1
|
Ribeiro IDA, Paes JA, Wendisch VF, Ferreira HB, Passaglia LMP. Proteome profiling of Paenibacillus sonchi genomovar Riograndensis SBR5 T under conventional and alternative nitrogen fixation. J Proteomics 2024; 294:105061. [PMID: 38154550 DOI: 10.1016/j.jprot.2023.105061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/30/2023]
Abstract
Paenibacillus sonchi SBR5T is a Gram-positive, endospore-forming facultative aerobic diazotrophic bacterium that can fix nitrogen via an alternative Fe-only nitrogenase (AnfHDGK). In several bacteria, this alternative system is expressed under molybdenum (Mo)-limiting conditions when the conventional Mo-dependent nitrogenase (NifHDK) production is impaired. The regulatory mechanisms, metabolic processes, and cellular functions of N2 fixation by alternative and/or conventional systems are poorly understood in the Paenibacillus genus. We conducted a comparative proteomic profiling study of P. sonchi SBR5T grown under N2-fixing conditions with and without Mo supply through an LC-MS/MS and label-free quantification analysis to address this gap. Protein abundances revealed overrepresented processes related to anaerobiosis growth adaption, Fe-S cluster biosynthesis, ammonia assimilation, electron transfer, and sporulation under N2-fixing conditions compared to non-fixing control. Under Mo limitation, the Fe-only nitrogenase components were overrepresented together with the Mo-transporter system, while the dinitrogenase component (NifDK) of Mo‑nitrogenase was underrepresented. The dinitrogenase reductase component (NifH) and accessory proteins encoded by the nif operon had no significant differential expression, suggesting post-transcriptional regulation of nif gene products in this strain. Overall, this was the first comprehensive proteomic analysis of a diazotrophic strain from the Paenibacillaceae family, and it provided insights related to alternative N2-fixation by Fe-only nitrogenase. SIGNIFICANCE: In this work, we try to understand how the alternative nitrogen fixation system, presented by some diazotrophic bacteria, works. For this, we used the SBR5 lineage of P. sonchi, which presents the alternative system in which the nitrogenase cofactor is composed only of iron. In addition, we tried to unravel the proteome of this strain in different situations of nitrogen fixation, since, for Gram-positive bacteria, these systems are little known. The results achieved, through LC-MS/MS and label-free quantitative analysis, showed an overrepresentation of proteins related to different processes involved with growth under stressful conditions in situations of nitrogen deficiency, in addition to suggesting that some encoded proteins by the nif operon may be regulated at post-transcriptional levels. Our findings represent important steps toward the elucidation of nitrogen fixation systems in Gram-positive diazotrophic bacteria.
Collapse
Affiliation(s)
- Igor Daniel Alves Ribeiro
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500 - Prédio 43312, Porto Alegre, RS, Brazil
| | - Jéssica Andrade Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves, 9500 Porto Alegre, RS, Brazil
| | - Volker F Wendisch
- Institute for Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Av. Bento Gonçalves, 9500 Porto Alegre, RS, Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500 - Prédio 43312, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Trotter VV, Shatsky M, Price MN, Juba TR, Zane GM, De León KB, Majumder ELW, Gui Q, Ali R, Wetmore KM, Kuehl JV, Arkin AP, Wall JD, Deutschbauer AM, Chandonia JM, Butland GP. Large-scale genetic characterization of the model sulfate-reducing bacterium, Desulfovibrio vulgaris Hildenborough. Front Microbiol 2023; 14:1095191. [PMID: 37065130 PMCID: PMC10102598 DOI: 10.3389/fmicb.2023.1095191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
Sulfate-reducing bacteria (SRB) are obligate anaerobes that can couple their growth to the reduction of sulfate. Despite the importance of SRB to global nutrient cycles and their damage to the petroleum industry, our molecular understanding of their physiology remains limited. To systematically provide new insights into SRB biology, we generated a randomly barcoded transposon mutant library in the model SRB Desulfovibrio vulgaris Hildenborough (DvH) and used this genome-wide resource to assay the importance of its genes under a range of metabolic and stress conditions. In addition to defining the essential gene set of DvH, we identified a conditional phenotype for 1,137 non-essential genes. Through examination of these conditional phenotypes, we were able to make a number of novel insights into our molecular understanding of DvH, including how this bacterium synthesizes vitamins. For example, we identified DVU0867 as an atypical L-aspartate decarboxylase required for the synthesis of pantothenic acid, provided the first experimental evidence that biotin synthesis in DvH occurs via a specialized acyl carrier protein and without methyl esters, and demonstrated that the uncharacterized dehydrogenase DVU0826:DVU0827 is necessary for the synthesis of pyridoxal phosphate. In addition, we used the mutant fitness data to identify genes involved in the assimilation of diverse nitrogen sources and gained insights into the mechanism of inhibition of chlorate and molybdate. Our large-scale fitness dataset and RB-TnSeq mutant library are community-wide resources that can be used to generate further testable hypotheses into the gene functions of this environmentally and industrially important group of bacteria.
Collapse
Affiliation(s)
- Valentine V. Trotter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Maxim Shatsky
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Morgan N. Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Thomas R. Juba
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Grant M. Zane
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Kara B. De León
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Erica L.-W. Majumder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Qin Gui
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Rida Ali
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kelly M. Wetmore
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jennifer V. Kuehl
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Judy D. Wall
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - John-Marc Chandonia
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Gareth P. Butland
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
3
|
Lui LM, Majumder ELW, Smith HJ, Carlson HK, von Netzer F, Fields MW, Stahl DA, Zhou J, Hazen TC, Baliga NS, Adams PD, Arkin AP. Mechanism Across Scales: A Holistic Modeling Framework Integrating Laboratory and Field Studies for Microbial Ecology. Front Microbiol 2021; 12:642422. [PMID: 33841364 PMCID: PMC8024649 DOI: 10.3389/fmicb.2021.642422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Over the last century, leaps in technology for imaging, sampling, detection, high-throughput sequencing, and -omics analyses have revolutionized microbial ecology to enable rapid acquisition of extensive datasets for microbial communities across the ever-increasing temporal and spatial scales. The present challenge is capitalizing on our enhanced abilities of observation and integrating diverse data types from different scales, resolutions, and disciplines to reach a causal and mechanistic understanding of how microbial communities transform and respond to perturbations in the environment. This type of causal and mechanistic understanding will make predictions of microbial community behavior more robust and actionable in addressing microbially mediated global problems. To discern drivers of microbial community assembly and function, we recognize the need for a conceptual, quantitative framework that connects measurements of genomic potential, the environment, and ecological and physical forces to rates of microbial growth at specific locations. We describe the Framework for Integrated, Conceptual, and Systematic Microbial Ecology (FICSME), an experimental design framework for conducting process-focused microbial ecology studies that incorporates biological, chemical, and physical drivers of a microbial system into a conceptual model. Through iterative cycles that advance our understanding of the coupling across scales and processes, we can reliably predict how perturbations to microbial systems impact ecosystem-scale processes or vice versa. We describe an approach and potential applications for using the FICSME to elucidate the mechanisms of globally important ecological and physical processes, toward attaining the goal of predicting the structure and function of microbial communities in chemically complex natural environments.
Collapse
Affiliation(s)
- Lauren M. Lui
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Erica L.-W. Majumder
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Heidi J. Smith
- Center for Biofilm Engineering, Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Hans K. Carlson
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Frederick von Netzer
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Matthew W. Fields
- Center for Biofilm Engineering, Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - David A. Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology & Plant Biology, School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, United States
| | - Terry C. Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Paul D. Adams
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Adam P. Arkin
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|