms. Culture-independent methods that target genome fragments have shown promise in identifying certain pathogens, but the holy grail of comprehensive pathogen genome detection from microbiologically complex samples for subsequent forensic analyses remains a challenge. In the context of an investigation of a nosocomial outbreak, we used shotgun metagenomic sequencing of a human fecal sample and a neural network algorithm based on tetranucleotide frequency profiling to reconstruct microbial genomes and tested the same approach using rectal swabs from a second patient. The approach rapidly and readily detected the genome of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae in the patient fecal specimen and in the rectal swab sample, achieving a level of strain resolution that was sufficient for confident transmission inference during a highly clonal outbreak. The analysis also detected previously unrecognized colonization of the patient by vancomycin-resistant Enterococcus faecium, another multidrug-resistant bacterium. IMPORTANCE The study results reported here perfectly demonstrate the power and promise of clinical metagenomics to recover genome sequences of important drug-resistant bacteria and to rapidly provide rich data that inform outbreak investigations and treatment decisions, independently of the need to culture the organisms.
Collapse
|
11
|
Shelton JL, Andrews RS, Akob DM, DeVera CA, Mumford A, McCray JE, McIntosh JC. Microbial community composition of a hydrocarbon reservoir 40 years after a CO2 enhanced oil recovery flood. FEMS Microbiol Ecol 2018; 94:5067868. [PMID: 30101289 PMCID: PMC6108538 DOI: 10.1093/femsec/fiy153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/07/2018] [Indexed: 11/17/2022] Open
Abstract
Injecting CO2 into depleted oil reservoirs to extract additional crude oil is a common enhanced oil recovery (CO2-EOR) technique. However, little is known about how in situ microbial communities may be impacted by CO2 flooding, or if any permanent microbiological changes occur after flooding has ceased. Formation water was collected from an oil field that was flooded for CO2-EOR in the 1980s, including samples from areas affected by or outside of the flood region, to determine the impacts of CO2-EOR on reservoir microbial communities. Archaea, specifically methanogens, were more abundant than bacteria in all samples, while identified bacteria exhibited much greater diversity than the archaea. Microbial communities in CO2-impacted and non-impacted samples did not significantly differ (ANOSIM: Statistic R = -0.2597, significance = 0.769). However, several low abundance bacteria were found to be significantly associated with the CO2-affected group; very few of these species are known to metabolize CO2 or are associated with CO2-rich habitats. Although this study had limitations, on a broad scale, either the CO2 flood did not impact the microbial community composition of the target formation, or microbial communities in affected wells may have reverted back to pre-injection conditions over the ca. 40 years since the CO2-EOR.
Collapse
Affiliation(s)
- Jenna Lk Shelton
- Eastern Energy Resources Science Center, U.S. Geological Survey, 12201 Sunrise Valley Drive, Reston, VA, 20192 USA
| | - Robert S Andrews
- Water Mission Area, U.S. Geological Survey, 12201 Sunrise Valley Drive, Reston, VA, 20192 USA
| | - Denise M Akob
- Water Mission Area, U.S. Geological Survey, 12201 Sunrise Valley Drive, Reston, VA, 20192 USA
| | - Christina A DeVera
- Eastern Energy Resources Science Center, U.S. Geological Survey, 12201 Sunrise Valley Drive, Reston, VA, 20192 USA
| | - Adam Mumford
- Water Mission Area, U.S. Geological Survey, 12201 Sunrise Valley Drive, Reston, VA, 20192 USA
| | - John E McCray
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illisnois Street, Golden, CO, 80401 USA.,Hydrologic Science and Engineering Program, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401 USA
| | - Jennifer C McIntosh
- Department of Hydrology and Atmospheric Sciences, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ, 85721 USA
| |
Collapse
|
12
|
Freedman AJE, Peet KC, Boock JT, Penn K, Prather KLJ, Thompson JR. Isolation, Development, and Genomic Analysis of Bacillus megaterium SR7 for Growth and Metabolite Production Under Supercritical Carbon Dioxide. Front Microbiol 2018; 9:2152. [PMID: 30319556 PMCID: PMC6167967 DOI: 10.3389/fmicb.2018.02152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/22/2018] [Indexed: 12/27/2022] Open
Abstract
Supercritical carbon dioxide (scCO2) is an attractive substitute for conventional organic solvents due to its unique transport and thermodynamic properties, its renewability and labile nature, and its high solubility for compounds such as alcohols, ketones, and aldehydes. However, biological systems that use scCO2 are mainly limited to in vitro processes due to its strong inhibition of cell viability and growth. To solve this problem, we used a bioprospecting approach to isolate a microbial strain with the natural ability to grow while exposed to scCO2. Enrichment culture and serial passaging of deep subsurface fluids from the McElmo Dome scCO2 reservoir in aqueous media under scCO2 headspace enabled the isolation of spore-forming strain Bacillus megaterium SR7. Sequencing and analysis of the complete 5.51 Mbp genome and physiological characterization revealed the capacity for facultative anaerobic metabolism, including fermentative growth on a diverse range of organic substrates. Supplementation of growth medium with L-alanine for chemical induction of spore germination significantly improved growth frequencies and biomass accumulation under scCO2 headspace. Detection of endogenous fermentative compounds in cultures grown under scCO2 represents the first observation of bioproduct generation and accumulation under this condition. Culturing development and metabolic characterization of B. megaterium SR7 represent initial advancements in the effort toward enabling exploitation of scCO2 as a sustainable solvent for in vivo bioprocessing.
Collapse
Affiliation(s)
- Adam J. E. Freedman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kyle C. Peet
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jason T. Boock
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kevin Penn
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kristala L. J. Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Janelle R. Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
13
|
Thakur IS, Kumar M, Varjani SJ, Wu Y, Gnansounou E, Ravindran S. Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: Opportunities and challenges. BIORESOURCE TECHNOLOGY 2018; 256:478-490. [PMID: 29459105 DOI: 10.1016/j.biortech.2018.02.039] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
To meet the CO2 emission reduction targets, carbon dioxide capture and utilization (CCU) comes as an evolve technology. CCU concept is turning into a feedstock and technologies have been developed for transformation of CO2 into useful organic products. At industrial scale, utilization of CO2 as raw material is not much significant as compare to its abundance. Mechanisms in nature have evolved for carbon concentration, fixation and utilization. Assimilation and subsequent conversion of CO2 into complex molecules are performed by the photosynthetic and chemolithotrophic organisms. In the last three decades, substantial research is carry out to discover chemical and biological conversion of CO2 in various synthetic and biological materials, such as carboxylic acids, esters, lactones, polymer biodiesel, bio-plastics, bio-alcohols, exopolysaccharides. This review presents an over view of catalytic transformation of CO2 into biofuels and biomaterials by chemical and biological methods.
Collapse
Affiliation(s)
- Indu Shekhar Thakur
- School of Environmental Sciences, JawaharNehru University, New Delhi 110067, India; Bioenergy and Energy Planning Research Group (BPE), IIC, ENAC, Station 18, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Manish Kumar
- School of Environmental Sciences, JawaharNehru University, New Delhi 110067, India
| | - Sunita J Varjani
- Gujarat Pollution Control Board, Sector-10A, Gandhinagar 382010, Gujarat, India; Bioenergy and Energy Planning Research Group (BPE), IIC, ENAC, Station 18, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China.
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group (BPE), IIC, ENAC, Station 18, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Sindhu Ravindran
- Microbial Processes and Technology Division, CSIR-NIIST, Trivandrum, India
| |
Collapse
|