1
|
Foley MM, Stone BWG, Caro TA, Sokol NW, Koch BJ, Blazewicz SJ, Dijkstra P, Hayer M, Hofmockel K, Finley BK, Mack M, Marks J, Mau RL, Monsaint-Queeney V, Morrissey E, Propster J, Purcell A, Schwartz E, Pett-Ridge J, Fierer N, Hungate BA. Growth rate as a link between microbial diversity and soil biogeochemistry. Nat Ecol Evol 2024:10.1038/s41559-024-02520-7. [PMID: 39294403 DOI: 10.1038/s41559-024-02520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/25/2024] [Indexed: 09/20/2024]
Abstract
Measuring the growth rate of a microorganism is a simple yet profound way to quantify its effect on the world. The absolute growth rate of a microbial population reflects rates of resource assimilation, biomass production and element transformation-some of the many ways in which organisms affect Earth's ecosystems and climate. Microbial fitness in the environment depends on the ability to reproduce quickly when conditions are favourable and adopt a survival physiology when conditions worsen, which cells coordinate by adjusting their relative growth rate. At the population level, relative growth rate is a sensitive metric of fitness, linking survival and reproduction to the ecology and evolution of populations. Techniques combining omics and stable isotope probing enable sensitive measurements of the growth rates of microbial assemblages and individual taxa in soil. Microbial ecologists can explore how the growth rates of taxa with known traits and evolutionary histories respond to changes in resource availability, environmental conditions and interactions with other organisms. We anticipate that quantitative and scalable data on the growth rates of soil microorganisms, coupled with measurements of biogeochemical fluxes, will allow scientists to test and refine ecological theory and advance process-based models of carbon flux, nutrient uptake and ecosystem productivity. Measurements of in situ microbial growth rates provide insights into the ecology of populations and can be used to quantitatively link microbial diversity to soil biogeochemistry.
Collapse
Affiliation(s)
- Megan M Foley
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| | - Bram W G Stone
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tristan A Caro
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Noah W Sokol
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Benjamin J Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Steven J Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Kirsten Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brianna K Finley
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michelle Mack
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jane Marks
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Rebecca L Mau
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Victoria Monsaint-Queeney
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Ember Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, USA
| | - Jeffrey Propster
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biology, New Mexico Highlands University, Las Vegas, NM, USA
| | - Alicia Purcell
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California, Merced, Merced, CA, USA
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
2
|
Purcell AM, Dijkstra P, Hungate BA, McMillen K, Schwartz E, van Gestel N. Rapid growth rate responses of terrestrial bacteria to field warming on the Antarctic Peninsula. THE ISME JOURNAL 2023; 17:2290-2302. [PMID: 37872274 PMCID: PMC10689830 DOI: 10.1038/s41396-023-01536-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Ice-free terrestrial environments of the western Antarctic Peninsula are expanding and subject to colonization by new microorganisms and plants, which control biogeochemical cycling. Measuring growth rates of microbial populations and ecosystem carbon flux is critical for understanding how terrestrial ecosystems in Antarctica will respond to future warming. We implemented a field warming experiment in early (bare soil; +2 °C) and late (peat moss-dominated; +1.2 °C) successional glacier forefield sites on the western Antarctica Peninsula. We used quantitative stable isotope probing with H218O using intact cores in situ to determine growth rate responses of bacterial taxa to short-term (1 month) warming. Warming increased the growth rates of bacterial communities at both sites, even doubling the number of taxa exhibiting significant growth at the early site. Growth responses varied among taxa. Despite that warming induced a similar response for bacterial relative growth rates overall, the warming effect on ecosystem carbon fluxes was stronger at the early successional site-likely driven by increased activity of autotrophs which switched the ecosystem from a carbon source to a carbon sink. At the late-successional site, warming caused a significant increase in growth rate of many Alphaproteobacteria, but a weaker and opposite gross ecosystem productivity response that decreased the carbon sink-indicating that the carbon flux rates were driven more strongly by the plant communities. Such changes to bacterial growth and ecosystem carbon cycling suggest that the terrestrial Antarctic Peninsula can respond fast to increases in temperature, which can have repercussions for long-term elemental cycling and carbon storage.
Collapse
Affiliation(s)
- Alicia M Purcell
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Kelly McMillen
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Natasja van Gestel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
- TTU Climate Center, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
3
|
Maillard F, Michaud TJ, See CR, DeLancey LC, Blazewicz SJ, Kimbrel JA, Pett-Ridge J, Kennedy PG. Melanization slows the rapid movement of fungal necromass carbon and nitrogen into both bacterial and fungal decomposer communities and soils. mSystems 2023; 8:e0039023. [PMID: 37338274 PMCID: PMC10469842 DOI: 10.1128/msystems.00390-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/21/2023] Open
Abstract
Microbial necromass contributes significantly to both soil carbon (C) persistence and ecosystem nitrogen (N) availability, but quantitative estimates of C and N movement from necromass into soils and decomposer communities are lacking. Additionally, while melanin is known to slow fungal necromass decomposition, how it influences microbial C and N acquisition as well as elemental release into soils remains unclear. Here, we tracked decomposition of isotopically labeled low and high melanin fungal necromass and measured 13C and 15N accumulation in surrounding soils and microbial communities over 77 d in a temperate forest in Minnesota, USA. Mass loss was significantly higher from low melanin necromass, corresponding with greater 13C and 15N soil inputs. A taxonomically and functionally diverse array of bacteria and fungi was enriched in 13C and/or 15N at all sampling points, with enrichment being consistently higher on low melanin necromass and earlier in decomposition. Similar patterns of preferential C and N enrichment of many bacterial and fungal genera early in decomposition suggest that both microbial groups co-contribute to the rapid assimilation of resource-rich soil organic matter inputs. While overall richness of taxa enriched in C was higher than in N for both bacteria and fungi, there was a significant positive relationship between C and N in co-enriched taxa. Collectively, our results demonstrate that melanization acts as a key ecological trait mediating not only fungal necromass decomposition rate but also necromass C and N release and that both elements are rapidly co-utilized by diverse bacterial and fungal decomposers in natural settings. IMPORTANCE Recent studies indicate that microbial dead cells, particularly those of fungi, play an important role in long-term carbon persistence in soils. Despite this growing recognition, how the resources within dead fungal cells (also known as fungal necromass) move into decomposer communities and soils are poorly quantified, particularly in studies based in natural environments. In this study, we found that the contribution of fungal necromass to soil carbon and nitrogen availability was slowed by the amount of melanin present in fungal cell walls. Further, despite the overall rapid acquisition of carbon and nitrogen from necromass by a diverse range of both bacteria and fungi, melanization also slowed microbial uptake of both elements. Collectively, our results indicate that melanization acts as a key ecological trait mediating not only fungal necromass decomposition rate, but also necromass carbon and nitrogen release into soil as well as microbial resource acquisition.
Collapse
Affiliation(s)
- François Maillard
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Talia J. Michaud
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Craig R. See
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Lang C. DeLancey
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Steven J. Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Jeffrey A. Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, California, USA
| | - Peter G. Kennedy
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
4
|
Walkup J, Dang C, Mau RL, Hayer M, Schwartz E, Stone BW, Hofmockel KS, Koch BJ, Purcell AM, Pett-Ridge J, Wang C, Hungate BA, Morrissey EM. The predictive power of phylogeny on growth rates in soil bacterial communities. ISME COMMUNICATIONS 2023; 3:73. [PMID: 37454187 PMCID: PMC10349831 DOI: 10.1038/s43705-023-00281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Predicting ecosystem function is critical to assess and mitigate the impacts of climate change. Quantitative predictions of microbially mediated ecosystem processes are typically uninformed by microbial biodiversity. Yet new tools allow the measurement of taxon-specific traits within natural microbial communities. There is mounting evidence of a phylogenetic signal in these traits, which may support prediction and microbiome management frameworks. We investigated phylogeny-based trait prediction using bacterial growth rates from soil communities in Arctic, boreal, temperate, and tropical ecosystems. Here we show that phylogeny predicts growth rates of soil bacteria, explaining an average of 31%, and up to 58%, of the variation within ecosystems. Despite limited overlap in community composition across these ecosystems, shared nodes in the phylogeny enabled ancestral trait reconstruction and cross-ecosystem predictions. Phylogenetic relationships could explain up to 38% (averaging 14%) of the variation in growth rates across the highly disparate ecosystems studied. Our results suggest that shared evolutionary history contributes to similarity in the relative growth rates of related bacteria in the wild, allowing phylogeny-based predictions to explain a substantial amount of the variation in taxon-specific functional traits, within and across ecosystems.
Collapse
Affiliation(s)
- Jeth Walkup
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Chansotheary Dang
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Rebecca L Mau
- Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Bram W Stone
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Benjamin J Koch
- Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Alicia M Purcell
- Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jennifer Pett-Ridge
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, USA
- University of California Merced, Life & Environmental Sciences Department, Merced, CA, 95343, USA
| | - Chao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, LN, China
| | - Bruce A Hungate
- Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Ember M Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
5
|
Sun L, Wang S, Narsing Rao MP, Shi Y, Lian ZH, Jin PJ, Wang W, Li YM, Wang KK, Banerjee A, Cui XY, Wei D. The shift of soil microbial community induced by cropping sequence affect soil properties and crop yield. Front Microbiol 2023; 14:1095688. [PMID: 36910216 PMCID: PMC10004276 DOI: 10.3389/fmicb.2023.1095688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Rational cropping maintains high soil fertility and a healthy ecosystem. Soil microorganism is the controller of soil fertility. Meanwhile, soil microbial communities also respond to different cropping patterns. The mechanisms by which biotic and abiotic factors were affected by different cropping sequences remain unclear in the major grain-producing regions of northeastern China. To evaluate the effects of different cropping sequences under conventional fertilization practices on soil properties, microbial communities, and crop yield, six types of plant cropping systems were performed, including soybean monoculture, wheat-soybean rotation, wheat-maize-soybean rotation, soybean-maize-maize rotation, maize-soybean-soybean rotation and maize monoculture. Our results showed that compared with the single cropping system, soybean and maize crop rotation in different combinations or sequences can increase soil total organic carbon and nutrients, and promote soybean and maize yield, especially using soybean-maize-maize and maize-soybean-soybean planting system. The 16S rRNA and internal transcribed spacer (ITS) amplicon sequencing showed that different cropping systems had different effects on bacterial and fungal communities. The bacterial and fungal communities of soybean monoculture were less diverse when compared to the other crop rotation planting system. Among the different cropping sequences, the number of observed bacterial species was greater in soybean-maize-maize planting setup and fungal species in maize-soybean-soybean planting setup. Some dominant and functional bacterial and fungal taxa in the rotation soils were observed. Network-based analysis suggests that bacterial phyla Acidobacteria and Actinobacteria while fungal phylum Ascomycota showed a positive correlation with other microbial communities. The phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) result showed the presence of various metabolic pathways. Besides, the soybean-maize-maize significantly increased the proportion of some beneficial microorganisms in the soil and reduced the soil-borne animal and plant pathogens. These results warrant further investigation into the mechanisms driving responses of beneficial microbial communities and their capacity on improving soil fertility during legume cropping. The present study extends our understanding of how different crop rotations effect soil parameters, microbial diversity, and metabolic functions, and reveals the importance of crop rotation sequences. These findings could be used to guide decision-making from the microbial perspective for annual crop planting and soil management approaches.
Collapse
Affiliation(s)
- Lei Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China.,Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, China
| | - Shuang Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, China
| | | | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zheng-Han Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pin-Jiao Jin
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, China
| | - Wei Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, China
| | - Yu-Mei Li
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, China
| | - Kang-Kang Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin, China
| | - Aparna Banerjee
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM),Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Xiao-Yang Cui
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Dan Wei
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
6
|
Greenlon A, Sieradzki E, Zablocki O, Koch BJ, Foley MM, Kimbrel JA, Hungate BA, Blazewicz SJ, Nuccio EE, Sun CL, Chew A, Mancilla CJ, Sullivan MB, Firestone M, Pett-Ridge J, Banfield JF. Quantitative Stable-Isotope Probing (qSIP) with Metagenomics Links Microbial Physiology and Activity to Soil Moisture in Mediterranean-Climate Grassland Ecosystems. mSystems 2022; 7:e0041722. [PMID: 36300946 PMCID: PMC9765451 DOI: 10.1128/msystems.00417-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/02/2022] [Indexed: 12/25/2022] Open
Abstract
The growth and physiology of soil microorganisms, which play vital roles in biogeochemical cycling, are shaped by both current and historical soil environmental conditions. Here, we developed and applied a genome-resolved metagenomic implementation of quantitative stable isotope probing (qSIP) with an H218O labeling experiment to identify actively growing soil microorganisms and their genomic capacities. qSIP enabled measurement of taxon-specific growth because isotopic incorporation into microbial DNA requires production of new genome copies. We studied three Mediterranean grassland soils across a rainfall gradient to evaluate the hypothesis that historic precipitation levels are an important factor controlling trait selection. We used qSIP-informed genome-resolved metagenomics to resolve the active subset of soil community members and identify their characteristic ecophysiological traits. Higher year-round precipitation levels correlated with higher activity and growth rates of flagellar motile microorganisms. In addition to heavily isotopically labeled bacteria, we identified abundant isotope-labeled phages, suggesting phage-induced cell lysis likely contributed to necromass production at all three sites. Further, there was a positive correlation between phage activity and the activity of putative phage hosts. Contrary to our expectations, the capacity to decompose the diverse complex carbohydrates common in soil organic matter or oxidize methanol and carbon monoxide were broadly distributed across active and inactive bacteria in all three soils, implying that these traits are not highly selected for by historical precipitation. IMPORTANCE Soil moisture is a critical factor that strongly shapes the lifestyle of soil organisms by changing access to nutrients, controlling oxygen diffusion, and regulating the potential for mobility. We identified active microorganisms in three grassland soils with similar mineral contexts, yet different historic rainfall inputs, by adding water labeled with a stable isotope and tracking that isotope in DNA of growing microbes. By examining the genomes of active and inactive microorganisms, we identified functions that are enriched in growing organisms, and showed that different functions were selected for in different soils. Wetter soil had higher activity of motile organisms, but activity of pathways for degradation of soil organic carbon compounds, including simple carbon substrates, were comparable for all three soils. We identified many labeled, and thus active bacteriophages (viruses that infect bacteria), implying that the cells they killed contributed to soil organic matter. The activity of these bacteriophages was significantly correlated with activity of their hosts.
Collapse
Affiliation(s)
- Alex Greenlon
- Department of Environmental Science, Policy and Management, University California, Berkeley, Berkley, California, USA
| | - Ella Sieradzki
- Department of Environmental Science, Policy and Management, University California, Berkeley, Berkley, California, USA
| | - Olivier Zablocki
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, Ohio State University, Columbus, Ohio, USA
| | - Benjamin J. Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Megan M. Foley
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jeffrey A. Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Bruce A. Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Steven J. Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Erin E. Nuccio
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Christine L. Sun
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, Ohio State University, Columbus, Ohio, USA
| | - Aaron Chew
- Department of Environmental Science, Policy and Management, University California, Berkeley, Berkley, California, USA
| | - Cynthia-Jeanette Mancilla
- Department of Environmental Science, Policy and Management, University California, Berkeley, Berkley, California, USA
| | - Matthew B. Sullivan
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, Ohio State University, Columbus, Ohio, USA
- Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, Ohio, USA
| | - Mary Firestone
- Department of Environmental Science, Policy and Management, University California, Berkeley, Berkley, California, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
- Life & Environmental Sciences Department, University of California, Merced, Merced, California, USA
| | - Jillian F. Banfield
- Department of Environmental Science, Policy and Management, University California, Berkeley, Berkley, California, USA
- Department of Earth and Planetary Science, University of California, Berkeley, Berkley, California, USA
| |
Collapse
|
7
|
Nuccio EE, Blazewicz SJ, Lafler M, Campbell AN, Kakouridis A, Kimbrel JA, Wollard J, Vyshenska D, Riley R, Tomatsu A, Hestrin R, Malmstrom RR, Firestone M, Pett-Ridge J. HT-SIP: a semi-automated stable isotope probing pipeline identifies cross-kingdom interactions in the hyphosphere of arbuscular mycorrhizal fungi. MICROBIOME 2022; 10:199. [PMID: 36434737 PMCID: PMC9700909 DOI: 10.1186/s40168-022-01391-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Linking the identity of wild microbes with their ecophysiological traits and environmental functions is a key ambition for microbial ecologists. Of many techniques that strive for this goal, Stable-isotope probing-SIP-remains among the most comprehensive for studying whole microbial communities in situ. In DNA-SIP, actively growing microorganisms that take up an isotopically heavy substrate build heavier DNA, which can be partitioned by density into multiple fractions and sequenced. However, SIP is relatively low throughput and requires significant hands-on labor. We designed and tested a semi-automated, high-throughput SIP (HT-SIP) pipeline to support well-replicated, temporally resolved amplicon and metagenomics experiments. We applied this pipeline to a soil microhabitat with significant ecological importance-the hyphosphere zone surrounding arbuscular mycorrhizal fungal (AMF) hyphae. AMF form symbiotic relationships with most plant species and play key roles in terrestrial nutrient and carbon cycling. RESULTS Our HT-SIP pipeline for fractionation, cleanup, and nucleic acid quantification of density gradients requires one-sixth of the hands-on labor compared to manual SIP and allows 16 samples to be processed simultaneously. Automated density fractionation increased the reproducibility of SIP gradients compared to manual fractionation, and we show adding a non-ionic detergent to the gradient buffer improved SIP DNA recovery. We applied HT-SIP to 13C-AMF hyphosphere DNA from a 13CO2 plant labeling study and created metagenome-assembled genomes (MAGs) using high-resolution SIP metagenomics (14 metagenomes per gradient). SIP confirmed the AMF Rhizophagus intraradices and associated MAGs were highly enriched (10-33 atom% 13C), even though the soils' overall enrichment was low (1.8 atom% 13C). We assembled 212 13C-hyphosphere MAGs; the hyphosphere taxa that assimilated the most AMF-derived 13C were from the phyla Myxococcota, Fibrobacterota, Verrucomicrobiota, and the ammonia-oxidizing archaeon genus Nitrososphaera. CONCLUSIONS Our semi-automated HT-SIP approach decreases operator time and improves reproducibility by targeting the most labor-intensive steps of SIP-fraction collection and cleanup. We illustrate this approach in a unique and understudied soil microhabitat-generating MAGs of actively growing microbes living in the AMF hyphosphere (without plant roots). The MAGs' phylogenetic composition and gene content suggest predation, decomposition, and ammonia oxidation may be key processes in hyphosphere nutrient cycling. Video Abstract.
Collapse
Affiliation(s)
- Erin E. Nuccio
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Steven J. Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Marissa Lafler
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Ashley N. Campbell
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Anne Kakouridis
- Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA USA
| | - Jeffrey A. Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Jessica Wollard
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | | | | | | | - Rachel Hestrin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA USA
| | | | - Mary Firestone
- Department of Environmental Science Policy and Management, University of California, Berkeley, CA USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA USA
| |
Collapse
|
8
|
Dong W, Yang Q, George TS, Yin H, Wang S, Bi J, Zhang J, Liu X, Song A, Fan F. Investigating bacterial coupled assimilation of fertilizer‑nitrogen and crop residue‑carbon in upland soils by DNA-qSIP. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157279. [PMID: 35830916 DOI: 10.1016/j.scitotenv.2022.157279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Microbial immobilization of fertilizer nitrogen (N) can effectively reduce N losses in soil. However, the effects of crop residue on microbial assimilation of fertilizer-N and the underlying microbial mechanisms in upland soils are unclear. We evaluated the influence of maize residue (13C) addition on the microbial assimilation of ammonium-N (15N) in DNA from fertilizer, and quantified the bacterial 13C or 15N assimilation by quantitative stable isotope probing (DNA-qSIP). We found that the straw addition did increase total microbial assimilation of ammonium from fertilizer during the 2-week incubation. However, bacterial taxa varied in their responses to straw addition: Bacteriodetes and Proteobacteria accounted for large fractions of ammonium assimilation and their N assimilations were increased, while N assimilations of Acidobacteria were decreased. We revealed that highly 13C-labeled taxa were the main contributors of N assimilation under straw addition. The straw primarily enhanced the contributions of bacterial taxa to ammonium assimilation through increasing the extent of N assimilation, or enhancing the abundance of the N-assimilating bacterial taxa. Overall, our study elucidated an interaction between microbial assimilation of fertilizer-N and straw-C, showing a close element coupling of the keystone functional microbial taxa in N immobilization driven by organic carbon.
Collapse
Affiliation(s)
- Weiling Dong
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Qin Yang
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Timothy S George
- Ecological Sciences Group, The James Hutton Institute, Dundee, UK
| | - Huaqun Yin
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Sai Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingjing Bi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiayin Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xueduan Liu
- Key Laboratory of Biometallurgy of Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Alin Song
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Fenliang Fan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
9
|
Dang C, Walkup JGV, Hungate BA, Franklin RB, Schwartz E, Morrissey EM. Phylogenetic organization in the assimilation of chemically distinct substrates by soil bacteria. Environ Microbiol 2021; 24:357-369. [PMID: 34811865 DOI: 10.1111/1462-2920.15843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022]
Abstract
Soils are among the most biodiverse habitats on earth and while the species composition of microbial communities can influence decomposition rates and pathways, the functional significance of many microbial species and phylogenetic groups remains unknown. If bacteria exhibit phylogenetic organization in their function, this could enable ecologically meaningful classification of bacterial clades. Here, we show non-random phylogenetic organization in the rates of relative carbon assimilation for both rapidly mineralized substrates (amino acids and glucose) assimilated by many microbial taxa and slowly mineralized substrates (lipids and cellulose) assimilated by relatively few microbial taxa. When mapped onto bacterial phylogeny using ancestral character estimation this phylogenetic organization enabled the identification of clades involved in the decomposition of specific soil organic matter substrates. Phylogenetic organization in substrate assimilation could provide a basis for predicting the functional attributes of uncharacterized microbial taxa and understanding the significance of microbial community composition for soil organic matter decomposition.
Collapse
Affiliation(s)
- Chansotheary Dang
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Jeth G V Walkup
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Rima B Franklin
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Ember M Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
10
|
Blagodatskaya E, Tarkka M, Knief C, Koller R, Peth S, Schmidt V, Spielvogel S, Uteau D, Weber M, Razavi BS. Bridging Microbial Functional Traits With Localized Process Rates at Soil Interfaces. Front Microbiol 2021; 12:625697. [PMID: 34777265 PMCID: PMC8581545 DOI: 10.3389/fmicb.2021.625697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
In this review, we introduce microbially-mediated soil processes, players, their functional traits, and their links to processes at biogeochemical interfaces [e.g., rhizosphere, detritusphere, (bio)-pores, and aggregate surfaces]. A conceptual view emphasizes the central role of the rhizosphere in interactions with other biogeochemical interfaces, considering biotic and abiotic dynamic drivers. We discuss the applicability of three groups of traits based on microbial physiology, activity state, and genomic functional traits to reflect microbial growth in soil. The sensitivity and credibility of modern molecular approaches to estimate microbial-specific growth rates require further development. A link between functional traits determined by physiological (e.g., respiration, biomarkers) and genomic (e.g., genome size, number of ribosomal gene copies per genome, expression of catabolic versus biosynthetic genes) approaches is strongly affected by environmental conditions such as carbon, nutrient availability, and ecosystem type. Therefore, we address the role of soil physico-chemical conditions and trophic interactions as drivers of microbially-mediated soil processes at relevant scales for process localization. The strengths and weaknesses of current approaches (destructive, non-destructive, and predictive) for assessing process localization and the corresponding estimates of process rates are linked to the challenges for modeling microbially-mediated processes in heterogeneous soil microhabitats. Finally, we introduce a conceptual self-regulatory mechanism based on the flexible structure of active microbial communities. Microbial taxa best suited to each successional stage of substrate decomposition become dominant and alter the community structure. The rates of decomposition of organic compounds, therefore, are dependent on the functional traits of dominant taxa and microbial strategies, which are selected and driven by the local environment.
Collapse
Affiliation(s)
- Evgenia Blagodatskaya
- Department of Soil Ecology, Helmholtz Centre for Environmental Research, Halle (Saale), Germany
- Agro-Technological Institute, RUDN University, Moscow, Russia
| | - Mika Tarkka
- Department of Soil Ecology, Helmholtz Centre for Environmental Research, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research Halle–Jena–Leipzig, Leipzig, Germany
| | - Claudia Knief
- Institute of Crop Science and Resource Conservation – Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany
| | - Robert Koller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Stephan Peth
- Institute of Soil Science, University of Hannover, Hanover, Germany
| | | | - Sandra Spielvogel
- Department Soil Science, Institute for Plant Nutrition and Soil Science, Christian-Albrechts University Kiel, Kiel, Germany
| | - Daniel Uteau
- Department of Soil Science, Faculty of Organic Agricultural Sciences, University of Kassel, Kassel, Germany
| | | | - Bahar S. Razavi
- Department of Soil and Plant Microbiome, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
11
|
Conover AE, Morando M, Zhao Y, Semones J, Hutchins DA, Webb EA. Alphaproteobacteria facilitate Trichodesmium community trimethylamine utilization. Environ Microbiol 2021; 23:6798-6810. [PMID: 34519133 DOI: 10.1111/1462-2920.15773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022]
Abstract
In the surface waters of the warm oligotrophic ocean, filaments and aggregated colonies of the nitrogen (N)-fixing cyanobacterium Trichodesmium create microscale nutrient-rich oases. These hotspots fuel primary productivity and harbour a diverse consortium of heterotrophs. Interactions with associated microbiota can affect the physiology of Trichodesmium, often in ways that have been predicted to support its growth. Recently, it was found that trimethylamine (TMA), a globally abundant organic N compound, inhibits N2 fixation in cultures of Trichodesmium without impairing growth rate, suggesting that Trichodesmium can use TMA as an alternate N source. In this study, 15 N-TMA DNA stable isotope probing (SIP) of a Trichodesmium enrichment was employed to further investigate TMA metabolism and determine whether TMA-N is incorporated directly or secondarily via cross-feeding facilitated by microbial associates. Herein, we identify two members of the marine Roseobacter clade (MRC) of Alphaproteobacteria as the likely metabolizers of TMA and provide genomic evidence that they converted TMA into a more readily available form of N, e.g., ammonium (NH4 + ), which was subsequently used by Trichodesmium and the rest of the community. The results implicate microbiome-mediated carbon (C) and N transformations in modulating N2 fixation and thus highlight the involvement of host-associated heterotrophs in global biogeochemical cycling.
Collapse
Affiliation(s)
- Asa E Conover
- Department of Marine and Environmental Biology, University of Southern California, CA, USA
| | - Michael Morando
- Department of Marine and Environmental Biology, University of Southern California, CA, USA
| | - Yiming Zhao
- Department of Marine and Environmental Biology, University of Southern California, CA, USA
| | - Jacob Semones
- Department of Marine and Environmental Biology, University of Southern California, CA, USA
| | - David A Hutchins
- Department of Marine and Environmental Biology, University of Southern California, CA, USA
| | - Eric A Webb
- Department of Marine and Environmental Biology, University of Southern California, CA, USA
| |
Collapse
|
12
|
An Examination of Fungal and Bacterial Assemblages in Bulk and Rhizosphere Soils under Solanum tuberosum in Southeastern Wyoming, USA. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1020013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Solanum tuberosum, commonly known as potato, is the most important non-cereal crop in the world. However, its cultivation is prone to disease and other issues. In recent years, a newfound interest in the soil microbiome and the potential benefits it may convey has led researchers to study plant–microbe interactions in great detail and has led to the identification of putative beneficial microbial taxa. In this survey, we examined fungal and bacterial diversity using high-throughput sequencing in soils under a potato crop in southeastern Wyoming, USA. Our results show decreased microbial diversity in the rhizosphere, with increases in the abundances of arbuscular mycorrhizal fungi as well as pathogenic microbes. We show coarse taxonomic differences in microbial assemblages when comparing the bulk and rhizosphere soils for bacteria but not for fungi, suggesting that the two kingdoms respond differently to the selective pressures of the rhizosphere. Using cooccurrence network analysis, we identify microbes that may serve as keystone taxa and provide benefits to their host plants through competitive exclusion of detrimental pathogenic taxa and increased nutrient availability. Our results provide additional information on the structure and complexity of the potato rhizosphere microbiome and highlight candidate taxa for microbial isolation and inoculation.
Collapse
|
13
|
Meier MA, Lopez-Guerrero MG, Guo M, Schmer MR, Herr JR, Schnable JC, Alfano JR, Yang J. Rhizosphere Microbiomes in a Historical Maize-Soybean Rotation System Respond to Host Species and Nitrogen Fertilization at the Genus and Subgenus Levels. Appl Environ Microbiol 2021; 87:e0313220. [PMID: 33811028 PMCID: PMC8174755 DOI: 10.1128/aem.03132-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/24/2021] [Indexed: 01/04/2023] Open
Abstract
Root-associated microbes are key players in plant health, disease resistance, and nitrogen (N) use efficiency. It remains largely unclear how the interplay of biological and environmental factors affects rhizobiome dynamics in agricultural systems. In this study, we quantified the composition of rhizosphere and bulk soil microbial communities associated with maize (Zea mays L.) and soybean (Glycine max L.) in a long-term crop rotation study under conventional fertilization and low-N regimes. Over two growing seasons, we evaluated the effects of environmental conditions and several treatment factors on the abundance of rhizosphere- and soil-colonizing microbial taxa. Time of sampling, host plant species, and N fertilization had major effects on microbiomes, while no effect of crop rotation was observed. Using variance partitioning as well as 16S sequence information, we further defined a set of 82 microbial genera and functional taxonomic groups at the subgenus level that show distinct responses to treatment factors. We identified taxa that are highly specific to either maize or soybean rhizospheres, as well as taxa that are sensitive to N fertilization in plant rhizospheres and bulk soil. This study provides insights to harness the full potential of soil microbes in maize and soybean agricultural systems through plant breeding and field management. IMPORTANCE Plant roots are colonized by large numbers of microbes, some of which may help the plant acquire nutrients and fight diseases. Our study contributes to a better understanding of root-colonizing microbes in the widespread and economically important maize-soybean crop rotation system. The long-term goal of this research is to optimize crop plant varieties and field management to create the best possible conditions for beneficial plant-microbe interactions to occur. These beneficial microbes may be harnessed to sustainably reduce dependency on pesticides and industrial fertilizer. We identify groups of microbes specific to the maize or to the soybean host and microbes that are sensitive to nitrogen fertilization. These microbes represent candidates that may be influenced through plant breeding or field management, and future research will be directed toward elucidating their roles in plant health and nitrogen usage.
Collapse
Affiliation(s)
- Michael A. Meier
- Department of Agronomy and Horticulture, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Center for Plant Science Innovation, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | | | - Ming Guo
- Department of Agronomy and Horticulture, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Center for Plant Science Innovation, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Marty R. Schmer
- USDA-ARS Agroecosystem Management Research Unit, Lincoln, Nebraska, USA
| | - Joshua R. Herr
- Center for Plant Science Innovation, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Department of Plant Pathology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - James C. Schnable
- Department of Agronomy and Horticulture, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Center for Plant Science Innovation, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - James R. Alfano
- Center for Plant Science Innovation, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Department of Plant Pathology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Center for Plant Science Innovation, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
14
|
Wang C, Morrissey EM, Mau RL, Hayer M, Piñeiro J, Mack MC, Marks JC, Bell SL, Miller SN, Schwartz E, Dijkstra P, Koch BJ, Stone BW, Purcell AM, Blazewicz SJ, Hofmockel KS, Pett-Ridge J, Hungate BA. The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization. ISME JOURNAL 2021; 15:2738-2747. [PMID: 33782569 DOI: 10.1038/s41396-021-00959-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/19/2021] [Accepted: 03/04/2021] [Indexed: 11/09/2022]
Abstract
Microorganisms drive soil carbon mineralization and changes in their activity with increased temperature could feedback to climate change. Variation in microbial biodiversity and the temperature sensitivities (Q10) of individual taxa may explain differences in the Q10 of soil respiration, a possibility not previously examined due to methodological limitations. Here, we show phylogenetic and taxonomic variation in the Q10 of growth (5-35 °C) among soil bacteria from four sites, one from each of Arctic, boreal, temperate, and tropical biomes. Differences in the temperature sensitivities of taxa and the taxonomic composition of communities determined community-assembled bacterial growth Q10, which was strongly predictive of soil respiration Q10 within and across biomes. Our results suggest community-assembled traits of microbial taxa may enable enhanced prediction of carbon cycling feedbacks to climate change in ecosystems across the globe.
Collapse
Affiliation(s)
- Chao Wang
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, USA.,CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Ember M Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, USA.
| | - Rebecca L Mau
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.,Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Juan Piñeiro
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, USA
| | - Michelle C Mack
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Jane C Marks
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Sheryl L Bell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Samantha N Miller
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Benjamin J Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Bram W Stone
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Alicia M Purcell
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Steven J Blazewicz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kirsten S Hofmockel
- Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA, USA.,Ecology, Evolution and Organismal Biology Department, Iowa State University, Ames, IA, USA
| | - Jennifer Pett-Ridge
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
15
|
Li P, Zheng T, Li L, Ma Y, Sun X, Liu J. An appropriate technique for treating rural wastewater by a flow step feed system driven by wind-solar hybrid power. ENVIRONMENTAL RESEARCH 2020; 187:109651. [PMID: 32422485 DOI: 10.1016/j.envres.2020.109651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/28/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Most rural wastewater treatment facilities require aeration equipment to ensure sufficient dissolved oxygen (DO) during processing. Operation and maintenance are costly, and cannot be met in many areas with poor economic levels. This has led to further deterioration of the rural water environment and aroused much attention. This work reports a plug-flow step feed system utilizing wind and solar hybrid energy for rural wastewater treatment. Under certain climatic conditions, the wind energy and solar energy provided complimentary power generation, and an automatic control system (without batteries) was constructed. The corresponding control logic for multi-energy level operation was developed. Furthermore, the power generation efficiency of the system, the pollutant removal, and its mechanism on the bioreactor were also analyzed. According to the monitoring of meteorological conditions, wind and solar resources at the test site were abundant, and the electricity generated by the power generation was sufficient to meet the operational needs of the equipment. Energy efficiency can reach 80.0%. The characteristics of pollutant removal in each process section were studied on spatial and temporal dimensions. Results showed that the wastewater treatment process reached mean removal efficiencies of chemical oxygen demand (CODcr), NH4+-N, total nitrogen (TN) and total phosphorus (TP) were 90.2%, 94.3%, 61.4% and 63.1%, respectively. Analyses of microbial community richness and group changes in each anoxic/aerobic reaction chamber in the biofilm reactor showed that the population structure was relatively stable and that there were abundant functional bacteria capable of degrading pollutants in each aerobic and anoxic unit. This system can thus be a more sustainable treatment process than traditional techniques used for rural wastewater treatment, providing a new design approach for low-energy consumption and unattended rural wastewater treatment.
Collapse
Affiliation(s)
- Pengyu Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.
| | - Tianlong Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.
| | - Lin Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore.
| | - Xu Sun
- University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China; Beijing Urban Ecosystem Research Station, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China.
| | - Junxin Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
16
|
Sieradzki ET, Koch BJ, Greenlon A, Sachdeva R, Malmstrom RR, Mau RL, Blazewicz SJ, Firestone MK, Hofmockel KS, Schwartz E, Hungate BA, Pett-Ridge J. Measurement Error and Resolution in Quantitative Stable Isotope Probing: Implications for Experimental Design. mSystems 2020; 5:e00151-20. [PMID: 32694124 PMCID: PMC7566279 DOI: 10.1128/msystems.00151-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Quantitative stable isotope probing (qSIP) estimates isotope tracer incorporation into DNA of individual microbes and can link microbial biodiversity and biogeochemistry in complex communities. As with any quantitative estimation technique, qSIP involves measurement error, and a fuller understanding of error, precision, and statistical power benefits qSIP experimental design and data interpretation. We used several qSIP data sets-from soil and seawater microbiomes-to evaluate how variance in isotope incorporation estimates depends on organism abundance and resolution of the density fractionation scheme. We assessed statistical power for replicated qSIP studies, plus sensitivity and specificity for unreplicated designs. As a taxon's abundance increases, the variance of its weighted mean density declines. Nine fractions appear to be a reasonable trade-off between cost and precision for most qSIP applications. Increasing the number of density fractions beyond that reduces variance, although the magnitude of this benefit declines with additional fractions. Our analysis suggests that, if a taxon has an isotope enrichment of 10 atom% excess, there is a 60% chance that this will be detected as significantly different from zero (with alpha 0.1). With five replicates, isotope enrichment of 5 atom% could be detected with power (0.6) and alpha (0.1). Finally, we illustrate the importance of internal standards, which can help to calibrate per sample conversions of %GC to mean weighted density. These results should benefit researchers designing future SIP experiments and provide a useful reference for metagenomic SIP applications where both financial and computational limitations constrain experimental scope.IMPORTANCE One of the biggest challenges in microbial ecology is correlating the identity of microorganisms with the roles they fulfill in natural environmental systems. Studies of microbes in pure culture reveal much about their genomic content and potential functions but may not reflect an organism's activity within its natural community. Culture-independent studies supply a community-wide view of composition and function in the context of community interactions but often fail to link the two. Quantitative stable isotope probing (qSIP) is a method that can link the identity and functional activity of specific microbes within a naturally occurring community. Here, we explore how the resolution of density gradient fractionation affects the error and precision of qSIP results, how they may be improved via additional experimental replication, and discuss cost-benefit balanced scenarios for SIP experimental design.
Collapse
Affiliation(s)
- Ella T Sieradzki
- University of California Berkeley, Environmental Science and Policy Management, Berkeley, California, USA
| | - Benjamin J Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Alex Greenlon
- University of California Berkeley, Environmental Science and Policy Management, Berkeley, California, USA
| | - Rohan Sachdeva
- University of California Berkeley, Earth and Planetary Sciences, Berkeley, California, USA
| | - Rex R Malmstrom
- Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Rebecca L Mau
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Steven J Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Mary K Firestone
- University of California Berkeley, Environmental Science and Policy Management, Berkeley, California, USA
| | - Kirsten S Hofmockel
- Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
17
|
Microbial Taxon-Specific Isotope Incorporation with DNA Quantitative Stable Isotope Probing. Methods Mol Biol 2020; 2046:137-149. [PMID: 31407302 DOI: 10.1007/978-1-4939-9721-3_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Quantitative stable isotope probing (qSIP) measures rates of taxon-specific element assimilation in intact microbial communities, utilizing substrates labeled with a heavy isotope.The laboratory protocol for qSIP is nearly identical to that for conventional stable isotope probing, with two key additions: (1) in qSIP, qPCR measurements are conducted on each density fraction recovered after isopycnic separation, and (2) in qSIP, multiple density fractions are sequenced spanning the entire range of densities over which nucleic acids were recovered. qSIP goes beyond identifying taxa assimilating a substrate, as it also allows for measuring that assimilation for each taxon within a given microbial community. Here, we describe an analysis process necessary to determine atom fraction excess of a heavy stable isotope added to an environmental sample for a given taxon's DNA.
Collapse
|
18
|
Isobe K, Bouskill NJ, Brodie EL, Sudderth EA, Martiny JBH. Phylogenetic conservation of soil bacterial responses to simulated global changes. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190242. [PMID: 32200749 PMCID: PMC7133522 DOI: 10.1098/rstb.2019.0242] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 01/03/2023] Open
Abstract
Soil bacterial communities are altered by anthropogenic drivers such as climate change-related warming and fertilization. However, we lack a predictive understanding of how bacterial communities respond to such global changes. Here, we tested whether phylogenetic information might be more predictive of the response of bacterial taxa to some forms of global change than others. We analysed the composition of soil bacterial communities from perturbation experiments that simulated warming, drought, elevated CO2 concentration and phosphorus (P) addition. Bacterial responses were phylogenetically conserved to all perturbations. The phylogenetic depth of these responses varied minimally among the types of perturbations and was similar when merging data across locations, implying that the context of particular locations did not affect the phylogenetic pattern of response. We further identified taxonomic groups that responded consistently to each type of perturbation. These patterns revealed that, at the level of family and above, most groups responded consistently to only one or two types of perturbations, suggesting that traits with different patterns of phylogenetic conservation underlie the responses to different perturbations. We conclude that a phylogenetic approach may be useful in predicting how soil bacterial communities respond to a variety of global changes. This article is part of the theme issue 'Conceptual challenges in microbial community ecology'.
Collapse
Affiliation(s)
- Kazuo Isobe
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Nicholas J. Bouskill
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eoin L. Brodie
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Erika A. Sudderth
- Center for Environmental Studies, Brown University, Providence, RI, USA
| | - Jennifer B. H. Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| |
Collapse
|
19
|
Stable Isotope Probing Techniques and Methodological Considerations Using 15N. Methods Mol Biol 2019. [PMID: 31407305 DOI: 10.1007/978-1-4939-9721-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Nitrogen fixation and assimilation processes are vital to the functioning of any ecosystem. Nevertheless, studying these processes using 15N-based stable isotope probing was so far limited because of technical challenges related to the relative rarity of nitrogen in nucleic acids and proteins compared to carbon, and because of its absence in lipids. However, the recent adoption of high-throughput sequencing and statistical modelling methods to SIP studies increased the sensitivity of the method and enabled overcoming some of the challenges. This chapter describes in detail how to perform DNA- and RNA-SIP using 15N.
Collapse
|
20
|
Evolutionary history constrains microbial traits across environmental variation. Nat Ecol Evol 2019; 3:1064-1069. [DOI: 10.1038/s41559-019-0918-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/07/2019] [Indexed: 11/08/2022]
|
21
|
Isobe K, Allison SD, Khalili B, Martiny AC, Martiny JBH. Phylogenetic conservation of bacterial responses to soil nitrogen addition across continents. Nat Commun 2019; 10:2499. [PMID: 31175309 PMCID: PMC6555827 DOI: 10.1038/s41467-019-10390-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/03/2019] [Indexed: 11/24/2022] Open
Abstract
Soil microbial communities are intricately linked to ecosystem functioning such as nutrient cycling; therefore, a predictive understanding of how these communities respond to environmental changes is of great interest. Here, we test whether phylogenetic information can predict the response of bacterial taxa to nitrogen (N) addition. We analyze the composition of soil bacterial communities in 13 field experiments across 5 continents and find that the N response of bacteria is phylogenetically conserved at each location. Remarkably, the phylogenetic pattern of N responses is similar when merging data across locations. Thus, we can identify bacterial clades - the size of which are highly variable across the bacterial tree - that respond consistently to N addition across locations. Our findings suggest that a phylogenetic approach may be useful in predicting shifts in microbial community composition in the face of other environmental changes.
Collapse
Affiliation(s)
- Kazuo Isobe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA.
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.
| | - Steven D Allison
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
- Department of Earth System Science, University of California, Irvine, CA, 92697, USA
| | - Banafshe Khalili
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Adam C Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
- Department of Earth System Science, University of California, Irvine, CA, 92697, USA
| | - Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
22
|
Li J, Mau RL, Dijkstra P, Koch BJ, Schwartz E, Liu XJA, Morrissey EM, Blazewicz SJ, Pett-Ridge J, Stone BW, Hayer M, Hungate BA. Predictive genomic traits for bacterial growth in culture versus actual growth in soil. THE ISME JOURNAL 2019. [PMID: 31053828 DOI: 10.1038/s41396‐019‐0422‐z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Relationships between microbial genes and performance are often evaluated in the laboratory in pure cultures, with little validation in nature. Here, we show that genomic traits related to laboratory measurements of maximum growth potential failed to predict the growth rates of bacteria in unamended soil, but successfully predicted growth responses to resource pulses: growth increased with 16S rRNA gene copy number and declined with genome size after substrate addition to soils, responses that were repeated in four different ecosystems. Genome size best predicted growth rate in response to addition of glucose alone; adding ammonium with glucose weakened the relationship, and the relationship was absent in nutrient-replete pure cultures, consistent with the idea that reduced genome size is a mechanism of nutrient conservation. Our findings demonstrate that genomic traits of soil bacteria can map to their ecological performance in nature, but the mapping is poor under native soil conditions, where genomic traits related to stress tolerance may prove more predictive. These results remind that phenotype depends on environmental context, underscoring the importance of verifying proposed schemes of trait-based strategies through direct measurement of performance in nature, an important and currently missing foundation for translating microbial processes from genes to ecosystems.
Collapse
Affiliation(s)
- Junhui Li
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Rebecca L Mau
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Benjamin J Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Xiao-Jun Allen Liu
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Ember M Morrissey
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Steven J Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Bram W Stone
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA. .,Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA.
| |
Collapse
|
23
|
Predictive genomic traits for bacterial growth in culture versus actual growth in soil. ISME JOURNAL 2019; 13:2162-2172. [PMID: 31053828 DOI: 10.1038/s41396-019-0422-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022]
Abstract
Relationships between microbial genes and performance are often evaluated in the laboratory in pure cultures, with little validation in nature. Here, we show that genomic traits related to laboratory measurements of maximum growth potential failed to predict the growth rates of bacteria in unamended soil, but successfully predicted growth responses to resource pulses: growth increased with 16S rRNA gene copy number and declined with genome size after substrate addition to soils, responses that were repeated in four different ecosystems. Genome size best predicted growth rate in response to addition of glucose alone; adding ammonium with glucose weakened the relationship, and the relationship was absent in nutrient-replete pure cultures, consistent with the idea that reduced genome size is a mechanism of nutrient conservation. Our findings demonstrate that genomic traits of soil bacteria can map to their ecological performance in nature, but the mapping is poor under native soil conditions, where genomic traits related to stress tolerance may prove more predictive. These results remind that phenotype depends on environmental context, underscoring the importance of verifying proposed schemes of trait-based strategies through direct measurement of performance in nature, an important and currently missing foundation for translating microbial processes from genes to ecosystems.
Collapse
|
24
|
Quantifying population-specific growth in benthic bacterial communities under low oxygen using H 218O. ISME JOURNAL 2019; 13:1546-1559. [PMID: 30783213 PMCID: PMC6776007 DOI: 10.1038/s41396-019-0373-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 01/09/2023]
Abstract
The benthos in estuarine environments often experiences periods of regularly occurring hypoxic and anoxic conditions, dramatically impacting biogeochemical cycles. How oxygen depletion affects the growth of specific uncultivated microbial populations within these diverse benthic communities, however, remains poorly understood. Here, we applied H218O quantitative stable isotope probing (qSIP) in order to quantify the growth of diverse, uncultured bacterial populations in response to low oxygen concentrations in estuarine sediments. Over the course of 7- and 28-day incubations with redox conditions spanning from hypoxia to euxinia (sulfidic), 18O labeling of bacterial populations exhibited different patterns consistent with micro-aerophilic, anaerobic, facultative anaerobic, and aerotolerant anaerobic growth. 18O-labeled populations displaying anaerobic growth had a significantly non-random phylogenetic distribution, exhibited by numerous clades currently lacking cultured representatives within the Planctomycetes, Actinobacteria, Latescibacteria, Verrucomicrobia, and Acidobacteria. Genes encoding the beta-subunit of the dissimilatory sulfate reductase (dsrB) became 18O labeled only during euxinic conditions. Sequencing of these 18O-labeled dsrB genes showed that Acidobacteria were the dominant group of growing sulfate-reducing bacteria, highlighting their importance for sulfur cycling in estuarine sediments. Our findings provide the first experimental constraints on the redox conditions underlying increased growth in several groups of "microbial dark matter", validating hypotheses put forth by earlier metagenomic studies.
Collapse
|
25
|
Linking Uncultivated Microbial Populations and Benthic Carbon Turnover by Using Quantitative Stable Isotope Probing. Appl Environ Microbiol 2018; 84:AEM.01083-18. [PMID: 29980553 PMCID: PMC6122004 DOI: 10.1128/aem.01083-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/28/2018] [Indexed: 11/20/2022] Open
Abstract
Little is known about the ecological role of uncultivated microbial populations in carbon turnover in benthic environments. To better understand this, we used quantitative stable isotope probing (qSIP) to quantify the abundance of diverse, specific groups of uncultivated bacteria and archaea involved in autotrophy and heterotrophy in a benthic lacustrine habitat. Our results provide quantitative evidence for active heterotrophic and autotrophic metabolism of several poorly understood microbial groups, thus demonstrating their relevance for carbon turnover in benthic settings. Archaeal ammonia oxidizers were significant drivers of in situ “dark” primary production supporting the growth of heterotrophic bacteria. These findings expand our understanding of the microbial populations within benthic food webs and the role of uncultivated microbes in benthic carbon turnover. Benthic environments harbor highly diverse and complex microbial communities that control carbon fluxes, but the role of specific uncultivated microbial groups in organic matter turnover is poorly understood. In this study, quantitative DNA stable isotope probing (DNA-qSIP) was used for the first time to link uncultivated populations of bacteria and archaea to carbon turnover in lacustrine surface sediments. After 1-week incubations in the dark with [13C]bicarbonate, DNA-qSIP showed that ammonia-oxidizing archaea (AOA) were the dominant active chemolithoautotrophs involved in the production of new organic matter. Natural 13C-labeled organic matter was then obtained by incubating sediments in the dark for 2.5 months with [13C]bicarbonate, followed by extraction and concentration of high-molecular-weight (HMW) (>50-kDa) organic matter. qSIP showed that the labeled organic matter was turned over within 1 week by 823 microbial populations (operational taxonomic units [OTUs]) affiliated primarily with heterotrophic Proteobacteria, Chloroflexi, Verrucomicrobia, and Bacteroidetes. However, several OTUs affiliated with the candidate microbial taxa Latescibacteria, Omnitrophica, Aminicentantes, Cloacimonates, AC1, Bathyarchaeota, and Woesearchaeota, groups known only from genomic signatures, also contributed to biomass turnover. Of these 823 labeled OTUs, 52% (primarily affiliated with Proteobacteria) also became labeled in 1-week incubations with [13C]bicarbonate, indicating that they turned over carbon faster than OTUs that were labeled only in incubations with 13C-labeled HMW organic matter. These taxa consisted primarily of uncultivated populations within the Firmicutes, Bacteroidetes, Verrucomicrobia, and Chloroflexi, highlighting their ecological importance. Our study helps define the role of several poorly understood, uncultivated microbial groups in the turnover of benthic carbon derived from “dark” primary production. IMPORTANCE Little is known about the ecological role of uncultivated microbial populations in carbon turnover in benthic environments. To better understand this, we used quantitative stable isotope probing (qSIP) to quantify the abundance of diverse, specific groups of uncultivated bacteria and archaea involved in autotrophy and heterotrophy in a benthic lacustrine habitat. Our results provide quantitative evidence for active heterotrophic and autotrophic metabolism of several poorly understood microbial groups, thus demonstrating their relevance for carbon turnover in benthic settings. Archaeal ammonia oxidizers were significant drivers of in situ “dark” primary production supporting the growth of heterotrophic bacteria. These findings expand our understanding of the microbial populations within benthic food webs and the role of uncultivated microbes in benthic carbon turnover.
Collapse
|