1
|
Stapleton TE, Lindsey LM, Sundar H, Dearing MD. Rodents consuming the same toxic diet harbor a unique functional core microbiome. Anim Microbiome 2024; 6:43. [PMID: 39080711 PMCID: PMC11289948 DOI: 10.1186/s42523-024-00330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
Gut microbiota are intrinsic to an herbivorous lifestyle, but very little is known about how plant secondary compounds (PSCs), which are often toxic, influence these symbiotic partners. Here we interrogated the possibility of unique functional core microbiomes in populations of two species of woodrat (Neotoma lepida and bryanti) that have independently converged to feed on the same toxic diet (creosote bush; Larrea tridentata) and compared them to populations that do not feed on creosote bush. Leveraging this natural experiment, we collected samples across a large geographic region in the U.S. desert southwest from 20 populations (~ 150 individuals) with differential ingestion of creosote bush and analyzed three gut regions (foregut, cecum, hindgut) using16S sequencing and shotgun metagenomics. In each gut region sampled, we found a distinctive set of microbes in individuals feeding on creosote bush that were more abundant than other ASVs, enriched in creosote feeding woodrats, and occurred more frequently than would be predicted by chance. Creosote core members were from microbial families e.g., Eggerthellaceae, known to metabolize plant secondary compounds and three of the identified core KEGG orthologs (4-hydroxybenzoate decarboxylase, benzoyl-CoA reductase subunit B, and 2-pyrone-4, 6-dicarboxylate lactonase) coded for enzymes that play important roles in metabolism of plant secondary compounds. The results support the hypothesis that the ingestion of creosote bush sculpts the microbiome across all major gut regions to select for functional characteristics associated with the degradation of the PSCs in this unique diet.
Collapse
Affiliation(s)
- Tess E Stapleton
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.
| | - LeAnn M Lindsey
- School of Computing, University of Utah, 50 Central Campus Dr, Salt Lake City, UT, 84112, USA
| | - Hari Sundar
- School of Computing, University of Utah, 50 Central Campus Dr, Salt Lake City, UT, 84112, USA
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| |
Collapse
|
2
|
Lilli G, Sirot C, Campbell H, Hermand F, Brophy D, Flot JF, Graham CT, George IF. Do fish gut microbiotas vary across spatial scales? A case study of Diplodus vulgaris in the Mediterranean Sea. Anim Microbiome 2024; 6:32. [PMID: 38872229 PMCID: PMC11177387 DOI: 10.1186/s42523-024-00319-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Biogeography has been linked to differences in gut microbiota in several animals. However, the existence of such a relationship in fish is not clear yet. So far, it seems to depend on the fish species studied. However, most studies of fish gut microbiotas are based on single populations. In this study, we investigated the gut microbiota of fish from three wild populations of the two-banded sea bream Diplodus vulgaris (Geoffroy Saint-Hilaire, 1817) to determine whether its diversity, structure and potential functionality reflect the geographic origin of the fish, at large and small geographical scale. Additionally, we explored the host- and environmental-related factors explaining this relationship. RESULTS We showed that the taxonomy and potential functionality of the mucosa-associated gut microbiota of Diplodus vulgaris differ to varying degrees depending on the spatial scale considered. At large scale, we observed that both the taxonomical structure and the potential functionality of the fish microbiota differed significantly between populations. In contrast, the taxonomical diversity of the microbial community displayed a significant relationship with factors other than the geographic origin of the fish (i.e. sampling date). On the other hand, at small scale, the different composition and diversity of the microbiota differ according to the characteristics of the habitat occupied by the fish. Specifically, we identified the presence of Posidonia oceanica in the benthic habitat as predictor of both the microbiota composition and diversity. Lastly, we reported the enrichment of functions related to the metabolism of xenobiotics (i.e. drugs and 4-aminobenzoate) in a population and we indicated it as a potential target of future monitoring. CONCLUSIONS With this study, we confirmed the importance of investigating the gut microbiota of wild fish species using multiple populations, taking into account the different habitats occupied by the individuals. Furthermore, we underscored the use of the biodegradation potential of the gut microbiota as an alternative means of monitoring emerging contaminants in Mediterranean fish.
Collapse
Affiliation(s)
- Ginevra Lilli
- Laboratoire d'Ecologie des Systèmes Aquatiques (ESA), Université Libre de Bruxelles (ULB), 1050, Brussels, Belgium.
| | - Charlotte Sirot
- Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), University of Perpignan, Perpignan, France
| | - Hayley Campbell
- Marine and Freshwater Research Centre, Atlantic Technological University, Dublin Road, Galway, Ireland
| | - Fanny Hermand
- Laboratoire d'Ecologie des Systèmes Aquatiques (ESA), Université Libre de Bruxelles (ULB), 1050, Brussels, Belgium
| | - Deirdre Brophy
- Marine and Freshwater Research Centre, Atlantic Technological University, Dublin Road, Galway, Ireland
| | - Jean-François Flot
- Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), 1050, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels - (IB)², 1050, Brussels, Belgium
| | - Conor T Graham
- Marine and Freshwater Research Centre, Atlantic Technological University, Dublin Road, Galway, Ireland
| | - Isabelle F George
- Laboratoire d'Ecologie des Systèmes Aquatiques (ESA), Université Libre de Bruxelles (ULB), 1050, Brussels, Belgium
| |
Collapse
|
3
|
Magnuson JT, Monticelli G, Schlenk D, Bisesi JH, Pampanin DM. Connecting gut microbiome changes with fish health conditions in juvenile Atlantic cod (Gadus morhua) exposed to dispersed crude oil. ENVIRONMENTAL RESEARCH 2023; 234:116516. [PMID: 37399986 DOI: 10.1016/j.envres.2023.116516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Polycyclic aromatic hydrocarbons found in crude oil can impair fish health following sublethal exposure. However, the dysbiosis of microbial communities within the fish host and influence it has on the toxic response of fish following exposure has been less characterized, particularly in marine species. To better understand the effect of dispersed crude oil (DCO) on juvenile Atlantic cod (Gadus morhua) microbiota composition and potential targets of exposure within the gut, fish were exposed to 0.05 ppm DCO for 1, 3, 7, or 28 days and 16 S metagenomic and metatranscriptomic sequencing on the gut and RNA sequencing on intestinal content were conducted. In addition to assessing species composition, richness, and diversity from microbial gut community analysis and transcriptomic profiling, the functional capacity of the microbiome was determined. Mycoplasma and Aliivibrio were the two most abundant genera after DCO exposure and Photobacterium the most abundant genus in controls, after 28 days. Metagenomic profiles were only significantly different between treatments after a 28-day exposure. The top identified pathways were involved in energy and the biosynthesis of carbohydrates, fatty acids, amino acids, and cellular structure. Biological processes following fish transcriptomic profiling shared common pathways with microbial functional annotations such as energy, translation, amide biosynthetic process, and proteolysis. There were 58 differently expressed genes determined from metatranscriptomic profiling after 7 days of exposure. Predicted pathways that were altered included those involved in translation, signal transduction, and Wnt signaling. EIF2 signaling was consistently dysregulated following exposure to DCO, regardless of exposure duration, with impairments in IL-22 signaling and spermine and spermidine biosynthesis in fish after 28 days. Data were consistent with predictions of a potentially reduced immune response related to gastrointestinal disease. Herein, transcriptomic-level responses helped explain the relevance of differences in gut microbial communities in fish following DCO exposure.
Collapse
Affiliation(s)
- Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway.
| | - Giovanna Monticelli
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Daniela M Pampanin
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| |
Collapse
|
4
|
Affiliation(s)
- Morten T Limborg
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | | | - Jacob A Rasmussen
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Rasmussen JA, Kiilerich P, Madhun AS, Waagbø R, Lock EJR, Madsen L, Gilbert MTP, Kristiansen K, Limborg MT. Co-diversification of an intestinal Mycoplasma and its salmonid host. THE ISME JOURNAL 2023; 17:682-692. [PMID: 36807409 PMCID: PMC10119124 DOI: 10.1038/s41396-023-01379-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023]
Abstract
Understanding the evolutionary relationships between a host and its intestinal resident bacteria can transform how we understand adaptive phenotypic traits. The interplay between hosts and their resident bacteria inevitably affects the intestinal environment and, thereby, the living conditions of both the host and the microbiota. Thereby this co-existence likely influences the fitness of both bacteria and host. Whether this co-existence leads to evolutionary co-diversification in animals is largely unexplored, mainly due to the complexity of the environment and microbial communities and the often low host selection. We present the gut metagenome from wild Atlantic salmon (Salmo salar), a new wild organism model with an intestinal microbiota of low complexity and a well-described population structure, making it well-suited for investigating co-evolution. Our data reveal a strong host selection of a core gut microbiota dominated by a single Mycoplasma species. We found a clear co-diversification between the population structure of Atlantic salmon and nucleotide variability of the intestinal Mycoplasma populations conforming to expectations from co-evolution between host and resident bacteria. Our results show that the stable microbiota of Atlantic salmon has evolved with its salmonid host populations while potentially providing adaptive traits to the salmon host populations, including defence mechanisms, biosynthesis of essential amino acids, and metabolism of B vitamins. We highlight Atlantic salmon as a novel model for studying co-evolution between vertebrate hosts and their resident bacteria.
Collapse
Affiliation(s)
- Jacob A Rasmussen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark. .,Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Pia Kiilerich
- Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, 2300, Copenhagen, Denmark
| | | | - Rune Waagbø
- Institute of Marine Research, Bergen, Norway
| | | | - Lise Madsen
- Institute of Marine Research, Bergen, Norway
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Institute of Metagenomics, Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, China
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Drivers of ecological assembly in the hindgut of Atlantic Cod fed a macroalgal supplemented diet. NPJ Biofilms Microbiomes 2022; 8:36. [PMID: 35508464 PMCID: PMC9068720 DOI: 10.1038/s41522-022-00296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
It is difficult to disentangle the many variables (e.g. internal or external cues and random events) that shape the microbiota in the gastrointestinal tract of any living species. Ecological assembly processes applied to microbial communities can elucidate these drivers. In our study, farmed Atlantic cod (Gadus morhua) were fed a diet of 10% macroalgae supplement (Ulva rigida [ULVA] or Ascophyllum nodosum [ASCO] or a non-supplemented control diet [CTRL]) over 12 weeks. We determined the influence of ecological assembly processes using a suite of null-modelling tools. We observed dissimilarity in the abundance of common OTUs over time, which was driven by deterministic assembly. The CTRL samples showed selection as a critical assembly process. While dispersal limitation was a driver of the gut microbiome for fish fed the macroalgae supplemented diet at Week 12 (i.e., ASCO and ULVA). Fish from the ASCO grouping diverged into ASCO_N (normal) and ASCO_LG (lower growth), where ASCO_LG individuals found the diet unpalatable. The recruitment of new taxa overtime was altered in the ASCO_LG fish, with the gut microbiome showing phylogenetic underdispersion (nepotistic species recruitment). Finally, the gut microbiome (CTRL and ULVA) showed increasing robustness to taxonomic disturbance over time and lower functional redundancy. This study advances our understanding of the ecological assembly and succession in the hindgut of juvenile Atlantic cod across dietary treatments. Understanding the processes driving ecological assembly in the gut microbiome, in fish research specifically, could allow us to manipulate the microbiome for improved health or resilience to disease for improved aquaculture welfare and production.
Collapse
|
7
|
Johny TK, Puthusseri RM, Bhat SG. Metagenomic landscape of taxonomy, metabolic potential and resistome of Sardinella longiceps gut microbiome. Arch Microbiol 2021; 204:87. [PMID: 34961896 DOI: 10.1007/s00203-021-02675-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/27/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023]
Abstract
Fish gut microbiota, encompassing a colossal reserve of microbes represents a dynamic ecosystem, influenced by a myriad of environmental and host factors. The current study presents a comprehensive insight into Sardinella longiceps gut microbiome using whole metagenome shotgun sequencing. Taxonomic profiling identified the predominance of phylum Proteobacteria, comprising of Photobacterium, Vibrio and Shewanella sp. Functional annotation revealed the dominance of Clustering based subsystems, Carbohydrate, and Amino acids and derivatives. Analysis of Virulence, disease and defense subsystem identified genes conferring resistance to antibiotics and toxic compounds, like multidrug resistance efflux pumps and resistance genes for fluoroquinolones and heavy metals like cobalt, zinc, cadmium and copper. The presence of overlapping genetic mechanisms of resistance to antibiotics and heavy metals, like the efflux pumps is a serious cause of concern as it is likely to aggravate co-selection pressure, leading to an increased dissemination of these resistance genes to fish and humans.
Collapse
Affiliation(s)
- Tina Kollannoor Johny
- Department of Biotechnology, Cochin University of Science and Technology, Kalamassery, Cochin, Kerala, 682022, India
| | - Rinu Madhu Puthusseri
- Department of Biotechnology, Cochin University of Science and Technology, Kalamassery, Cochin, Kerala, 682022, India
| | - Sarita Ganapathy Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kalamassery, Cochin, Kerala, 682022, India.
| |
Collapse
|
8
|
Abstract
Conservation research has historically been conducted at the macro level, focusing on animals and plants and their role in the wider ecosystem. However, there is a growing appreciation of the importance of microbial communities in conservation. Most microbiome research in conservation thus far has used amplicon sequencing methods to assess the taxonomic composition of microbial communities and inferred functional capabilities from these data. However, as manipulation of the microbiome as a conservation tool becomes more and more feasible, there is a growing need to understand the direct functional consequences of shifts in microbiome composition. This review outlines the latest advances in microbiome research from a functional perspective and how these data can be used to inform conservation strategies. This review will also consider some of the challenges faced when studying the microbiomes of wild animals and how they can be overcome by careful study design and sampling methods. Environmental changes brought about by climate change or direct human actions have the potential to alter the taxonomic composition of microbiomes in wild populations. Understanding how taxonomic shifts affect the function of microbial communities is important for identifying species most threatened by potential disruption to their microbiome. Preservation or even restoration of these functions has the potential to be a powerful tool in conservation biology and a shift towards functional characterisation of gut microbiome diversity will be an important first step.
Collapse
|
9
|
Hansen AÅ, Langsrud S, Berget I, Gaarder MØ, Moen B. High Oxygen Packaging of Atlantic Cod Fillets Inhibits Known Spoilage Organisms, but Sensory Quality Is Not Improved Due to the Growth of Carnobacterium/Carnobacteriaceae. Foods 2021; 10:foods10081754. [PMID: 34441531 PMCID: PMC8393966 DOI: 10.3390/foods10081754] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Improved quality control and prolonged shelf life are important actions in preventing food waste. To get an overview of the bacterial diversity of fillets from live stored mature Atlantic cod, bacterial isolates were identified before and after storage (air and vacuum) and freezing/thawing. Based on the load of dominating bacteria, the effect of different packaging methods and a short freezing/thawing process on prolonged shelf-life was evaluated (total viable counts, bacteriota, sensory attributes, and volatile components). Hand filleted (strict hygiene) cod fillets had a low initial bacterial load dominated by the spoilage organism Photobacterium, whereas industrially produced fillets had higher bacterial loads and diversity (Pseudomonas, Arthrobacter, Psychrobacter, Shewanella). The identified bacteria after storage in vacuum or air were similar to the initially identified bacteria. Bacteriota analysis showed that a short time freezing/thawing process reduced Photobacterium while modified atmosphere packaging (MAP; 60% CO2/40% O2 or 60% CO2/40% N2) inhibited the growth of important spoilage bacteria (Photobacterium,Shewanella, Pseudomonas) and allowed the growth of Carnobacterium/Carnobacteriaceae and Acinetobacter. Despite being dominated by Photobacterium, fresh fillets stored in MAP 60% CO2/40% N2 demonstrated better sensory quality after 13 days of storage than fillets stored in MAP 60% CO2/40% O2 (dominated by Carnobacterium/Carnobacteriaceae). Carnobacterium spp. or other members of Carnobacteriaceae may therefore be potential spoilage organisms in cod when other spoilage bacteria are reduced or inhibited.
Collapse
|
10
|
Huang Q, Sham RC, Deng Y, Mao Y, Wang C, Zhang T, Leung KMY. Diversity of gut microbiomes in marine fishes is shaped by host-related factors. Mol Ecol 2020; 29:5019-5034. [PMID: 33084100 PMCID: PMC7756402 DOI: 10.1111/mec.15699] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/25/2022]
Abstract
Microorganisms in the gastrointestinal tract of animals play vital roles in food digestion, homeostasis and immune response regulation. Globally, there are 33,700 fish species, representing almost half of all vertebrate diversity and a wide range of physiologies, ecologies and life histories. To investigate gut microbiomes with high coverage, we performed 16S rRNA gene amplicon sequencing with 115 samples of 20 common marine fish species. The fish gut microbiome is a remarkably simple community with low microbial diversity (a maximum of 300 amplicon sequence variants only) and has up to 70% of unknown species in some fish species. The gut microbial community structure was significantly shaped by the combined influence of host-associated factors, including the fish taxon (p < .001, R2 = 0.16, ω2 = 0.04), feeding habit (p < .001, R2 = 0.06, ω2 = 0.02) and trophic level (p < .01, R2 = 0.04, ω2 = 0.01), although the influence was subtle with a small effect size. The core gut microbiomes of different feeding habits were also previously discovered in animal-associated and corresponding habitat samples. Certain energy metabolism pathways were enriched in herbivore/omnivore and zooplanktivore/zoobenthivore fishes, whereas lipid metabolism and glycan metabolism were enriched in zoobenthivore/piscivore fishes. Moreover, substantial taxonomic variability was found between the gut microbiomes of fish and animals, indicated by their low degree of shared microbiota. The data and observations reported herein pave the way for further investigations on the co-evolution of fish gut microbiomes and their hosts, the physiological functions of gut microorganisms and the development of probiotics for improving the nutrition and health of aquaculture fish species.
Collapse
Affiliation(s)
- Qi Huang
- School of Biological SciencesThe University of Hong KongHong KongChina
- Department of Civil EngineeringEnvironmental Microbiome Engineering and Biotechnology LabThe University of Hong KongHong KongChina
| | - Ronia C. Sham
- School of Biological SciencesThe University of Hong KongHong KongChina
| | - Yu Deng
- Department of Civil EngineeringEnvironmental Microbiome Engineering and Biotechnology LabThe University of Hong KongHong KongChina
| | - Yanping Mao
- Department of Civil EngineeringEnvironmental Microbiome Engineering and Biotechnology LabThe University of Hong KongHong KongChina
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenChina
| | - Chunxiao Wang
- Department of Civil EngineeringEnvironmental Microbiome Engineering and Biotechnology LabThe University of Hong KongHong KongChina
| | - Tong Zhang
- Department of Civil EngineeringEnvironmental Microbiome Engineering and Biotechnology LabThe University of Hong KongHong KongChina
| | - Kenneth M. Y. Leung
- School of Biological SciencesThe University of Hong KongHong KongChina
- State Key Laboratory of Marine Pollution and Department of ChemistryCity University of Hong KongHong KongChina
| |
Collapse
|
11
|
Large-Scale Metagenome Assembly Reveals Novel Animal-Associated Microbial Genomes, Biosynthetic Gene Clusters, and Other Genetic Diversity. mSystems 2020; 5:5/6/e01045-20. [PMID: 33144315 PMCID: PMC7646530 DOI: 10.1128/msystems.01045-20] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Large-scale metagenome assemblies of human microbiomes have produced a vast catalogue of previously unseen microbial genomes; however, comparatively few microbial genomes derive from other vertebrates. Here, we generated 5,596 metagenome-assembled genomes (MAGs) from the gut metagenomes of 180 predominantly wild animal species representing 5 classes, in addition to 14 existing animal gut metagenome data sets. The MAGs comprised 1,522 species-level genome bins (SGBs), most of which were novel at the species, genus, or family level, and the majority were enriched in host versus environment metagenomes. Many traits distinguished SGBs enriched in host or environmental biomes, including the number of antimicrobial resistance genes. We identified 1,986 diverse biosynthetic gene clusters; only 23 clustered with any MIBiG database references. Gene-based assembly revealed tremendous gene diversity, much of it host or environment specific. Our MAG and gene data sets greatly expand the microbial genome repertoire and provide a broad view of microbial adaptations to the vertebrate gut.IMPORTANCE Microbiome studies on a select few mammalian species (e.g., humans, mice, and cattle) have revealed a great deal of novel genomic diversity in the gut microbiome. However, little is known of the microbial diversity in the gut of other vertebrates. We studied the gut microbiomes of a large set of mostly wild animal species consisting of mammals, birds, reptiles, amphibians, and fish. Unfortunately, we found that existing reference databases commonly used for metagenomic analyses failed to capture the microbiome diversity among vertebrates. To increase database representation, we applied advanced metagenome assembly methods to our animal gut data and to many public gut metagenome data sets that had not been used to obtain microbial genomes. Our resulting genome and gene cluster collections comprised a great deal of novel taxonomic and genomic diversity, which we extensively characterized. Our findings substantially expand what is known of microbial genomic diversity in the vertebrate gut.
Collapse
|
12
|
Zou S, Gong L, Khan TA, Pan L, Yan L, Li D, Cao L, Li Y, Ding X, Yi G, Sun Y, Hu S, Xia L. Comparative analysis and gut bacterial community assemblages of grass carp and crucian carp in new lineages from the Dongting Lake area. Microbiologyopen 2020; 9:e996. [PMID: 32175674 PMCID: PMC7221430 DOI: 10.1002/mbo3.996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/17/2022] Open
Abstract
Gut microbiota are known to play an important role in health and nutrition of the host and have been attracting an increasing attention. Farming of new lineages of grass carp and crucian carp has been developed rapidly as these species were found to outperform indigenous ones in terms of growth rate and susceptibility to diseases. Despite this rapid development, no studies have addressed the characteristics of their gut microbiota as a potential factor responsible for the improved characteristics. To reveal whether microbiomes of the new lineages are different from indigenous ones, and therefore could be responsible for improved growth features, intestinal microbiota from the new lineages were subjected to high-throughput sequencing. While the phyla Firmicutes, Fusobacteria and Proteobacteria were representing the core bacterial communities that comprised more than 75% in all fish intestinal samples, significant differences were found in the microbial community composition of the new linages versus indigenous fish populations, suggesting the possibility that results in the advantages of enhanced disease resistance and rapid growth for the new fish lineages. Bacterial composition was similar between herbivorous and omnivorous fish. The relative abundance of Bacteroidetes and Actinobacteria was significantly higher in omnivores compared to that of herbivores, whereas Cetobacterium_sp. was abundant in herbivores. We also found that the gut microbiota of freshwater fish in the Dongting lake area was distinct from those of other areas. Network graphs showed the reduced overall connectivity of gut bacteria in indigenous fish, whereas the bacteria of the new fish lineage groups showed hubs with more node degree. A phylogenetic investigation of communities by reconstruction of unobserved states inferred function profile showed several metabolic processes were more active in the new lineages compared to indigenous fish. Our findings suggest that differences in gut bacterial community composition may be an important factor contributing to the rapid growth and high disease resistance of the new fish lineages.
Collapse
Affiliation(s)
- Sheng Zou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Liang Gong
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Tahir Ali Khan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Lifei Pan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Liang Yan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Dongjie Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Lina Cao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Yanping Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Xuezhi Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Ganfeng Yi
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Yunjun Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular BiologyCollege of Life ScienceHunan Normal UniversityChangshaChina
| |
Collapse
|
13
|
Metagenomic Shotgun Analyses Reveal Complex Patterns of Intra- and Interspecific Variation in the Intestinal Microbiomes of Codfishes. Appl Environ Microbiol 2020; 86:AEM.02788-19. [PMID: 31953333 PMCID: PMC7054092 DOI: 10.1128/aem.02788-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
The composition of the intestinal microbial community associated with teleost fish is influenced by a diversity of factors, ranging from internal factors (such as host-specific selection) to external factors (such as niche occupation). These factors are often difficult to separate, as differences in niche occupation (e.g., diet, temperature, or salinity) may correlate with distinct evolutionary trajectories. Here, we investigate four gadoid species with contrasting levels of evolutionary separation and niche occupation. Using metagenomic shotgun sequencing, we observed distinct microbiomes among two Atlantic cod (Gadus morhua) ecotypes (NEAC and NCC) with distinct behavior and habitats. In contrast, interspecific patterns of variation were more variable. For instance, we did not observe interspecific differentiation between the microbiomes of coastal cod (NCC) and Norway pout (Trisopterus esmarkii), whose lineages underwent evolutionary separation over 20 million years ago. The observed pattern of microbiome variation in these gadoid species is therefore most parsimoniously explained by differences in niche occupation. The relative importance of host-specific selection or environmental factors in determining the composition of the intestinal microbiome in wild vertebrates remains poorly understood. Here, we used metagenomic shotgun sequencing of individual specimens to compare the levels of intra- and interspecific variation of intestinal microbiome communities in two ecotypes (NEAC and NCC) of Atlantic cod (Gadus morhua) that have distinct behavior and habitats and three Gadidae species that occupy a range of ecological niches. Interestingly, we found significantly diverged microbiomes among the two Atlantic cod ecotypes. Interspecific patterns of variation are more variable, with significantly diverged communities for most species’ comparisons, apart from the comparison between coastal cod (NCC) and Norway pout (Trisopterus esmarkii), whose community compositions are not significantly diverged. The absence of consistent species-specific microbiomes suggests that external environmental factors, such as temperature, diet, or a combination thereof, comprise major drivers of the intestinal community composition of codfishes. IMPORTANCE The composition of the intestinal microbial community associated with teleost fish is influenced by a diversity of factors, ranging from internal factors (such as host-specific selection) to external factors (such as niche occupation). These factors are often difficult to separate, as differences in niche occupation (e.g., diet, temperature, or salinity) may correlate with distinct evolutionary trajectories. Here, we investigate four gadoid species with contrasting levels of evolutionary separation and niche occupation. Using metagenomic shotgun sequencing, we observed distinct microbiomes among two Atlantic cod (Gadus morhua) ecotypes (NEAC and NCC) with distinct behavior and habitats. In contrast, interspecific patterns of variation were more variable. For instance, we did not observe interspecific differentiation between the microbiomes of coastal cod (NCC) and Norway pout (Trisopterus esmarkii), whose lineages underwent evolutionary separation over 20 million years ago. The observed pattern of microbiome variation in these gadoid species is therefore most parsimoniously explained by differences in niche occupation.
Collapse
|
14
|
He Z, Pan L, Zhang M, Zhang M, Huang F, Gao S. Metagenomic comparison of structure and function of microbial community between water, effluent and shrimp intestine of higher place
Litopenaeus vannamei
ponds. J Appl Microbiol 2020; 129:243-255. [DOI: 10.1111/jam.14610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Z. He
- The Key Laboratory of Mariculture (Ocean University of China) Ministry of Education Qingdao China
| | - L. Pan
- The Key Laboratory of Mariculture (Ocean University of China) Ministry of Education Qingdao China
| | - M. Zhang
- The Key Laboratory of Mariculture (Ocean University of China) Ministry of Education Qingdao China
| | - M. Zhang
- The Key Laboratory of Mariculture (Ocean University of China) Ministry of Education Qingdao China
| | - F. Huang
- The Key Laboratory of Mariculture (Ocean University of China) Ministry of Education Qingdao China
| | - S. Gao
- The Key Laboratory of Mariculture (Ocean University of China) Ministry of Education Qingdao China
| |
Collapse
|
15
|
Jo J, Oh J, Park C. Microbial community analysis using high-throughput sequencing technology: a beginner's guide for microbiologists. J Microbiol 2020; 58:176-192. [PMID: 32108314 DOI: 10.1007/s12275-020-9525-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
Abstract
Microbial communities present in diverse environments from deep seas to human body niches play significant roles in the complex ecosystem and human health. Characterizing their structural and functional diversities is indispensable, and many approaches, such as microscopic observation, DNA fingerprinting, and PCR-based marker gene analysis, have been successfully applied to identify microorganisms. Since the revolutionary improvement of DNA sequencing technologies, direct and high-throughput analysis of genomic DNA from a whole environmental community without prior cultivation has become the mainstream approach, overcoming the constraints of the classical approaches. Here, we first briefly review the history of environmental DNA analysis applications with a focus on profiling the taxonomic composition and functional potentials of microbial communities. To this end, we aim to introduce the shotgun metagenomic sequencing (SMS) approach, which is used for the untargeted ("shotgun") sequencing of all ("meta") microbial genomes ("genomic") present in a sample. SMS data analyses are performed in silico using various software programs; however, in silico analysis is typically regarded as a burden on wet-lab experimental microbiologists. Therefore, in this review, we present microbiologists who are unfamiliar with in silico analyses with a basic and practical SMS data analysis protocol. This protocol covers all the bioinformatics processes of the SMS analysis in terms of data preprocessing, taxonomic profiling, functional annotation, and visualization.
Collapse
Affiliation(s)
- Jihoon Jo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jooseong Oh
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|