1
|
Wei W, Tian Y, Cai L, Xu Y, Xiao X, Wang Q, Wang H, Dong C, Shao Z, Jiao N, Zhang R. Survival of surface bacteriophages and their hosts in in situ deep-sea environments. Microbiol Spectr 2024; 12:e0453422. [PMID: 38051228 PMCID: PMC10783000 DOI: 10.1128/spectrum.04534-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 10/27/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE The survival of the sinking prokaryotes and viruses in the deep-sea environment is crucial for deep-sea ecosystems and biogeochemical cycles. Through an in situ deep-sea long-term incubation device, our results showed that viral particles and infectivity had still not decayed completely after in situ incubation for 1 year. This suggests that, via infection and lysis, surface viruses with long-term infectious activity in situ deep-sea environments may influence deep-sea microbial populations in terms of activity, function, diversity, and community structure and ultimately affect deep-sea biogeochemical cycles, highlighting the need for additional research in this area.
Collapse
Affiliation(s)
- Wei Wei
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yuan Tian
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yongle Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xilin Xiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qiong Wang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Haowen Wang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Chunming Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| |
Collapse
|
2
|
Liu Y, Meng X, Zheng H, Cai L, Wei S, He M, He J, Hao Y, Ge C, Liu J, Chen F, Xu Y. A novel long-tailed myovirus represents a new T4-like cyanophage cluster. Front Microbiol 2023; 14:1293846. [PMID: 38029084 PMCID: PMC10665884 DOI: 10.3389/fmicb.2023.1293846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Cyanophages affect the abundance, diversity, metabolism, and evolution of picocyanobacteria in marine ecosystems. Here we report an estuarine Synechococcus phage, S-CREM2, which represents a novel viral genus and leads to the establishment of a new T4-like cyanophage clade named cluster C. S-CREM2 possesses the longest tail (~418 nm) among isolated cyanomyoviruses and encodes six tail-related proteins that are exclusively homologous to those predicted in the cluster C cyanophages. Furthermore, S-CREM2 may carry three regulatory proteins in the virion, which may play a crucial role in optimizing the host intracellular environment for viral replication at the initial stage of infection. The cluster C cyanophages lack auxiliary metabolic genes (AMGs) that are commonly found in cyanophages of the T4-like clusters A and B and encode unique AMGs like an S-type phycobilin lyase gene. A variation in the composition of tRNA and cis-regulatory RNA genes was observed between the marine and freshwater phage strains in cluster C, reflecting their different modes of coping with hosts and habitats. The cluster C cyanophages are widespread in estuarine and coastal regions and exhibit equivalent or even higher relative abundance compared to those of clusters A and B cyanophages in certain estuarine regions. The isolation of cyanophage S-CREM2 provides new insights into the phage-host interactions mediated by both newly discovered AMGs and virion-associated proteins and emphasizes the ecological significance of cluster C cyanophages in estuarine environments.
Collapse
Affiliation(s)
- Yuanfang Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xue Meng
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Hongrui Zheng
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Minglu He
- School of Information Science and Engineering, Shandong University, Qingdao, China
| | - Jiale He
- School of Life Science, Shandong University, Qingdao, China
| | - Yue Hao
- School of Life Science, Shandong University, Qingdao, China
| | - Chang Ge
- School of Life Science, Shandong University, Qingdao, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| | - Yongle Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Wang Y, Ferrinho S, Connaris H, Goss RJM. The Impact of Viral Infection on the Chemistries of the Earth's Most Abundant Photosynthesizes: Metabolically Talented Aquatic Cyanobacteria. Biomolecules 2023; 13:1218. [PMID: 37627283 PMCID: PMC10452541 DOI: 10.3390/biom13081218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Cyanobacteria are the most abundant photosynthesizers on earth, and as such, they play a central role in marine metabolite generation, ocean nutrient cycling, and the control of planetary oxygen generation. Cyanobacteriophage infection exerts control on all of these critical processes of the planet, with the phage-ported homologs of genes linked to photosynthesis, catabolism, and secondary metabolism (marine metabolite generation). Here, we analyze the 153 fully sequenced cyanophages from the National Center for Biotechnology Information (NCBI) database and the 45 auxiliary metabolic genes (AMGs) that they deliver into their hosts. Most of these AMGs are homologs of those found within cyanobacteria and play a key role in cyanobacterial metabolism-encoding proteins involved in photosynthesis, central carbon metabolism, phosphate metabolism, methylation, and cellular regulation. A greater understanding of cyanobacteriophage infection will pave the way to a better understanding of carbon fixation and nutrient cycling, as well as provide new tools for synthetic biology and alternative approaches for the use of cyanobacteria in biotechnology and sustainable manufacturing.
Collapse
Affiliation(s)
- Yunpeng Wang
- School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9AJ, UK; (S.F.); (H.C.)
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9SX, UK
| | - Scarlet Ferrinho
- School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9AJ, UK; (S.F.); (H.C.)
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9SX, UK
| | - Helen Connaris
- School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9AJ, UK; (S.F.); (H.C.)
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9SX, UK
| | - Rebecca J. M. Goss
- School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9AJ, UK; (S.F.); (H.C.)
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9SX, UK
| |
Collapse
|
4
|
Luo L, Ma X, Guo R, Jiang T, Wang T, Shao H, He H, Wang H, Liang Y, McMinn A, Guo C, Wang M. Characterization and genomic analysis of a novel Synechococcus phage S-H9-2 belonging to Bristolvirus genus isolated from the Yellow Sea. Virus Res 2023; 328:199072. [PMID: 36781075 DOI: 10.1016/j.virusres.2023.199072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023]
Abstract
Cyanophages are known to influence the population dynamics and community structure of cyanobacteria and thus play an important role in biogeochemical cycles in aquatic ecosystems. In this study, a novel Synechococcus phage S-H9-2 infecting Synechococcus sp. WH 8102 was isolated from the coastal water of the Yellow Sea. Synechococcus phage S-H9-2 contains a 187,320 bp genome of double-stranded DNA with a G + C content of 40.3%, 202 potential open reading frames (ORFs), and 15 tRNAs. Phylogenetic analysis and nucleotide-based intergenomic similarity suggest that Synechococcus phage S-H9-2 belongs to the Bristolvirus genus under the family Kyanoviridae. Homologs of the S-H9-2 open reading frame can be found in a variety of marine environments, as shown by the results of mapping the genome sequence of S-H9-2 to the Global Ocean Viromes 2.0 dataset. The presence of auxiliary metabolic genes (AMGs) related to photosynthesis, carbon metabolism, and phosphorus assimilation, as well as phylogenetic relationships based on complete genome sequences, reflect the mechanism of phage-host interaction and host-specific strategies for adaptation to environmental conditions. This study enriches the current genomic database of cyanophage and contributed to our understanding of the virus-host interactions and their adaption to the environment.
Collapse
Affiliation(s)
- Lin Luo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiaohong Ma
- Department of Pediatrics, Qingdao Municipal Hospital, Qingdao266011, China
| | - Ruizhe Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Tong Jiang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Tiancong Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Hui He
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Hualong Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Yantao Liang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China
| | - Andrew McMinn
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, SA
| | - Cui Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China.
| | - Min Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao 266003, China; The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
5
|
Zhu X, Li Z, Tong Y, Chen L, Sun T, Zhang W. From natural to artificial cyanophages: Current progress and application prospects. ENVIRONMENTAL RESEARCH 2023; 223:115428. [PMID: 36746205 DOI: 10.1016/j.envres.2023.115428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The over proliferation of harmful cyanobacteria and their cyanotoxins resulted in damaged aquatic ecosystem, polluted drinking water and threatened human health. Cyanophages are a kind of viruses that exclusively infect cyanobacteria, which is considered as a potential strategy to deal with cyanobacterial blooms. Nevertheless, the infecting host range and/or lysis efficiency of natural cyanophages is limited, rising the necessity of constructing non-natural cyanophages via artificial modification, design and synthesis to expand their host range and/or efficiency. The paper firstly reviewed representative cyanophages such as P60 with a short latent period of 1.5 h and S-CBS1 having a burst size up to 200 PFU/cell. To explore the in-silico design principles, we critically summarized the interactions between cyanophages and the hosts, indicating modifying the recognized receptors, enhancing the adsorption ability, changing the lysogeny and excluding the defense of hosts are important for artificial cyanophages. The research progress of synthesizing artificial cyanophages were summarized subsequently, raising the importance of developing genetic manipulation technologies and their rescue strategies in the future. Meanwhile, Large-scale preparation of cyanophages for bloom control is a big challenge. The application prospects of artificial cyanophages besides cyanobacteria bloom control like adaptive evolution and phage therapy were discussed at last. The review will promote the design, synthesis and application of cyanophages for cyanobacteria blooms, which may provide new insights for the related water pollution control and ensuring hydrosphere security.
Collapse
Affiliation(s)
- Xiaofei Zhu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China; Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Zipeng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China; Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China.
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China; Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China.
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China; Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
6
|
Cai L, Weinbauer MG, Xie L, Zhang R. The smallest in the deepest: the enigmatic role of viruses in the deep biosphere. Natl Sci Rev 2023; 10:nwad009. [PMID: 36960220 PMCID: PMC10029852 DOI: 10.1093/nsr/nwad009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
It is commonly recognized that viruses control the composition, metabolism, and evolutionary trajectories of prokaryotic communities, with resulting vital feedback on ecosystem functioning and nutrient cycling in a wide range of ecosystems. Although the deep biosphere has been estimated to be the largest reservoir for viruses and their prokaryotic hosts, the biology and ecology of viruses therein remain poorly understood. The deep virosphere is an enigmatic field of study in which many critical questions are still to be answered. Is the deep virosphere simply a repository for deeply preserved, non-functioning virus particles? Or are deep viruses infectious agents that can readily infect suitable hosts and subsequently shape microbial populations and nutrient cycling? Can the cellular content released by viral lysis, and even the organic structures of virions themselves, serve as the source of bioavailable nutrients for microbial activity in the deep biosphere as in other ecosystems? In this review, we synthesize our current knowledge of viruses in the deep biosphere and seek to identify topics with the potential for substantial discoveries in the future.
Collapse
Affiliation(s)
- Lanlan Cai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Markus G Weinbauer
- Sorbonne Universités, UPMC, Université Paris 06, CNRS, Laboratoire d’Océanographie de Villefranche (LOV), Villefranche BP28, France
| | - Le Xie
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | | |
Collapse
|
7
|
An Estuarine Cyanophage S-CREM1 Encodes Three Distinct Antitoxin Genes and a Large Number of Non-Coding RNA Genes. Viruses 2023; 15:v15020380. [PMID: 36851594 PMCID: PMC9964418 DOI: 10.3390/v15020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Cyanophages play important roles in regulating the population dynamics, community structure, metabolism, and evolution of cyanobacteria in aquatic ecosystems. Here, we report the genomic analysis of an estuarine cyanophage, S-CREM1, which represents a new genus of T4-like cyanomyovirus and exhibits new genetic characteristics. S-CREM1 is a lytic phage which infects estuarine Synechococcus sp. CB0101. In contrast to many cyanomyoviruses that usually have a broad host range, S-CREM1 only infected the original host strain. In addition to cyanophage-featured auxiliary metabolic genes (AMGs), S-CREM1 also contains unique AMGs, including three antitoxin genes, a MoxR family ATPase gene, and a pyrimidine dimer DNA glycosylase gene. The finding of three antitoxin genes in S-CREM1 implies a possible phage control of host cells during infection. One small RNA (sRNA) gene and three cis-regulatory RNA genes in the S-CREM1 genome suggest potential molecular regulations of host metabolism by the phage. In addition, S-CREM1 contains a large number of tRNA genes which may reflect a genomic adaption to the nutrient-rich environment. Our study suggests that we are still far from understanding the viral diversity in nature, and the complicated virus-host interactions remain to be discovered. The isolation and characterization of S-CREM1 further our understanding of the gene diversity of cyanophages and phage-host interactions in the estuarine environment.
Collapse
|
8
|
Isolation, characterization, and comparative genomic analysis of vB_BviS-A10Y, a novel bacteriophage from mangrove sediments. Arch Virol 2023; 168:54. [PMID: 36609927 DOI: 10.1007/s00705-022-05637-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/24/2022] [Indexed: 01/09/2023]
Abstract
Mangrove is among the most carbon-rich biomes on earth, and viruses are believed to play a significant role in modulating local and global carbon cycling. However, few viruses have been isolated from mangrove sediments to date. Here, we report the isolation of a novel Bacillus phage (named phage vB_BviS-A10Y) from mangrove sediments. Phage vB_BviS-A10Y has a hexameric head with a diameter of ~ 79.22 nm and a tail with a length of ~ 548.56 nm, which are typical features of siphophages. vB_BviS-A10Y initiated host lysis at 3.5 h postinfection with a burst size of 25 plaque-forming units (PFU)/cell. The genome of phage vB_BviS-A10Y is 162,435 bp long with 225 predicted genes, and the GC content is 34.03%. A comparison of the whole genome sequence of phage vB_BviS-A10Y with those of other phages from the NCBI viral genome database showed that phage vB_BviS-A10Y has the highest similarity (73.7% identity with 33% coverage) to Bacillus phage PBC2. Interestingly, abundant auxiliary metabolic genes (AMGs) were identified in the vB_BviS-A10Y genome. The presence of a β-1,3-glucosyltransferase gene in the phage genome supported our previous hypothesis that mangrove viruses may manipulate carbon cycling directly through their encoded carbohydrate-active enzyme (CAZyme) genes. Therefore, our study will contribute to a better understanding of the diversity and potential roles of viruses in mangrove ecosystems.
Collapse
|
9
|
Zhang X, Liang Y, Zheng K, Wang Z, Dong Y, Liu Y, Ren L, Wang H, Han Y, McMinn A, Sung YY, Mok WJ, Wong LL, He J, Wang M. Characterization and genomic analysis of phage vB_ValR_NF, representing a new viral family prevalent in the Ulva prolifera blooms. Front Microbiol 2023; 14:1161265. [PMID: 37213492 PMCID: PMC10196503 DOI: 10.3389/fmicb.2023.1161265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/05/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Vibrio is an important bacterial genus containing many pathogenic species. Although more and more Vibrio phages were isolated, the genome, ecology and evolution of Vibrio phages and their roles in bacteriophage therapy, have not been fully revealed. Methods Novel Vibrio phage vB_ValR_NF infecting Vibrio alginolyticus was isolated from the coastal waters of Qingdao during the Ulva prolifera blooms, Characterization and genomic feature of phage vB_ValR_NF has been analysed using phage isolation, sequencing and metagenome method. Results and Discussion Phage vB_ValR_NF has a siphoviral morphology (icosahedral head 114±1 nm in diameter; a tail length of 231±1 nm), a short latent period (30 minutes) and a large burst size (113 virions per cell), and the thermal/pH stability study showed that phage vB_ValR_NF was highly tolerant to a range of pHs (4-12) and temperatures (-20 - 45 °C), respectively. Host range analysis suggests that phage vB_ValR_NF not only has a high inhibitory ability against the host strain V. alginolyticus, but also can infect 7 other Vibrio strains. In addition, the phage vB_ValR_NF has a double-stranded 44, 507 bp DNA genome, with 43.10 % GC content and 75 open reading frames. Three auxiliary metabolic genes associated with aldehyde dehydrogenase, serine/threonine protein phosphatase and calcineurin-like phosphoesterase were predicted, might help the host V. alginolyticus occupy the survival advantage, thus improving the survival chance of phage vB_ValR_NF under harsh conditions. This point can be supported by the higher abundance of phage vB_ValR_NF during the U. prolifera blooms than in other marine environments. Further phylogenetic and genomic analysis shows that the viral group represented by Vibrio phage vB_ValR_NF is different from other well-defined reference viruses, and can be classified into a new family, named Ruirongviridae. In general, as a new marine phage infecting V. alginolyticus, phage vB_ValR_NF provides basic information for further molecular research on phage-host interactions and evolution, and may unravel a novel insight into changes in the community structure of organisms during the U. prolifera blooms. At the same time, its high tolerance to extreme conditions and excellent bactericidal ability will become important reference factors when evaluating the potential of phage vB_ValR_NF in bacteriophage therapy in the future.
Collapse
Affiliation(s)
- Xinran Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Antarctic Great Wall Ecology National Observation and Research Station, MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- *Correspondence: Yantao Liang, ; Jianfeng He, ; Min Wang,
| | - Kaiyang Zheng
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ziyue Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yue Dong
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yundan Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Linyi Ren
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongmin Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ying Han
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Jianfeng He
- Antarctic Great Wall Ecology National Observation and Research Station, MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
- College of Environmental Science and Engineering, Tongji University, Shanghai, China
- *Correspondence: Yantao Liang, ; Jianfeng He, ; Min Wang,
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Haide College, Ocean University of China, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Yantao Liang, ; Jianfeng He, ; Min Wang,
| |
Collapse
|
10
|
Metagenomic insights into taxonomic, functional diversity and inhibitors of microbial biofilms. Microbiol Res 2022; 265:127207. [DOI: 10.1016/j.micres.2022.127207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/17/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022]
|
11
|
Wang Q, Cai L, Zhang R, Wei S, Li F, Liu Y, Xu Y. A Unique Set of Auxiliary Metabolic Genes Found in an Isolated Cyanophage Sheds New Light on Marine Phage-Host Interactions. Microbiol Spectr 2022; 10:e0236722. [PMID: 36190421 PMCID: PMC9602691 DOI: 10.1128/spectrum.02367-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/10/2022] [Indexed: 01/04/2023] Open
Abstract
Cyanophages, viruses that infect cyanobacteria, are abundant and widely distributed in aquatic ecosystems, playing important roles in regulating the abundance, activity, diversity, and evolution of cyanobacteria. A T4-like cyanophage, S-SCSM1, infecting Synechococcus and Prochlorococcus strains of different ecotypes, was isolated from the South China Sea in this study. For the first time, a mannose-6-phosphate isomerase (MPI) gene was identified in the cultured cyanophage. At least 11 phylogenetic clusters of cyanophage MPIs were retrieved and identified from the marine metagenomic data sets, indicating that cyanophage MPIs in the marine environment are extremely diverse. The existence of 24 genes encoding 2-oxoglutarate (2OG)-Fe(II) oxygenase superfamily proteins in the S-SCSM1 genome emphasizes their potential importance and diverse functions in reprogramming host metabolism during phage infection. Novel cell wall synthesis and modification genes found in the S-SCSM1 genome indicate that diverse phenotypic modifications imposed by phages on cyanobacterial hosts remain to be discovered. Two noncoding RNAs of cis-regulatory elements in the S-SCSM1 genome were predicted to be associated with host exopolysaccharide metabolism and photosynthesis. The isolation and genomic characterization of cyanophage S-SCSM1 provide more information on the genetic diversity of cyanophages and phage-host interactions in the marine environment. IMPORTANCE Cyanophages play important ecological roles in aquatic ecosystems. Genomic and proteomic characterizations of the T4-like cyanophage S-SCSM1 indicate that novel and diverse viral genes and phage-host interactions in the marine environment remain unexplored. The first identified mannose-6-phosphate isomerase (MPI) gene from a cultured cyanophage was found in the S-SCSM1 genome, although MPIs were previously found in viral metagenomes at high frequencies similar to those of the cyanophage photosynthetic gene psbA. The presence of 24 genes encoding 2-oxoglutarate (2OG)-Fe(II) oxygenase superfamily proteins, novel cell wall synthesis and modification genes, a nonbleaching protein A gene, and 2 noncoding RNAs of cis-regulatory elements in the S-SCSM1 genome as well as the presence of a virion-associated regulatory protein indicate the diverse functions that cyanophages have in reprogramming the metabolism and modifying the phenotypes of hosts during infection.
Collapse
Affiliation(s)
- Qiong Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, People’s Republic of China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People’s Republic of China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People’s Republic of China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People’s Republic of China
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, People’s Republic of China
| | - Fang Li
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, People’s Republic of China
| | - Yuanfang Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, People’s Republic of China
| | - Yongle Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, People’s Republic of China
| |
Collapse
|
12
|
Isolation and Characterization of a Novel Cyanophage Encoding Multiple Auxiliary Metabolic Genes. Viruses 2022; 14:v14050887. [PMID: 35632629 PMCID: PMC9146016 DOI: 10.3390/v14050887] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
As significant drivers of cyanobacteria mortality, cyanophages have been known to regulate the population dynamics, metabolic activities, and community structure of this most important marine autotrophic picoplankton and, therefore, influence the global primary production and biogeochemical cycle in aquatic ecosystems. In the present study, a lytic Synechococcus phage, namely S-SZBM1, was isolated and identified. Cyanophage S-SZBM1 has a double-stranded DNA genome of 177,834 bp with a G+C content of 43.31% and contains a total of 218 predicted ORFs and six tRNA genes. Phylogenetic analysis and nucleotide-based intergenomic similarity suggested that cyanophage S-SZBM1 belongs to a new genus under the family Kyanoviridae. A variety of auxiliary metabolic genes (AMGs) that have been proved or speculated to relate to photosynthesis, carbon metabolism, nucleotide synthesis and metabolism, cell protection, and other cell metabolism were identified in cyanophage S-SZBM1 genome and may affect host processes during infection. In addition, 24 of 32 predicted structural proteins were identified by a high-throughput proteome analysis which were potentially involved in the assembly processes of virion. The genomic and proteomic analysis features of cyanophage S-SZBM1 offer a valuable insight into the interactions between cyanophages and their hosts during infection.
Collapse
|
13
|
Zheng H, Liu B, Xu Y, Zhang Z, Man H, Liu J, Chen F. An Inducible Microbacterium Prophage vB_MoxS-R1 Represents a Novel Lineage of Siphovirus. Viruses 2022; 14:v14040731. [PMID: 35458461 PMCID: PMC9030533 DOI: 10.3390/v14040731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lytic and lysogenic infections are the main strategies used by viruses to interact with microbial hosts. The genetic information of prophages provides insights into the nature of phages and their potential influences on hosts. Here, the siphovirus vB_MoxS-R1 was induced from a Microbacterium strain isolated from an estuarine Synechococcus culture. vB_MoxS-R1 has a high replication capability, with an estimated burst size of 2000 virions per cell. vB_MoxS-R1 represents a novel phage genus-based genomic analysis. Six transcriptional regulator (TR) genes were predicted in the vB_MoxS-R1 genome. Four of these TR genes are involved in stress responses, virulence and amino acid transportation in bacteria, suggesting that they may play roles in regulating the host cell metabolism in response to external environmental changes. A glycerophosphodiester phosphodiesterase gene related to phosphorus acquisition was also identified in the vB_MoxS-R1 genome. The presence of six TR genes and the phosphorus-acquisition gene suggests that prophage vB_MoxS-R1 has the potential to influence survival and adaptation of its host during lysogeny. Possession of four endonuclease genes in the prophage genome suggests that vB_MoxS-R1 is likely involved in DNA recombination or gene conversion and further influences host evolution.
Collapse
Affiliation(s)
- Hongrui Zheng
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
| | - Binbin Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
| | - Yongle Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361000, China
- Correspondence: (Y.X.); (J.L.)
| | - Zefeng Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
| | - Hongcong Man
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao 266237, China
- Correspondence: (Y.X.); (J.L.)
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA;
| |
Collapse
|
14
|
Ma R, Shao S, Wei S, Ye J, Yang Y, Jiao N, Zhang R. A Novel Phage Infecting the Marine Photoheterotrophic Bacterium Citromicrobium bathyomarinum. Viruses 2022; 14:v14030512. [PMID: 35336919 PMCID: PMC8953757 DOI: 10.3390/v14030512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
This study isolated and characterized a new phage infecting the marine photoheterotrophic bacterium Citromicrobium bathyomarinum, which fills the gap in research on phages targeting this ecologically important species. The phage vB_CbaS-RXM (RXM) has a dsDNA genome with a length of 104,206 bp and G+C content of 61.64%. The taxonomic analysis found a close evolutionary relationship between RXM, Erythrobacter phage vB_EliS-L02, and Sphingobium phage Lacusarx, and we propose that RXM represents a new species of the Lacusarxvirus genus. A one-step growth curve revealed a burst size of 75 plaque-forming units (PFUs) per cell in a 3-hour infection cycle. The lysis profile of RXM showed an intraspecific lethal rate of 26.3% against 38 citromicrobial strains. RXM contains 15 auxiliary metabolic genes (AMGs) related to diverse cellular processes, such as putative metabolic innovation and hijacking of host nucleotide metabolism to enhance its biosynthetic capacity. An in-depth analysis showed that phage functional genes strongly rely on the host for translation, while the translation of unique phage genes with less host dependency may be complemented by phage tRNA. Overall, our study investigated the infection kinetics, genetic traits, taxonomy, and predicted roles of AMGs and tRNA genes of this new phage, which contributes to a better understanding of phage diversity and phage–bacterium interactions.
Collapse
Affiliation(s)
- Ruijie Ma
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.M.); (S.W.); (Y.Y.); (N.J.)
| | - Shuai Shao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (S.S.); (J.Y.)
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.M.); (S.W.); (Y.Y.); (N.J.)
| | - Junlei Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (S.S.); (J.Y.)
| | - Yahui Yang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.M.); (S.W.); (Y.Y.); (N.J.)
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.M.); (S.W.); (Y.Y.); (N.J.)
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.M.); (S.W.); (Y.Y.); (N.J.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519080, China
- Correspondence:
| |
Collapse
|
15
|
Zhang D, He Y, Gin KYH. Genomic Characterization of a Novel Freshwater Cyanophage Reveals a New Lineage of Cyanopodovirus. Front Microbiol 2022; 12:768868. [PMID: 35095789 PMCID: PMC8790148 DOI: 10.3389/fmicb.2021.768868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are one of the dominant autotrophs in tropical freshwater communities, yet phages infecting them remain poorly characterized. Here we present the characterization of cyanophage S-SRP02, isolated from a tropical freshwater lake in Singapore, which infects Synechococcus sp. Strain SR-C1 isolated from the same lake. S-SRP02 represents a new evolutionary lineage of cyanophage. Out of 47 open reading frames (ORFs), only 20 ORFs share homology with genes encoding proteins of known function. There is lack of auxiliary metabolic genes which was commonly found as core genes in marine cyanopodoviruses. S-SRP02 also harbors unique structural genes highly divergent from other cultured phages. Phylogenetic analysis and viral proteomic tree further demonstrate the divergence of S-SRP02 from other sequenced phage isolates. Nonetheless, S-SRP02 shares synteny with phage genes of uncultured phages obtained from the Mediterranean Sea deep chlorophyll maximum fosmids, indicating the ecological importance of S-SRP02 and its related viruses. This is further supported by metagenomic mapping of environmental viral metagenomic reads onto the S-SRP02 genome.
Collapse
Affiliation(s)
- Dong Zhang
- NUS Environmental Research Institute (E2S2-CREATE), National University of Singapore, Singapore, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute (E2S2-CREATE), National University of Singapore, Singapore, Singapore.,Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Novel Freshwater Cyanophages Provide New Insights into Evolutionary Relationships between Freshwater and Marine Cyanophages. Microbiol Spectr 2021; 9:e0059321. [PMID: 34585945 PMCID: PMC8557907 DOI: 10.1128/spectrum.00593-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria and cyanophages are present widely in both freshwater and marine environments. However, freshwater cyanophages remain unknown largely due to the small numbers of cyanophage isolates despite their ecological and environmental significance. In this study, we present the characterization of two novel lytic freshwater cyanophages isolated from a tropical inland lake in Singapore, namely, cyanopodovirus S-SRP01 and cyanomyovirus S-SRM01, infecting two different strains of Synechococcus spp. Functional annotation of S-SRP01 and S-SRM01 genomes revealed a high degree of homology with marine cyanophages. Phylogenetic trees of concatenated genes and whole-genome alignment provided further evidence that S-SRP01 is close evolutionarily to marine cyanopodoviruses, while S-SRM01 is evolutionarily close to marine cyanomyoviruses. Few genetic similarities between freshwater and marine cyanophages have been identified in previous studies. The isolation of S-SRP01 and S-SRM01 expand current knowledge on freshwater cyanophages infecting Synechococcus spp. Their high degree of gene sharing provides new insights into the evolutionary relationships between freshwater and marine cyanophages. This relatedness is further supported by the discovery of similar phenomenon from other freshwater viral metagenomes. IMPORTANCE This study expands the current knowledge on freshwater cyanophage isolates and cyanophage genetic diversity, indicating that freshwater and marine cyanophages infecting Synechococcus spp. may share close genetic similarity and evolutionary relationships.
Collapse
|
17
|
Ding W, Wang R, Liang Z, Zhang R, Qian PY, Zhang W. Expanding our understanding of marine viral diversity through metagenomic analyses of biofilms. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:395-404. [PMID: 37073293 PMCID: PMC10077207 DOI: 10.1007/s42995-020-00078-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/06/2020] [Indexed: 05/03/2023]
Abstract
Recent metagenomics surveys have provided insights into the marine virosphere. However, these surveys have focused solely on viruses in seawater, neglecting those associated with biofilms. By analyzing 1.75 terabases of biofilm metagenomic data, 3974 viral sequences were identified from eight locations around the world. Over 90% of these viral sequences were not found in previously reported datasets. Comparisons between biofilm and seawater metagenomes identified viruses that are endemic to the biofilm niche. Analysis of viral sequences integrated within biofilm-derived microbial genomes revealed potential functional genes for trimeric autotransporter adhesin and polysaccharide metabolism, which may contribute to biofilm formation by the bacterial hosts. However, more than 70% of the genes could not be annotated. These findings show marine biofilms to be a reservoir of novel viruses and have enhanced our understanding of natural virus-bacteria ecosystems.
Collapse
Affiliation(s)
- Wei Ding
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
| | - Ruojun Wang
- Department of Ocean Sciences, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhicong Liang
- Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005 China
| | - Pei-Yuan Qian
- Department of Ocean Sciences, Hong Kong University of Science and Technology, Hong Kong, China
| | - Weipeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266100 China
- Institute for Advanced Ocean Study, Ocean University of China, Qingdao, 266100 China
- Department of Ocean Sciences, Hong Kong University of Science and Technology, Hong Kong, China
- Fok Ying Tung Research Institute, Hong Kong University of Science and Technology, Guangzhou, 510000 China
| |
Collapse
|
18
|
Morimoto D, Šulčius S, Yoshida T. Viruses of freshwater bloom-forming cyanobacteria: genomic features, infection strategies and coexistence with the host. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:486-502. [PMID: 32754956 DOI: 10.1111/1758-2229.12872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Freshwater bloom-forming cyanobacteria densely grow in the aquatic environments, leading to an increase in the viral-contact rate. They possess numerous antiviral genes, as well as cell differentiation- and physiological performance-related genes, owing to genome expansion. Their genomic features and unique lifestyles suggest that they coexist with cyanoviruses in ways different from marine cyanobacteria. Furthermore, genome contents of isolated freshwater bloom-forming cyanobacterial viruses have little in common with those of marine cyanoviruses studied to date. They lack the marine cyanoviral hallmark genes that sustain photosynthetic activity and redirect host metabolism to viral reproduction; therefore, they are predicted to share metabolisms and precursor pools with host cyanobacteria to ensure efficient viral reproduction and avoid nutrient deficiencies and antiviral response. Additionally, cyanovirus-cyanobacteria coexistence strategies may change as bloom density increases. Diverse genotypic populations of cyanoviruses and hosts coexist and fluctuate under high viral-contact rate conditions, leading to their rapid coevolution through antiviral responses. The ancestral and newly evolved genotypes coexist, thereby expanding the diversity levels of host and viral populations. Bottleneck events occurring due to season-related decreases in bloom-forming species abundance provide each genotype within cyanobacterial population an equal chance to increase in prevalence during the next bloom and enhance further diversification.
Collapse
Affiliation(s)
- Daichi Morimoto
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Sigitas Šulčius
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos 2, Vilnius, 08412, Lithuania
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
19
|
Wang M, Gao C, Jiang T, You S, Jiang Y, Guo C, He H, Liu Y, Zhang X, Shao H, Liu H, Liang Y, Wang M, McMinn A. Genomic analysis of Synechococcus phage S-B43 and its adaption to the coastal environment. Virus Res 2020; 289:198155. [PMID: 32941942 DOI: 10.1016/j.virusres.2020.198155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 11/17/2022]
Abstract
Synechococcus dominate picocyanobacterial communities in coastal environments. However, only a few Synechococcus phages have been described from the coastal seas of the Northwest Pacific Ocean. Here a new Synechococcus phage, S-B43 was isolated from the Bohai Sea, a semi-closed coastal sea of the Northwest Pacific Ocean. S-B43 is a member of Myoviridae, containing 275 predicted open reading frames. Fourteen auxiliary metabolic genes (AMG) were identified from the genome of S-B43, including five photosynthetic associated genes and several AMGs related to its adaption to the high turbidity and eutrophic coastal environment with a low ratio of phosphorus to nitrogen (HNLP). The occurrences of 31 AMGs among 34 cyanophage genomes indicates that AMGs zwf, gnd, speD, petF and those coding for FECH and thioredoxin were more common in coastal areas than in the open ocean and AMGs pebS and ho1 were more prevalent in the open ocean. The occurrence of cyanophage AMGs in different environments might be a reflection of the environmental adaption of their hosts. This study contributes to our understanding of the interactions between cyanobacteria and cyanophages and their environmental adaption to the coastal environment.
Collapse
Affiliation(s)
- Meiwen Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Chen Gao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Tong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Siyuan You
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Cui Guo
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Hui He
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yundan Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xinran Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Hongbin Liu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yantao Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Andrew McMinn
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
20
|
Complete genome sequence of a novel Bacillus phage, P59, that infects Bacillus oceanisediminis. Arch Virol 2020; 165:2679-2683. [PMID: 32797339 DOI: 10.1007/s00705-020-04761-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
P59, a virulent phage of Bacillus oceanisediminis, was isolated from the sediment of Weiming Lake at Peking University (Beijing, China). P59 showed the typical morphology of myovirids. The complete genome sequence of P59 is 159,363 bp in length with a G+C content of 42.34%. The genome sequence has very low similarity to the other phage genome sequences in the GenBank database, suggesting that P59 is a new phage. A total of 261 open reading frames and 15 tRNA genes were predicted. Based on its morphological and genetic traits, we propose phage P59 to be a new member of the family Herelleviridae.
Collapse
|
21
|
Jiang T, Guo C, Wang M, Wang M, Zhang X, Liu Y, Liang Y, Jiang Y, He H, Shao H, McMinn A. Genome Analysis of Two Novel Synechococcus Phages That Lack Common Auxiliary Metabolic Genes: Possible Reasons and Ecological Insights by Comparative Analysis of Cyanomyoviruses. Viruses 2020; 12:v12080800. [PMID: 32722486 PMCID: PMC7472177 DOI: 10.3390/v12080800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/01/2023] Open
Abstract
The abundant and widespread unicellular cyanobacteria Synechococcus plays an important role in contributing to global phytoplankton primary production. In the present study, two novel cyanomyoviruses, S-N03 and S-H34 that infected Synechococcus MW02, were isolated from the coastal waters of the Yellow Sea. S-N03 contained a 167,069-bp genome comprising double-stranded DNA with a G + C content of 50.1%, 247 potential open reading frames and 1 tRNA; S-H34 contained a 167,040-bp genome with a G + C content of 50.1%, 246 potential open reading frames and 5 tRNAs. These two cyanophages contain fewer auxiliary metabolic genes (AMGs) than other previously isolated cyanophages. S-H34 in particular, is currently the only known cyanomyovirus that does not contain any AMGs related to photosynthesis. The absence of such common AMGs in S-N03 and S-H34, their distinct evolutionary history and ecological features imply that the energy for phage production might be obtained from other sources rather than being strictly dependent on the maintenance of photochemical ATP under high light. Phylogenetic analysis showed that the two isolated cyanophages clustered together and had a close relationship with two other cyanophages of low AMG content. Comparative genomic analysis, habitats and hosts across 81 representative cyanomyovirus showed that cyanomyovirus with less AMGs content all belonged to Synechococcus phages isolated from eutrophic waters. The relatively small genome size and high G + C content may also relate to the lower AMG content, as suggested by the significant correlation between the number of AMGs and G + C%. Therefore, the lower content of AMG in S-N03 and S-H34 might be a result of viral evolution that was likely shaped by habitat, host, and their genomic context. The genomic content of AMGs in cyanophages may have adaptive significance and provide clues to their evolution.
Collapse
Affiliation(s)
- Tong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
| | - Cui Guo
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
- Correspondence:
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
| | - Meiwen Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
| | - Xinran Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
| | - Yundan Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
| | - Yantao Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
| | - Yong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
| | - Hui He
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
| | - Andrew McMinn
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (T.J.); (M.W.); (M.W.); (X.Z.); (Y.L.); (Y.L.); (Y.J.); (H.H.); (H.S.); (A.M.)
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
22
|
Jiang T, Guo C, Wang M, Wang M, You S, Liu Y, Zhang X, Liu H, Jiang Y, Shao H, Liang Y, McMinn A. Isolation and complete genome sequence of a novel cyanophage, S-B05, infecting an estuarine Synechococcus strain: insights into environmental adaptation. Arch Virol 2020; 165:1397-1407. [PMID: 32307604 DOI: 10.1007/s00705-020-04595-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/21/2020] [Indexed: 11/24/2022]
Abstract
A new cyanophage, S-B05, infecting a phycoerythrin-enriched (PE-type) Synechococcus strain was isolated by the liquid infection method, and its morphology and genetic features were examined. Phylogenetic analysis and morphological observation confirmed that S-B05 belongs to the family Myoviridae of the order Caudovirales. Its genome was fully sequenced, and found to be 208,857 bp in length with a G + C content of 39.9%. It contained 280 potential open reading frames and 123 conserved domains. Ninety-eight functional genes responsible for cyanophage structuring and packaging, DNA replication and regulation, and photosynthesis were identified, as well as genes encoding 172 hypothetical proteins. The genome of S-B05 is most similar to that of Prochlorococcus phage P-TIM68. Homologues of open reading frames of S-B05 can be found in various marine environments, as revealed by comparison of the S-B05 genome sequence to sequences in marine viral metagenomic databases. The presence of auxiliary metabolic genes (AMGs) related to photosynthesis, carbon metabolism, and phosphorus assimilation, as well as the phylogenetic relationships based on AMGs and the complete genome sequence, reflect the phage-host interaction mechanism or the specific adaptation strategy of the host to environmental conditions. The genome sequence information reported here will provide an important basis for further study of the adaptive evolution and ecological role of cyanophages and their hosts in the marine environment.
Collapse
Affiliation(s)
- Tong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Cui Guo
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China.
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China
| | - Meiwen Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Siyuan You
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yundan Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xinran Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hongbin Liu
- Department of Ocean Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Yong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yantao Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China
| | - Andrew McMinn
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| |
Collapse
|
23
|
Yang F, Jin H, Wang XQ, Li Q, Zhang JT, Cui N, Jiang YL, Chen Y, Wu QF, Zhou CZ, Li WF. Genomic Analysis of Mic1 Reveals a Novel Freshwater Long-Tailed Cyanophage. Front Microbiol 2020; 11:484. [PMID: 32322241 PMCID: PMC7156551 DOI: 10.3389/fmicb.2020.00484] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Lake Chaohu, one of the five largest freshwater lakes in China, has been suffering from severe cyanobacterial blooms in the summer for many years. Cyanophages, the viruses that specifically infect cyanobacteria, play a key role in modulating cyanobacterial population, and thus regulate the emergence and decline of cyanobacterial blooms. Here we report a long-tailed cyanophage isolated from Lake Chaohu, termed Mic1, which specifically infects the cyanobacterium Microcystis aeruginosa. Mic1 has an icosahedral head of 88 nm in diameter and a long flexible tail of 400 nm. It possesses a circular genome of 92,627 bp, which contains 98 putative open reading frames. Genome sequence analysis enabled us to define a novel terminase large subunit that consists of two types of intein, indicating that the genome packaging of Mic1 is under fine control via posttranslational maturation of the terminase. Moreover, phylogenetic analysis suggested Mic1 and mitochondria share a common evolutionary origin of DNA polymerase γ gene. All together, these findings provided a start-point for investigating the co-evolution of cyanophages and its cyanobacterial hosts.
Collapse
Affiliation(s)
- Feng Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hua Jin
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiao-Qian Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qiong Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jun-Tao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ning Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qing-Fa Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Wei-Fang Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
24
|
A newly isolated roseophage represents a distinct member of Siphoviridae family. Virol J 2019; 16:128. [PMID: 31694663 PMCID: PMC6836515 DOI: 10.1186/s12985-019-1241-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Members of the Roseobacter lineage are a major group of marine heterotrophic bacteria because of their wide distribution, versatile lifestyles and important biogeochemical roles. Bacteriophages, the most abundant biological entities in the ocean, play important roles in shaping their hosts' population structures and mediating genetic exchange between hosts. However, our knowledge of roseophages (bacteriophages that infect Roseobacter) is far behind that of their host counterparts, partly reflecting the need to isolate and analyze the phages associated with this ecologically important bacterial clade. METHODS vB_DshS-R4C (R4C), a novel virulent roseophage that infects Dinoroseobacter shibae DFL12T, was isolated with the double-layer agar method. The phage morphology was visualized with transmission electron microscopy. We characterized R4C in-depth with a genomic analysis and investigated the distribution of the R4C genome in different environments with a metagenomic recruitment analysis. RESULTS The double-stranded DNA genome of R4C consists of 36,291 bp with a high GC content of 66.75%. It has 49 genes with low DNA and protein homologies to those of other known phages. Morphological and phylogenetic analyses suggested that R4C is a novel member of the family Siphoviridae and is most closely related to phages in the genus Cronusvirus. However, unlike the Cronusvirus phages, R4C encodes an integrase, implying its ability to establish a lysogenic life cycle. A terminal analysis shows that, like that of λ phage, the R4C genome utilize the 'cohesive ends' DNA-packaging mechanism. Significantly, homologues of the R4C genes are more prevalent in coastal areas than in the open ocean. CONCLUSIONS Information about this newly discovered phage extends our understanding of bacteriophage diversity, evolution, and their roles in different environments.
Collapse
|