1
|
Garcia AA, Chadwick GL, Liu XL, Welander PV. Identification of two archaeal GDGT lipid-modifying proteins reveals diverse microbes capable of GMGT biosynthesis and modification. Proc Natl Acad Sci U S A 2024; 121:e2318761121. [PMID: 38885389 PMCID: PMC11214058 DOI: 10.1073/pnas.2318761121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Archaea produce unique membrane-spanning lipids (MSLs), termed glycerol dialkyl glycerol tetraethers (GDGTs), which aid in adaptive responses to various environmental challenges. GDGTs can be modified through cyclization, cross-linking, methylation, hydroxylation, and desaturation, resulting in structurally distinct GDGT lipids. Here, we report the identification of radical SAM proteins responsible for two of these modifications-a glycerol monoalkyl glycerol tetraether (GMGT) synthase (Gms), responsible for covalently cross-linking the two hydrocarbon tails of a GDGT to produce GMGTs, and a GMGT methylase (Gmm), capable of methylating the core hydrocarbon tail. Heterologous expression of Gms proteins from various archaea in Thermococcus kodakarensis results in the production of GMGTs in two isomeric forms. Further, coexpression of Gms and Gmm produces mono- and dimethylated GMGTs and minor amounts of trimethylated GMGTs with only trace GDGT methylation. Phylogenetic analyses reveal the presence of Gms homologs in diverse archaeal genomes spanning all four archaeal superphyla and in multiple bacterial phyla with the genetic potential to synthesize fatty acid-based MSLs, demonstrating that GMGT production may be more widespread than previously appreciated. We demonstrate GMGT production in three Gms-encoding archaea, identifying an increase in GMGTs in response to elevated temperature in two Archaeoglobus species and the production of GMGTs with up to six rings in Vulcanisaeta distributa. The occurrence of such highly cyclized GMGTs has been limited to environmental samples and their detection in culture demonstrates the utility of combining genetic, bioinformatic, and lipid analyses to identify producers of distinct archaeal membrane lipids.
Collapse
Affiliation(s)
- Andy A. Garcia
- Department of Earth System Science, Stanford University, Stanford, CA94305
| | - Grayson L. Chadwick
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Xiao-Lei Liu
- Department of Geology and Geophysics, University of Oklahoma, Norman, OK73019
| | - Paula V. Welander
- Department of Earth System Science, Stanford University, Stanford, CA94305
| |
Collapse
|
2
|
Rhim JH, Zhou A, Amenabar MJ, Boyer GM, Elling FJ, Weber Y, Pearson A, Boyd ES, Leavitt WD. Mode of carbon and energy metabolism shifts lipid composition in the thermoacidophile Acidianus. Appl Environ Microbiol 2024; 90:e0136923. [PMID: 38236067 PMCID: PMC10880624 DOI: 10.1128/aem.01369-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024] Open
Abstract
The degree of cyclization, or ring index (RI), in archaeal glycerol dibiphytanyl glycerol tetraether (GDGT) lipids was long thought to reflect homeoviscous adaptation to temperature. However, more recent experiments show that other factors (e.g., pH, growth phase, and energy flux) can also affect membrane composition. The main objective of this study was to investigate the effect of carbon and energy metabolism on membrane cyclization. To do so, we cultivated Acidianus sp. DS80, a metabolically flexible and thermoacidophilic archaeon, on different electron donor, acceptor, and carbon source combinations (S0/Fe3+/CO2, H2/Fe3+/CO2, H2/S0/CO2, or H2/S0/glucose). We show that differences in energy and carbon metabolism can result in over a full unit of change in RI in the thermoacidophile Acidianus sp. DS80. The patterns in RI correlated with the normalized electron transfer rate between the electron donor and acceptor and did not always align with thermodynamic predictions of energy yield. In light of this, we discuss other factors that may affect the kinetics of cellular energy metabolism: electron transfer chain (ETC) efficiency, location of ETC reaction components (cytoplasmic vs. extracellular), and the physical state of electron donors and acceptors (gas vs. solid). Furthermore, the assimilation of a more reduced form of carbon during heterotrophy appears to decrease the demand for reducing equivalents during lipid biosynthesis, resulting in lower RI. Together, these results point to the fundamental role of the cellular energy state in dictating GDGT cyclization, with those cells experiencing greater energy limitation synthesizing more cyclized GDGTs.IMPORTANCESome archaea make unique membrane-spanning lipids with different numbers of five- or six-membered rings in the core structure, which modulate membrane fluidity and permeability. Changes in membrane core lipid composition reflect the fundamental adaptation strategies of archaea in response to stress, but multiple environmental and physiological factors may affect the needs for membrane fluidity and permeability. In this study, we tested how Acidianus sp. DS80 changed its core lipid composition when grown with different electron donor/acceptor pairs. We show that changes in energy and carbon metabolisms significantly affected the relative abundance of rings in the core lipids of DS80. These observations highlight the need to better constrain metabolic parameters, in addition to environmental factors, which may influence changes in membrane physiology in Archaea. Such consideration would be particularly important for studying archaeal lipids from habitats that experience frequent environmental fluctuations and/or where metabolically diverse archaea thrive.
Collapse
Affiliation(s)
- Jeemin H. Rhim
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Alice Zhou
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Maximiliano J. Amenabar
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Grayson M. Boyer
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA
| | - Felix J. Elling
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
- Leibniz-Laboratory for Radiometric Dating and Isotope Research, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Yuki Weber
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Ann Pearson
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - William D. Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
3
|
Zheng P, Yang H, Zhang H, Shen C, Sun H. Influence of hydrological parameters on hydroxylated tetraether lipids in a deep Lake Fuxian, China: Implications for their use as environmental proxies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165022. [PMID: 37348708 DOI: 10.1016/j.scitotenv.2023.165022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/22/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Hydroxylated isoprenoid glycerol dialkyl glycerol tetraethers (OH-GDGTs) have shown their potential in environmental reconstructions. However, the unclear underlying mechanism challenges their application. To elucidate the effects of water parameters on OH-GDGT-derived indices and understand their environmental implications, we investigated the core OH-GDGTs of suspended particulate matter (SPM) from water columns in a year cycle and surface sediments at different water depths along a nearshore-offshore transect in Lake Fuxian, a deep and large lake in southwestern China. OH-GDGTs were primarily found in the hypolimnion and were produced in situ by Group I.1a Thaumarchaeota. The relative abundance of OH-GDGTs (%OH-GDGTs) and ring indices (RI-OH and RI-OH') in the hypolimnion were significantly influenced by dissolved oxygen (DO) and pH, particularly DO, which regulated the inverse physiological functions of the hydroxyl and cyclopentane moieties of archaea. %OH-GDGTs values in SPM were positively correlated with DO and negatively correlated with pH levels, while RI-OH values exhibited an inverse relationship with DO and positive correlation with pH levels. OH-GDGTs in surface sediments appeared to be homologous to that of water columns, indicating that their inferred proxies could be regulated by the configuration of water parameters. The sedimentary %OH-GDGTs values increased as the RI-OH values decreased with water depth along the transect from the lakeshore to the lake center, suggesting their potential as lake-level proxies.
Collapse
Affiliation(s)
- Pingbo Zheng
- Yunnan Key Laboratory of Plateau Geographical Processes and Environmental Changes, Faculty of Geography, Yunnan Normal University, Kunming 650500, China
| | - Huan Yang
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan 430078, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Caiming Shen
- Yunnan Key Laboratory of Plateau Geographical Processes and Environmental Changes, Faculty of Geography, Yunnan Normal University, Kunming 650500, China
| | - Huiling Sun
- Yunnan Key Laboratory of Plateau Geographical Processes and Environmental Changes, Faculty of Geography, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
4
|
Blum LN, Colman DR, Eloe-Fadrosh EA, Kellom M, Boyd ES, Zhaxybayeva O, Leavitt WD. Distribution and abundance of tetraether lipid cyclization genes in terrestrial hot springs reflect pH. Environ Microbiol 2023; 25:1644-1658. [PMID: 37032561 DOI: 10.1111/1462-2920.16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023]
Abstract
Many Archaea produce membrane-spanning lipids that enable life in extreme environments. These isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs) may contain up to eight cyclopentyl and one cyclohexyl ring, where higher degrees of cyclization are associated with more acidic, hotter or energy-limited conditions. Recently, the genes encoding GDGT ring synthases, grsAB, were identified in two Sulfolobaceae; however, the distribution and abundance of grs homologs across environments inhabited by these and related organisms remain a mystery. To address this, we examined the distribution of grs homologs in relation to environmental temperature and pH, from thermal springs across Earth, where sequences derive from metagenomes, metatranscriptomes, single-cell and cultivar genomes. The abundance of grs homologs shows a strong negative correlation to pH, but a weak positive correlation to temperature. Archaeal genomes and metagenome-assembled genomes (MAGs) that carry two or more grs copies are more abundant in low pH springs. We also find grs in 12 archaeal classes, with the most representatives in Thermoproteia, followed by MAGs of the uncultured Korarchaeia, Bathyarchaeia and Hadarchaeia, while several Nitrososphaeria encodes >3 copies. Our findings highlight the key role of grs-catalysed lipid cyclization in archaeal diversification across hot and acidic environments.
Collapse
Affiliation(s)
- Laura N Blum
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | | | - Matthew Kellom
- Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - William D Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
5
|
Chiu BK, Waldbauer J, Elling FJ, Mete ÖZ, Zhang L, Pearson A, Eggleston EM, Leavitt WD. Membrane lipid and expression responses of Saccharolobus islandicus REY15A to acid and cold stress. Front Microbiol 2023; 14:1219779. [PMID: 37649629 PMCID: PMC10465181 DOI: 10.3389/fmicb.2023.1219779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
Archaea adjust the number of cyclopentane rings in their glycerol dibiphytanyl glycerol tetraether (GDGT) membrane lipids as a homeostatic response to environmental stressors such as temperature, pH, and energy availability shifts. However, archaeal expression patterns that correspond with changes in GDGT composition are less understood. Here we characterize the acid and cold stress responses of the thermoacidophilic crenarchaeon Saccharolobus islandicus REY15A using growth rates, core GDGT lipid profiles, transcriptomics and proteomics. We show that both stressors result in impaired growth, lower average GDGT cyclization, and differences in gene and protein expression. Transcription data revealed differential expression of the GDGT ring synthase grsB in response to both acid stress and cold stress. Although the GDGT ring synthase encoded by grsB forms highly cyclized GDGTs with ≥5 ring moieties, S. islandicus grsB upregulation under acidic pH conditions did not correspond with increased abundances of highly cyclized GDGTs. Our observations highlight the inability to predict GDGT changes from transcription data alone. Broader analysis of transcriptomic data revealed that S. islandicus differentially expresses many of the same transcripts in response to both acid and cold stress. These included upregulation of several biosynthetic pathways and downregulation of oxidative phosphorylation and motility. Transcript responses specific to either of the two stressors tested here included upregulation of genes related to proton pumping and molecular turnover in acid stress conditions and upregulation of transposases in cold stress conditions. Overall, our study provides a comprehensive understanding of the GDGT modifications and differential expression characteristic of the acid stress and cold stress responses in S. islandicus.
Collapse
Affiliation(s)
- Beverly K. Chiu
- Department of Earth Sciences, Dartmouth College, Hanover, NH, United States
| | - Jacob Waldbauer
- Department of the Geophysical Sciences, The University of Chicago, Chicago, IL, United States
| | - Felix J. Elling
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States
- Leibniz-Laboratory for Radiometric Dating and Isotope Research, Kiel University, Kiel, Germany
| | - Öykü Z. Mete
- Department of Earth Sciences, Dartmouth College, Hanover, NH, United States
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States
| | - Lichun Zhang
- Department of the Geophysical Sciences, The University of Chicago, Chicago, IL, United States
| | - Ann Pearson
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States
| | - Erin M. Eggleston
- Department of Biology, Middlebury College, Middlebury, VT, United States
| | - William D. Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, NH, United States
- Department of Chemistry, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
6
|
Yang W, Chen H, Chen Y, Chen A, Feng X, Zhao B, Zheng F, Fang H, Zhang C, Zeng Z. Thermophilic archaeon orchestrates temporal expression of GDGT ring synthases in response to temperature and acidity stress. Environ Microbiol 2023; 25:575-587. [PMID: 36495168 DOI: 10.1111/1462-2920.16301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
Glycerol dibiphytanyl glycerol tetraethers (GDGTs) are unique archaeal membrane-spanning lipids with 0-8 cyclopentane rings on the biphytanyl chains. The cyclization pattern of GDGTs is affected by many environmental factors, such as temperature and pH, but the underlying molecular mechanism remains elusive. Here, we find that the expression regulation of GDGT ring synthase genes grsA and grsB in thermophilic archaeon Sulfolobus acidocaldarius is temperature- and pH-dependent. Moreover, the presence of functional GrsA protein, or more likely its products cyclic GDGTs rather than the accumulation of GrsA protein itself, is required to induce grsB expression, resulting in temporal regulation of grsA and grsB expression. Our findings establish a molecular model of GDGT cyclization regulated by environment factors in a thermophilic ecosystem, which could be also relevant to that in mesophilic marine archaea. Our study will help better understand the biological basis for GDGT-based paleoclimate proxies. Archaea inhabit a wide range of terrestrial and marine environments. In response to environment fluctuations, archaea modulate their unique membrane GDGTs lipid composition with different strategies, in particular GDGTs cyclization significantly alters membrane permeability. However, the regulation details of archaeal GDGTs cyclization in response to different environmental factor changes remain unknown. We demonstrated, for the first time, thermophilic archaea orchestrate the temporal expression of GDGT ring synthases, leading to delicate control of GDGTs cyclization to respond environmental temperature and acidity stress. Our study provides insight into the regulation of archaea membrane plasticity, and the survival strategy of archaea in fluctuating environments.
Collapse
Affiliation(s)
- Wei Yang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Huahui Chen
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yufei Chen
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Aiping Chen
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xi Feng
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Bo Zhao
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Fengfeng Zheng
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Hongwei Fang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Changyi Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zhirui Zeng
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
7
|
Identification of a protein responsible for the synthesis of archaeal membrane-spanning GDGT lipids. Nat Commun 2022; 13:1545. [PMID: 35318330 PMCID: PMC8941075 DOI: 10.1038/s41467-022-29264-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/07/2022] [Indexed: 01/08/2023] Open
Abstract
Glycerol dibiphytanyl glycerol tetraethers (GDGTs) are archaeal monolayer membrane lipids that can provide a competitive advantage in extreme environments. Here, we identify a radical SAM protein, tetraether synthase (Tes), that participates in the synthesis of GDGTs. Attempts to generate a tes-deleted mutant in Sulfolobus acidocaldarius were unsuccessful, suggesting that the gene is essential in this organism. Heterologous expression of tes homologues leads to production of GDGT and structurally related lipids in the methanogen Methanococcus maripaludis (which otherwise does not synthesize GDGTs and lacks a tes homolog, but produces a putative GDGT precursor, archaeol). Tes homologues are encoded in the genomes of many archaea, as well as in some bacteria, in which they might be involved in the synthesis of bacterial branched glycerol dialkyl glycerol tetraethers.
Collapse
|
8
|
Summons RE, Welander PV, Gold DA. Lipid biomarkers: molecular tools for illuminating the history of microbial life. Nat Rev Microbiol 2022; 20:174-185. [PMID: 34635851 DOI: 10.1038/s41579-021-00636-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 11/09/2022]
Abstract
Fossilized lipids preserved in sedimentary rocks offer singular insights into the Earth's palaeobiology. These 'biomarkers' encode information pertaining to the oxygenation of the atmosphere and oceans, transitions in ocean plankton, the greening of continents, mass extinctions and climate change. Historically, biomarker interpretations relied on inventories of lipids present in extant microorganisms and counterparts in natural environments. However, progress has been impeded because only a small fraction of the Earth's microorganisms can be cultured, many environmentally significant microorganisms from the past no longer exist and there are gaping holes in knowledge concerning lipid biosynthesis. The revolution in genomics and bioinformatics has provided new tools to expand our understanding of lipid biomarkers, their biosynthetic pathways and distributions in nature. In this Review, we explore how preserved organic molecules provide a unique perspective on the history of the Earth's microbial life. We discuss how advances in molecular biology have helped elucidate biomarker origins and afforded more robust interpretations of fossil lipids and how the rock record provides vital calibration points for molecular clocks. Such studies are open to further exploitation with the expansion of sequenced microbial genomes in accessible databases.
Collapse
Affiliation(s)
- Roger E Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Paula V Welander
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - David A Gold
- Department of Earth & Planetary Sciences, University of California Davis, Davis, CA, USA
| |
Collapse
|
9
|
Tourte M, Schaeffer P, Grossi V, Oger PM. Membrane adaptation in the hyperthermophilic archaeon Pyrococcus furiosus relies upon a novel strategy involving glycerol monoalkyl glycerol tetraether lipids. Environ Microbiol 2022; 24:2029-2046. [PMID: 35106897 DOI: 10.1111/1462-2920.15923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/28/2022]
Abstract
Microbes preserve membrane functionality under fluctuating environmental conditions by modulating their membrane lipid composition. Although several studies have documented membrane adaptations in Archaea, the influence of most biotic and abiotic factors on archaeal lipid compositions remains underexplored. Here, we studied the influence of temperature, pH, salinity, the presence/absence of elemental sulfur, the carbon source, and the genetic background on the lipid core composition of the hyperthermophilic neutrophilic marine archaeon Pyrococcus furiosus. Every growth parameter tested affected the lipid core composition to some extent, the carbon source and the genetic background having the greatest influence. Surprisingly, P. furiosus appeared to only marginally rely on the two major responses implemented by Archaea, i.e., the regulation of the ratio of diether to tetraether lipids and that of the number of cyclopentane rings in tetraethers. Instead, this species increased the ratio of glycerol monoalkyl glycerol tetraethers (GMGT, aka. H-shaped tetraethers) to glycerol dialkyl glycerol tetrathers (GDGT) in response to decreasing temperature and pH and increasing salinity, thus providing for the first time evidence of adaptive functions for GMGT. Besides P. furiosus, numerous other species synthesize significant proportions of GMGT, which suggests that this unprecedented adaptive strategy might be common in Archaea. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Maxime Tourte
- Univ Lyon, Univ. Lyon 1, CNRS, UMR 5240, F-69622, Villeurbanne, France.,Univ Lyon, INSA Lyon, CNRS, UMR 5240, F-69621, Villeurbanne, France
| | | | - Vincent Grossi
- Univ Lyon, Univ. Lyon 1, CNRS, ENSL, UJM, UMR 5276 LGL-TPE, F-69622, Villeurbanne, France
| | - Philippe M Oger
- Univ Lyon, INSA Lyon, CNRS, UMR 5240, F-69621, Villeurbanne, France
| |
Collapse
|
10
|
Evidence for enzymatic backbone methylation of the main membrane lipids in the archaeon Methanomassiliicoccus luminyensis. Appl Environ Microbiol 2021; 88:e0215421. [PMID: 34936840 DOI: 10.1128/aem.02154-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Butanetriol and pentanetriol dibiphytanyl glycerol tetraethers (BDGTs and PDGTs, respectively) are recently identified classes of archaeal membrane lipids that are prominent constituents in anoxic subseafloor sediments. These lipids are intriguing as they possess unusual backbones with four or five carbon atoms instead of the canonical three-carbon glycerol backbone. In this study, we examined the biosynthesis of BDGTs and PDGTs by the methanogen Methanomassiliicoccus luminyensis, the only available isolate known to produce these compounds, via stable isotope labeling with [methyl-13C] methionine followed by mass spectrometry analysis. We show that their biosynthesis proceeds from transfer(s) of the terminal methyl group of methionine to the more common archaeal membrane lipids, i.e., glycerol dibiphytanyl glycerol tetraethers (GDGTs). As this methylation targets a methylene group, a radical mechanism involving a radical S-adenosylmethionine (SAM) enzyme is probable. Over the course of the incubation, the abundance of PDGTs relative to BDGTs, expressed as backbone methylation index, increased, implying that backbone methylation may be related to the growth shift to stationary conditions, possibly due to limited energy and/or substrate availability. The increase of the backbone methylation index with increasing sediment age in a sample set from the Mediterranean Sea adds support for such a relationship. Importance Butanetriol and pentanetriol dibiphytanyl glycerol tetraethers are membrane lipids recently discovered in anoxic environments. These lipids differ from typical membrane-spanning tetraether lipids because they possess a non-glycerol backbone. The biosynthetic pathway and physiological role of these unique lipids are currently unknown. Here, we show that in the strain Methanomassiliicoccus luminyensis these lipids are the result of methyl transfer(s) from a S-adenosyl methionine (SAM) intermediate. We observed a relative increase of the doubly methylated compound, pentanetriol dibiphytanyl glycerol tetraether, in the stationary phase of M. luminyensis as well as in the subseafloor of the Mediterranean Sea and thus introduced a backbone methylation index, which could be used to further explore microbial activity in natural settings.
Collapse
|
11
|
Law KP, He W, Tao J, Zhang C. A Novel Approach to Characterize the Lipidome of Marine Archaeon Nitrosopumilus maritimus by Ion Mobility Mass Spectrometry. Front Microbiol 2021; 12:735878. [PMID: 34925256 PMCID: PMC8674956 DOI: 10.3389/fmicb.2021.735878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Archaea are differentiated from the other two domains of life by their biomolecular characteristics. One such characteristic is the unique structure and composition of their lipids. Characterization of the whole set of lipids in a biological system (the lipidome) remains technologically challenging. This is because the lipidome is innately complex, and not all lipid species are extractable, separable, or ionizable by a single analytical method. Furthermore, lipids are structurally and chemically diverse. Many lipids are isobaric or isomeric and often indistinguishable by the measurement of mass or even their fragmentation spectra. Here we developed a novel analytical protocol based on liquid chromatography ion mobility mass spectrometry to enhance the coverage of the lipidome and characterize the conformations of archaeal lipids by their collision cross-sections (CCSs). The measurements of ion mobility revealed the gas-phase ion chemistry of representative archaeal lipids and provided further insights into their attributions to the adaptability of archaea to environmental stresses. A comprehensive characterization of the lipidome of mesophilic marine thaumarchaeon, Nitrosopumilus maritimus (strain SCM1) revealed potentially an unreported phosphate- and sulfate-containing lipid candidate by negative ionization analysis. It was the first time that experimentally derived CCS values of archaeal lipids were reported. Discrimination of crenarchaeol and its proposed stereoisomer was, however, not achieved with the resolving power of the SYNAPT G2 ion mobility system, and a high-resolution ion mobility system may be required for future work. Structural and spectral libraries of archaeal lipids were constructed in non-vendor-specific formats and are being made available to the community to promote research of Archaea by lipidomics.
Collapse
Affiliation(s)
- Kai P Law
- Southern University of Science and Technology, SUSTech Academy for Advanced Interdisciplinary Studies, Shenzhen, China.,Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Wei He
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jianchang Tao
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
12
|
Physiological Characterization of Sulfolobus acidocaldarius in a Controlled Bioreactor Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115532. [PMID: 34064179 PMCID: PMC8196767 DOI: 10.3390/ijerph18115532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/28/2023]
Abstract
The crenarchaeal model organism Sulfolobus acidocaldarius is typically cultivated in shake flasks. Although shake flasks represent the state-of-the-art for the cultivation of this microorganism, in these systems crucial process parameters, like pH or substrate availability, are only set initially, but cannot be controlled during the cultivation process. As a result, a thorough characterization of growth parameters under controlled conditions is still missing for S. acidocaldarius. In this study, we conducted chemostat cultivations at 75 °C using a growth medium containing L-glutamate and D-glucose as main carbon sources. Different pH values and dilution rates were applied with the goal to physiologically characterize the organism in a controlled bioreactor environment. Under these controlled conditions a pH optimum of 3.0 was determined. Washout of the cells occurred at a dilution rate of 0.097 h−1 and the optimal productivity of biomass was observed at a dilution rate of 0.062 h−1. While both carbon sources were taken up by S. acidocaldarius concomitantly, a 6.6-fold higher affinity for L-glutamate was shown. When exposed to suboptimal growth conditions, S. acidocaldarius reacted with a change in the respiratory behavior and an increased trehalose production rate in addition to a decreased growth rate.
Collapse
|
13
|
Cobban A, Zhang Y, Zhou A, Weber Y, Elling FJ, Pearson A, Leavitt WD. Multiple environmental parameters impact lipid cyclization in Sulfolobus acidocaldarius. Environ Microbiol 2021; 22:4046-4056. [PMID: 32783317 DOI: 10.1111/1462-2920.15194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/09/2020] [Indexed: 01/19/2023]
Abstract
Adaptation of lipid membrane composition is an important component of archaeal homeostatic response. Historically, the number of cyclopentyl and cyclohexyl rings in the glycerol dibiphytanyl glycerol tetraether (GDGT) Archaeal lipids has been linked to variation in environmental temperature. However, recent work with GDGT-making archaea highlight the roles of other factors, such as pH or energy availability, in influencing the degree of GDGT cyclization. To better understand the role of multiple variables in a consistent experimental framework and organism, we cultivated the model Crenarchaeon Sulfolobus acidocaldarius DSM639 at different combinations of temperature, pH, oxygen flux, or agitation speed. We quantified responses in growth rate, biomass yield, and core lipid compositions, specifically the degree of core GDGT cyclization. The degree of GDGT cyclization correlated with growth rate under most conditions. The results suggest the degree of cyclization in archaeal lipids records a universal response to energy availability at the cellular level, both in thermoacidophiles, and in other recent findings in the mesoneutrophilic Thaumarchaea. Although we isolated the effects of key individual parameters, there remains a need for multi-factor experiments (e.g., pH + temperature + redox) in order to more robustly establish a framework to better understand homeostatic membrane responses.
Collapse
Affiliation(s)
- Alec Cobban
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA.,Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Yujiao Zhang
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA.,State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Alice Zhou
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA.,Department of Earth Science, University of Michigan, Ann Arbor, MI, USA
| | - Yuki Weber
- Department of Earth & Planetary Sciences, Harvard University, Cambridge, MA, 02138, USA.,Greenlight Biosciences Inc., Medford, MA, USA
| | - Felix J Elling
- Department of Earth & Planetary Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Ann Pearson
- Department of Earth & Planetary Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - William D Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA.,Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.,Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
14
|
The Cell Membrane of Sulfolobus spp.-Homeoviscous Adaption and Biotechnological Applications. Int J Mol Sci 2020; 21:ijms21113935. [PMID: 32486295 PMCID: PMC7312580 DOI: 10.3390/ijms21113935] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
The microbial cell membrane is affected by physicochemical parameters, such as temperature and pH, but also by the specific growth rate of the host organism. Homeoviscous adaption describes the process of maintaining membrane fluidity and permeability throughout these environmental changes. Archaea, and thereby, Sulfolobus spp. exhibit a unique lipid composition of ether lipids, which are altered in regard to the ratio of diether to tetraether lipids, number of cyclopentane rings and type of head groups, as a coping mechanism against environmental changes. The main biotechnological application of the membrane lipids of Sulfolobus spp. are so called archaeosomes. Archaeosomes are liposomes which are fully or partly generated from archaeal lipids and harbor the potential to be used as drug delivery systems for vaccines, proteins, peptides and nucleic acids. This review summarizes the influence of environmental parameters on the cell membrane of Sulfolobus spp. and the biotechnological applications of their membrane lipids.
Collapse
|
15
|
Boyer GM, Schubotz F, Summons RE, Woods J, Shock EL. Carbon Oxidation State in Microbial Polar Lipids Suggests Adaptation to Hot Spring Temperature and Redox Gradients. Front Microbiol 2020; 11:229. [PMID: 32153529 PMCID: PMC7044123 DOI: 10.3389/fmicb.2020.00229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
The influence of oxidation-reduction (redox) potential on the expression of biomolecules is a topic of ongoing exploration in geobiology. In this study, we investigate the novel possibility that structures and compositions of lipids produced by microbial communities are sensitive to environmental redox conditions. We extracted lipids from microbial biomass collected along the thermal and redox gradients of four alkaline hot springs in Yellowstone National Park (YNP) and investigated patterns in the average oxidation state of carbon (ZC), a metric calculated from the chemical formulae of lipid structures. Carbon in intact polar lipids (IPLs) and their alkyl chains becomes more oxidized (higher ZC) with increasing distance from each of the four hot spring sources. This coincides with decreased water temperature and increased concentrations of oxidized inorganic solutes, such as dissolved oxygen, sulfate, and nitrate. Carbon in IPLs is most reduced (lowest ZC) in the hot, reduced conditions upstream, with abundance-weighted ZC values between −1.68 and −1.56. These values increase gradually downstream to around −1.36 to −1.33 in microbial communities living between 29.0 and 38.1°C. This near-linear increase in ZC can be attributed to a shift from ether-linked to ester-linked alkyl chains, a decrease in average aliphatic carbons per chain (nC), an increase in average degree of unsaturation per chain (nUnsat), and increased cyclization in tetraether lipids. The ZC of lipid headgroups and backbones did not change significantly downstream. Expression of lipids with relatively reduced carbon under reduced conditions and oxidized lipids under oxidized conditions may indicate microbial adaptation across environmental gradients in temperature and electron donor/acceptor supply.
Collapse
Affiliation(s)
- Grayson M Boyer
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, United States
| | - Florence Schubotz
- MARUM and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Roger E Summons
- Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jade Woods
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Everett L Shock
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, United States.,School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|