1
|
Chung SSW, Cheung K, Arromrak BS, Li Z, Tse CM, Gaitán-Espitia JD. The interplay between host-specificity and habitat-filtering influences sea cucumber microbiota across an environmental gradient of pollution. ENVIRONMENTAL MICROBIOME 2024; 19:74. [PMID: 39397007 PMCID: PMC11479550 DOI: 10.1186/s40793-024-00620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Environmental gradients can influence morpho-physiological and life-history differences in natural populations. It is unclear, however, to what extent such gradients can also modulate phenotypic differences in other organismal characteristics such as the structure and function of host-associated microbial communities. In this work, we addressed this question by assessing intra-specific variation in the diversity, structure and function of environmental-associated (sediment and water) and animal-associated (skin and gut) microbiota along an environmental gradient of pollution in one of the most urbanized coastal areas in the world. Using the tropical sea cucumber Holothuria leucospilota, we tested the interplay between deterministic (e.g., environmental/host filtering) and stochastic (e.g., random microbial dispersal) processes underpinning host-microbiome interactions and microbial assemblages. Overall, our results indicate that microbial communities are complex and vary in structure and function between the environment and the animal hosts. However, these differences are modulated by the level of pollution across the gradient with marked clines in alpha and beta diversity. Yet, such clines and overall differences showed opposite directions when comparing environmental- and animal-associated microbial communities. In the sea cucumbers, intrinsic characteristics (e.g., body compartments, biochemistry composition, immune systems), may underpin the observed intra-individual differences in the associated microbiomes, and their divergence from the environmental source. Such regulation favours specific microbial functional pathways that may play an important role in the survival and physiology of the animal host, particularly in high polluted areas. These findings suggest that the interplay between both, environmental and host filtering underpins microbial community assembly in H. leucospilota along the pollution gradient in Hong Kong.
Collapse
Affiliation(s)
- Sheena Suet-Wah Chung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Khan Cheung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Bovern Suchart Arromrak
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Zhenzhen Li
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment and Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Cham Man Tse
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Juan Diego Gaitán-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Wu CY, Davis S, Saudagar N, Shah S, Zhao W, Stern A, Martel J, Ojcius D, Yang HC. Caenorhabditis elegans as a Convenient Animal Model for Microbiome Studies. Int J Mol Sci 2024; 25:6670. [PMID: 38928375 PMCID: PMC11203780 DOI: 10.3390/ijms25126670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Microbes constitute the most prevalent life form on Earth, yet their remarkable diversity remains mostly unrecognized. Microbial diversity in vertebrate models presents a significant challenge for investigating host-microbiome interactions. The model organism Caenorhabditis elegans has many advantages for delineating the effects of host genetics on microbial composition. In the wild, the C. elegans gut contains various microbial species, while in the laboratory it is usually a host for a single bacterial species. There is a potential host-microbe interaction between microbial metabolites, drugs, and C. elegans phenotypes. This mini-review aims to summarize the current understanding regarding the microbiome in C. elegans. Examples using C. elegans to study host-microbe-metabolite interactions are discussed.
Collapse
Affiliation(s)
- Cheng-Yeu Wu
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.W.); (J.M.)
| | - Scott Davis
- Department of Endodontics, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA;
| | - Neekita Saudagar
- Doctor of Dental Surgery Program, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (N.S.); (S.S.); (W.Z.)
| | - Shrey Shah
- Doctor of Dental Surgery Program, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (N.S.); (S.S.); (W.Z.)
| | - William Zhao
- Doctor of Dental Surgery Program, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA; (N.S.); (S.S.); (W.Z.)
| | - Arnold Stern
- Grossman School of Medicine, New York University, New York, NY 10016, USA;
| | - Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.W.); (J.M.)
| | - David Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan 33302, Taiwan; (C.-Y.W.); (J.M.)
- Department of Biomedical Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| | - Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 30041, Taiwan
| |
Collapse
|
3
|
Neely WJ, Souza KMC, Martins RA, Marshall VM, Buttimer SM, Brito de Assis A, Medina D, Whetstone RD, Lyra ML, Ribeiro JW, Greenspan SE, Haddad CFB, Alves dos Anjos L, Becker CG. Host-associated helminth diversity and microbiome composition contribute to anti-pathogen defences in tropical frogs impacted by forest fragmentation. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240530. [PMID: 39100162 PMCID: PMC11296196 DOI: 10.1098/rsos.240530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/23/2024] [Indexed: 08/06/2024]
Abstract
Habitat fragmentation can negatively impact wildlife populations by simplification of ecological interactions, but little is known about how these impacts extend to host-associated symbiotic communities. The symbiotic communities of amphibians play important roles in anti-pathogen defences, particularly against the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). In this study, we analyse the role of macroparasitic helminth communities in concert with microbial communities in defending the host against Bd infection within the context of forest fragmentation. We found that skin microbial and helminth communities are disrupted at fragmented habitats, while gut microbiomes appear more resilient to environmental change. We also detected potential protective roles of helminth diversity and anti-pathogen microbial function in limiting Bd infection. Microbial network analysis revealed strong patterns of structure in both skin and gut communities, with helminths playing central roles in these networks. We reveal consistent roles of microbial and helminth diversity in driving host-pathogen interactions and the potential implications of fragmentation on host fitness.
Collapse
Affiliation(s)
- Wesley J. Neely
- Department of Biology, The University of Alabama, Tuscaloosa, AL35487, USA
- Department of Biology, Texas State University, San Marcos, TX78666, USA
| | - Kassia M. C. Souza
- Departamento de Biologia e Zootecnia, Universidade Estadual Paulista, Ilha Solteira, São Paulo 15385-000, Brazil
| | - Renato A. Martins
- Department of Biology, The Pennsylvania State University, University Park, PA16803, USA
| | | | - Shannon M. Buttimer
- Department of Biology, The Pennsylvania State University, University Park, PA16803, USA
| | - Ananda Brito de Assis
- Department of Biodiversity and Aquaculture Center, Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
| | - Daniel Medina
- Department of Biology, The Pennsylvania State University, University Park, PA16803, USA
- Sistema Nacional de Investigación, SENACYT, City of Knowledge, Clayton, Panama, Republic of Panama
| | - Ross D. Whetstone
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Mariana L. Lyra
- Department of Biodiversity and Aquaculture Center, Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
- New York University Abu Dhabi, Abu Dhabi, UAE
| | - José Wagner Ribeiro
- Department of Biodiversity and Aquaculture Center, Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
| | - Sasha E. Greenspan
- Department of Biology, The University of Alabama, Tuscaloosa, AL35487, USA
| | - Célio F. B. Haddad
- Department of Biodiversity and Aquaculture Center, Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
| | - Luciano Alves dos Anjos
- Departamento de Biologia e Zootecnia, Universidade Estadual Paulista, Ilha Solteira, São Paulo 15385-000, Brazil
| | - C. Guilherme Becker
- Department of Biology, The Pennsylvania State University, University Park, PA16803, USA
- One Health Microbiome Center, Center for Infectious Disease Dynamics, Ecology Institute, Huch Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA16803, USA
| |
Collapse
|
4
|
Zimmermann J, Piecyk A, Sieber M, Petersen C, Johnke J, Moitinho-Silva L, Künzel S, Bluhm L, Traulsen A, Kaleta C, Schulenburg H. Gut-associated functions are favored during microbiome assembly across a major part of C. elegans life. mBio 2024; 15:e0001224. [PMID: 38634692 PMCID: PMC11077962 DOI: 10.1128/mbio.00012-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
The microbiome expresses a variety of functions that influence host biology. The range of functions depends on the microbiome's composition, which can change during the host's lifetime due to neutral assembly processes, host-mediated selection, and environmental conditions. To date, the exact dynamics of microbiome assembly, the underlying determinants, and the effects on host-associated functions remain poorly understood. Here, we used the nematode Caenorhabditis elegans and a defined community of fully sequenced, naturally associated bacteria to study microbiome dynamics and functions across a major part of the worm's lifetime of hosts under controlled experimental conditions. Bacterial community composition initially shows strongly declining levels of stochasticity, which increases during later time points, suggesting selective effects in younger animals as opposed to more random processes in older animals. The adult microbiome is enriched in genera Ochrobactrum and Enterobacter compared to the direct substrate and a host-free control environment. Using pathway analysis, metabolic, and ecological modeling, we further find that the lifetime assembly dynamics increase competitive strategies and gut-associated functions in the host-associated microbiome, indicating that the colonizing bacteria benefit the worm. Overall, our study introduces a framework for studying microbiome assembly dynamics based on stochastic, ecological, and metabolic models, yielding new insights into the processes that determine host-associated microbiome composition and function. IMPORTANCE The microbiome plays a crucial role in host biology. Its functions depend on the microbiome composition that can change during a host's lifetime. To date, the dynamics of microbiome assembly and the resulting functions still need to be better understood. This study introduces a new approach to characterize the functional consequences of microbiome assembly by modeling both the relevance of stochastic processes and metabolic characteristics of microbial community changes. The approach was applied to experimental time-series data obtained for the microbiome of the nematode Caenorhabditis elegans across the major part of its lifetime. Stochastic processes played a minor role, whereas beneficial bacteria as well as gut-associated functions enriched in hosts. This indicates that the host might actively shape the composition of its microbiome. Overall, this study provides a framework for studying microbiome assembly dynamics and yields new insights into C. elegans microbiome functions.
Collapse
Affiliation(s)
- Johannes Zimmermann
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
- Max Planck Fellow Group Antibiotic Resistance Evolution, Max Planck Institute for Evolutionary Biology, Ploen, Germany
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - Agnes Piecyk
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
| | - Michael Sieber
- Department for Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Carola Petersen
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
| | - Julia Johnke
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
| | - Lucas Moitinho-Silva
- />Institute of Clinical Molecular Biology, Christian-Albrechts University, Kiel, Germany
| | - Sven Künzel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Lena Bluhm
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
| | - Arne Traulsen
- Department for Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - Hinrich Schulenburg
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
- Max Planck Fellow Group Antibiotic Resistance Evolution, Max Planck Institute for Evolutionary Biology, Ploen, Germany
| |
Collapse
|
5
|
von Hoyningen-Huene AJE, Bang C, Rausch P, Rühlemann M, Fokt H, He J, Jensen N, Knop M, Petersen C, Schmittmann L, Zimmer T, Baines JF, Bosch TCG, Hentschel U, Reusch TBH, Roeder T, Franke A, Schulenburg H, Stukenbrock E, Schmitz RA. The archaeome in metaorganism research, with a focus on marine models and their bacteria-archaea interactions. Front Microbiol 2024; 15:1347422. [PMID: 38476944 PMCID: PMC10927989 DOI: 10.3389/fmicb.2024.1347422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
Metaorganism research contributes substantially to our understanding of the interaction between microbes and their hosts, as well as their co-evolution. Most research is currently focused on the bacterial community, while archaea often remain at the sidelines of metaorganism-related research. Here, we describe the archaeome of a total of eleven classical and emerging multicellular model organisms across the phylogenetic tree of life. To determine the microbial community composition of each host, we utilized a combination of archaea and bacteria-specific 16S rRNA gene amplicons. Members of the two prokaryotic domains were described regarding their community composition, diversity, and richness in each multicellular host. Moreover, association with specific hosts and possible interaction partners between the bacterial and archaeal communities were determined for the marine models. Our data show that the archaeome in marine hosts predominantly consists of Nitrosopumilaceae and Nanoarchaeota, which represent keystone taxa among the porifera. The presence of an archaeome in the terrestrial hosts varies substantially. With respect to abundant archaeal taxa, they harbor a higher proportion of methanoarchaea over the aquatic environment. We find that the archaeal community is much less diverse than its bacterial counterpart. Archaeal amplicon sequence variants are usually host-specific, suggesting adaptation through co-evolution with the host. While bacterial richness was higher in the aquatic than the terrestrial hosts, a significant difference in diversity and richness between these groups could not be observed in the archaeal dataset. Our data show a large proportion of unclassifiable archaeal taxa, highlighting the need for improved cultivation efforts and expanded databases.
Collapse
Affiliation(s)
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Philipp Rausch
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Hannover Medical School, Institute for Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Hanna Fokt
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jinru He
- Cell and Developmental Biology, Zoological Institute, Kiel University, Kiel, Germany
| | - Nadin Jensen
- Institute for General Microbiology, Kiel University, Kiel, Germany
| | - Mirjam Knop
- Department of Molecular Physiology, Zoology, Kiel University, Kiel, Germany
| | - Carola Petersen
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
| | - Lara Schmittmann
- Research Unit Ocean Dynamics, GEOMAR Helmholtz Institute for Ocean Research Kiel, Kiel, Germany
| | - Thorsten Zimmer
- Institute for General Microbiology, Kiel University, Kiel, Germany
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - John F. Baines
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Thomas C. G. Bosch
- Cell and Developmental Biology, Zoological Institute, Kiel University, Kiel, Germany
| | - Ute Hentschel
- Marine Evolutionary Ecology, GEOMAR Helmholtz Center for Ocean Research, Kiel, Germany
- Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Thorsten B. H. Reusch
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Thomas Roeder
- Department of Molecular Physiology, Zoology, Kiel University, Kiel, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Hinrich Schulenburg
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
- Antibiotic Resistance Group, Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - Eva Stukenbrock
- Max Planck Institute for Evolutionary Biology, Plön, Germany
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Ruth A. Schmitz
- Institute for General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
6
|
Marinos G, Hamerich IK, Debray R, Obeng N, Petersen C, Taubenheim J, Zimmermann J, Blackburn D, Samuel BS, Dierking K, Franke A, Laudes M, Waschina S, Schulenburg H, Kaleta C. Metabolic model predictions enable targeted microbiome manipulation through precision prebiotics. Microbiol Spectr 2024; 12:e0114423. [PMID: 38230938 PMCID: PMC10846184 DOI: 10.1128/spectrum.01144-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
While numerous health-beneficial interactions between host and microbiota have been identified, there is still a lack of targeted approaches for modulating these interactions. Thus, we here identify precision prebiotics that specifically modulate the abundance of a microbiome member species of interest. In the first step, we show that defining precision prebiotics by compounds that are only taken up by the target species but no other species in a community is usually not possible due to overlapping metabolic niches. Subsequently, we use metabolic modeling to identify precision prebiotics for a two-member Caenorhabditis elegans microbiome community comprising the immune-protective target species Pseudomonas lurida MYb11 and the persistent colonizer Ochrobactrum vermis MYb71. We experimentally confirm four of the predicted precision prebiotics, L-serine, L-threonine, D-mannitol, and γ-aminobutyric acid, to specifically increase the abundance of MYb11. L-serine was further assessed in vivo, leading to an increase in MYb11 abundance also in the worm host. Overall, our findings demonstrate that metabolic modeling is an effective tool for the design of precision prebiotics as an important cornerstone for future microbiome-targeted therapies.IMPORTANCEWhile various mechanisms through which the microbiome influences disease processes in the host have been identified, there are still only few approaches that allow for targeted manipulation of microbiome composition as a first step toward microbiome-based therapies. Here, we propose the concept of precision prebiotics that allow to boost the abundance of already resident health-beneficial microbial species in a microbiome. We present a constraint-based modeling pipeline to predict precision prebiotics for a minimal microbial community in the worm Caenorhabditis elegans comprising the host-beneficial Pseudomonas lurida MYb11 and the persistent colonizer Ochrobactrum vermis MYb71 with the aim to boost the growth of MYb11. Experimentally testing four of the predicted precision prebiotics, we confirm that they are specifically able to increase the abundance of MYb11 in vitro and in vivo. These results demonstrate that constraint-based modeling could be an important tool for the development of targeted microbiome-based therapies against human diseases.
Collapse
Affiliation(s)
- Georgios Marinos
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Inga K. Hamerich
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Reena Debray
- Department of Integrative Biology, University of California, Berkeley, California, USA
| | - Nancy Obeng
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Carola Petersen
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Jan Taubenheim
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Johannes Zimmermann
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
- Max-Planck Institute for Evolutionary Biology, Ploen, Schleswig-Holstein, Germany
| | - Dana Blackburn
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Buck S. Samuel
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Katja Dierking
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Silvio Waschina
- Nutriinformatics, Institute for Human Nutrition and Food Science, Kiel University, Kiel, Schleswig-Holstein, Germany
| | - Hinrich Schulenburg
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Schleswig-Holstein, Germany
- Max-Planck Institute for Evolutionary Biology, Ploen, Schleswig-Holstein, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Kiel, Schleswig-Holstein, Germany
| |
Collapse
|
7
|
Griem-Krey H, Petersen C, Hamerich IK, Schulenburg H. The intricate triangular interaction between protective microbe, pathogen and host determines fitness of the metaorganism. Proc Biol Sci 2023; 290:20232193. [PMID: 38052248 PMCID: PMC10697802 DOI: 10.1098/rspb.2023.2193] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
The microbiota shapes host biology in numerous ways. One example is protection against pathogens, which is likely critical for host fitness in consideration of the ubiquity of pathogens. The host itself can affect abundance of microbiota or pathogens, which has usually been characterized in separate studies. To date, however, it is unclear how the host influences the interaction with both simultaneously and how this triangular interaction determines fitness of the host-microbe assemblage, the so-called metaorganism. To address this current knowledge gap, we focused on a triangular model interaction, consisting of the nematode Caenorhabditis elegans, its protective symbiont Pseudomonas lurida MYb11 and its pathogen Bacillus thuringiensis Bt679. We combined the two microbes with C. elegans mutants with altered immunity and/or microbial colonization, and found that (i) under pathogen stress, immunocompetence has a larger influence on metaorganism fitness than colonization with the protective microbe; (ii) in almost all cases, MYb11 still improves fitness; and (iii) disruption of p38 MAPK signalling, which contributes centrally to immunity against Bt679, completely reverses the protective effect of MYb11, which further reduces nematode survival and fitness upon infection with Bt679. Our study highlights the complex interplay between host, protective microbe and pathogen in shaping metaorganism biology.
Collapse
Affiliation(s)
- Hanne Griem-Krey
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel 24118, Germany
| | - Carola Petersen
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel 24118, Germany
| | - Inga K. Hamerich
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel 24118, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel 24118, Germany
- Antibiotic resistance group, Max-Planck-Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
8
|
Petersen C, Hamerich IK, Adair KL, Griem-Krey H, Torres Oliva M, Hoeppner MP, Bohannan BJM, Schulenburg H. Host and microbiome jointly contribute to environmental adaptation. THE ISME JOURNAL 2023; 17:1953-1965. [PMID: 37673969 PMCID: PMC10579302 DOI: 10.1038/s41396-023-01507-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Most animals and plants have associated microorganisms, collectively referred to as their microbiomes, which can provide essential functions. Given their importance, host-associated microbiomes have the potential to contribute substantially to adaptation of the host-microbiome assemblage (the "metaorganism"). Microbiomes may be especially important for rapid adaptation to novel environments because microbiomes can change more rapidly than host genomes. However, it is not well understood how hosts and microbiomes jointly contribute to metaorganism adaptation. We developed a model system with which to disentangle the contributions of hosts and microbiomes to metaorganism adaptation. We established replicate mesocosms containing the nematode Caenorhabditis elegans co-cultured with microorganisms in a novel complex environment (laboratory compost). After approximately 30 nematode generations (100 days), we harvested worm populations and associated microbiomes, and subjected them to a common garden experiment designed to unravel the impacts of microbiome composition and host genetics on metaorganism adaptation. We observed that adaptation took different trajectories in different mesocosm lines, with some increasing in fitness and others decreasing, and that interactions between host and microbiome played an important role in these contrasting evolutionary paths. We chose two exemplary mesocosms (one with a fitness increase and one with a decrease) for detailed study. For each example, we identified specific changes in both microbiome composition (for both bacteria and fungi) and nematode gene expression associated with each change in fitness. Our study provides experimental evidence that adaptation to a novel environment can be jointly influenced by host and microbiome.
Collapse
Affiliation(s)
- Carola Petersen
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel, Germany
| | - Inga K Hamerich
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel, Germany
| | - Karen L Adair
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Hanne Griem-Krey
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel, Germany
| | | | - Marc P Hoeppner
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | | | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel, Germany.
- Max-Planck Institute for Evolutionary Biology, Ploen, Germany.
| |
Collapse
|
9
|
Obeng N, Czerwinski A, Schütz D, Michels J, Leipert J, Bansept F, García García MJ, Schultheiß T, Kemlein M, Fuß J, Tholey A, Traulsen A, Sondermann H, Schulenburg H. Bacterial c-di-GMP has a key role in establishing host-microbe symbiosis. Nat Microbiol 2023; 8:1809-1819. [PMID: 37653009 PMCID: PMC10522488 DOI: 10.1038/s41564-023-01468-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 08/10/2023] [Indexed: 09/02/2023]
Abstract
Most microbes evolve faster than their hosts and should therefore drive evolution of host-microbe interactions. However, relatively little is known about the characteristics that define the adaptive path of microbes to host association. Here we identified microbial traits that mediate adaptation to hosts by experimentally evolving the free-living bacterium Pseudomonas lurida with the nematode Caenorhabditis elegans as its host. After ten passages, we repeatedly observed the evolution of beneficial host-specialist bacteria, with improved persistence in the nematode being associated with increased biofilm formation. Whole-genome sequencing revealed mutations that uniformly upregulate the bacterial second messenger, cyclic diguanylate (c-di-GMP). We subsequently generated mutants with upregulated c-di-GMP in different Pseudomonas strains and species, which consistently increased host association. Comparison of pseudomonad genomes from various environments revealed that c-di-GMP underlies adaptation to a variety of hosts, from plants to humans. This study indicates that c-di-GMP is fundamental for establishing host association.
Collapse
Affiliation(s)
- Nancy Obeng
- Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany
| | - Anna Czerwinski
- Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany
| | - Daniel Schütz
- Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany
| | - Jan Michels
- Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany
| | - Jan Leipert
- Department of Systematic Proteome Research and Bioanalytics, University of Kiel, Kiel, Germany
| | | | - María J García García
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Thekla Schultheiß
- Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany
- Institute of Toxicology and Pharmacology, University of Kiel, Kiel, Germany
| | - Melinda Kemlein
- Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany
| | - Janina Fuß
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Andreas Tholey
- Department of Systematic Proteome Research and Bioanalytics, University of Kiel, Kiel, Germany
| | - Arne Traulsen
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Holger Sondermann
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Section of Biology, University of Kiel, Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, University of Kiel, Kiel, Germany.
- Max Planck Institute for Evolutionary Biology, Plön, Germany.
| |
Collapse
|
10
|
Shiri TJ, Viau C, Gu X, Xu L, Lu Y, Xia J. The Native Microbiome Member Chryseobacterium sp. CHNTR56 MYb120 Induces Trehalose Production via a Shift in Central Carbon Metabolism during Early Life in C. elegans. Metabolites 2023; 13:953. [PMID: 37623896 PMCID: PMC10456584 DOI: 10.3390/metabo13080953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Aging is the system-wide loss of homeostasis, eventually leading to death. There is growing evidence that the microbiome not only evolves with its aging host, but also directly affects aging via the modulation of metabolites involved in important cellular functions. The widely used model organism C. elegans exhibits high selectivity towards its native microbiome members which confer a range of differential phenotypes and possess varying functional capacities. The ability of one such native microbiome species, Chryseobacterium sp. CHNTR56 MYb120, to improve the lifespan of C. elegans and to promote the production of Vitamin B6 in the co-colonizing member Comamonas sp. 12022 MYb131 are some of its beneficial effects on the worm host. We hypothesize that studying its metabolic influence on the different life stages of the worm could provide further insights into mutualistic interactions. The present work applied LC-MS untargeted metabolomics and isotope labeling to study the impact of the native microbiome member Chryseobacterium sp. CHNTR56 MYb120 on the metabolism of C. elegans. In addition to the upregulation of biosynthesis and detoxification pathway intermediates, we found that Chryseobacterium sp. CHNTR56 MYb120 upregulates the glyoxylate shunt in mid-adult worms which is linked to the upregulation of trehalose, an important metabolite for desiccation tolerance in older worms.
Collapse
Affiliation(s)
- Tanisha Jean Shiri
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (T.J.S.); (C.V.); (X.G.); (L.X.)
| | - Charles Viau
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (T.J.S.); (C.V.); (X.G.); (L.X.)
| | - Xue Gu
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (T.J.S.); (C.V.); (X.G.); (L.X.)
| | - Lei Xu
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (T.J.S.); (C.V.); (X.G.); (L.X.)
| | - Yao Lu
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada;
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (T.J.S.); (C.V.); (X.G.); (L.X.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada;
| |
Collapse
|
11
|
Midha A, Jarquín-Díaz VH, Ebner F, Löber U, Hayani R, Kundik A, Cardilli A, Heitlinger E, Forslund SK, Hartmann S. Guts within guts: the microbiome of the intestinal helminth parasite Ascaris suum is derived but distinct from its host. MICROBIOME 2022; 10:229. [PMID: 36527132 PMCID: PMC9756626 DOI: 10.1186/s40168-022-01399-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Intestinal helminths are extremely prevalent among humans and animals. In particular, intestinal roundworms affect more than 1 billion people around the globe and are a major issue in animal husbandry. These pathogens live in intimate contact with the host gut microbiota and harbor bacteria within their own intestines. Knowledge of the bacterial host microbiome at the site of infection is limited, and data on the parasite microbiome is, to the best of our knowledge, non-existent. RESULTS The intestinal microbiome of the natural parasite and zoonotic macropathogen, Ascaris suum was analyzed in contrast to the diversity and composition of the infected host gut. 16S sequencing of the parasite intestine and host intestinal compartments showed that the parasite gut has a significantly less diverse microbiome than its host, and the host gut exhibits a reduced microbiome diversity at the site of parasite infection in the jejunum. While the host's microbiome composition at the site of infection significantly determines the microbiome composition of its parasite, microbial signatures differentiate the nematodes from their hosts as the Ascaris intestine supports the growth of microbes that are otherwise under-represented in the host gut. CONCLUSION Our data clearly indicate that a nematode infection reduces the microbiome diversity of the host gut, and that the nematode gut represents a selective bacterial niche harboring bacteria that are derived but distinct from the host gut. Video Abstract.
Collapse
Affiliation(s)
- Ankur Midha
- Department of Veterinary Medicine, Center for Infection Medicine, Institute of Immunology, Freie Universität Berlin, Robert-von-Ostertag-Straße 7, 14163 Berlin, Germany
| | - Víctor Hugo Jarquín-Díaz
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité — Universitätsmedizin Berlin, Berlin, Germany
- Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Molecular Parasitology, Institute for Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
- Research Group Ecology and Evolution of Molecular Parasite-Host Interactions, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Friederike Ebner
- Department of Veterinary Medicine, Center for Infection Medicine, Institute of Immunology, Freie Universität Berlin, Robert-von-Ostertag-Straße 7, 14163 Berlin, Germany
| | - Ulrike Löber
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité — Universitätsmedizin Berlin, Berlin, Germany
- Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Rima Hayani
- Department of Veterinary Medicine, Center for Infection Medicine, Institute of Immunology, Freie Universität Berlin, Robert-von-Ostertag-Straße 7, 14163 Berlin, Germany
| | - Arkadi Kundik
- Department of Veterinary Medicine, Center for Infection Medicine, Institute of Immunology, Freie Universität Berlin, Robert-von-Ostertag-Straße 7, 14163 Berlin, Germany
| | - Alessio Cardilli
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité — Universitätsmedizin Berlin, Berlin, Germany
- Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Emanuel Heitlinger
- Department of Molecular Parasitology, Institute for Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
- Research Group Ecology and Evolution of Molecular Parasite-Host Interactions, Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Sofia Kirke Forslund
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité — Universitätsmedizin Berlin, Berlin, Germany
- Charité — Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
- Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Center for Infection Medicine, Institute of Immunology, Freie Universität Berlin, Robert-von-Ostertag-Straße 7, 14163 Berlin, Germany
| |
Collapse
|
12
|
Zapién-Campos R, Bansept F, Sieber M, Traulsen A. On the effect of inheritance of microbes in commensal microbiomes. BMC Ecol Evol 2022; 22:75. [PMID: 35710335 PMCID: PMC9204957 DOI: 10.1186/s12862-022-02029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background Our current view of nature depicts a world where macroorganisms dwell in a landscape full of microbes. Some of these microbes not only transit but establish themselves in or on hosts. Although hosts might be occupied by microbes for most of their lives, a microbe-free stage during their prenatal development seems to be the rule for many hosts. The questions of who the first colonizers of a newborn host are and to what extent these are obtained from the parents follow naturally. Results We have developed a mathematical model to study the effect of the transfer of microbes from parents to offspring. Even without selection, we observe that microbial inheritance is particularly effective in modifying the microbiome of hosts with a short lifespan or limited colonization from the environment, for example by favouring the acquisition of rare microbes. Conclusion By modelling the inheritance of commensal microbes to newborns, our results suggest that, in an eco-evolutionary context, the impact of microbial inheritance is of particular importance for some specific life histories. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02029-2.
Collapse
|
13
|
Matthewman C, Narin A, Huston H, Hopkins CE. Systems to model the personalized aspects of microbiome health and gut dysbiosis. Mol Aspects Med 2022; 91:101115. [PMID: 36104261 DOI: 10.1016/j.mam.2022.101115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023]
Abstract
The human gut microbiome is a complex and dynamic microbial entity that interacts with the environment and other parts of the body including the brain, heart, liver, and immune system. These multisystem interactions are highly conserved from invertebrates to humans, however the complexity and diversity of human microbiota compositions often yield a context that is unique to each individual. Yet commonalities remain across species, where a healthy gut microbiome will be rich in symbiotic commensal biota while an unhealthy gut microbiota will be experiencing abnormal blooms of pathobiont bacteria. In this review we discuss how omics technologies can be applied in a personalized approach to understand the microbial crosstalk and microbial-host interactions that affect the delicate balance between eubiosis and dysbiosis in an individual gut microbiome. We further highlight the strengths of model organisms in identifying and characterizing these conserved synergistic and/or pathogenic host-microbe interactions. And finally, we touch upon the growing area of personalized therapeutic interventions targeting gut microbiome.
Collapse
|
14
|
Tibbs-Cortes LE, Tibbs-Cortes BW, Schmitz-Esser S. Tardigrade Community Microbiomes in North American Orchards Include Putative Endosymbionts and Plant Pathogens. Front Microbiol 2022; 13:866930. [PMID: 35923389 PMCID: PMC9340075 DOI: 10.3389/fmicb.2022.866930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
The microbiome of tardigrades, a phylum of microscopic animals best known for their ability to survive extreme conditions, is poorly studied worldwide and completely unknown in North America. An improved understanding of tardigrade-associated bacteria is particularly important because tardigrades have been shown to act as vectors of the plant pathogen Xanthomonas campestris in the laboratory. However, the potential role of tardigrades as reservoirs and vectors of phytopathogens has not been investigated further. This study analyzed the microbiota of tardigrades from six apple orchards in central Iowa, United States, and is the first analysis of the microbiota of North American tardigrades. It is also the first ever study of the tardigrade microbiome in an agricultural setting. We utilized 16S rRNA gene amplicon sequencing to characterize the tardigrade community microbiome across four contrasts: location, substrate type (moss or lichen), collection year, and tardigrades vs. their substrate. Alpha diversity of the tardigrade community microbiome differed significantly by location and year of collection but not by substrate type. Our work also corroborated earlier findings, demonstrating that tardigrades harbor a distinct microbiota from their environment. We also identified tardigrade-associated taxa that belong to genera known to contain phytopathogens (Pseudomonas, Ralstonia, and the Pantoea/Erwinia complex). Finally, we observed members of the genera Rickettsia and Wolbachia in the tardigrade microbiome; because these are obligate intracellular genera, we consider these taxa to be putative endosymbionts of tardigrades. These results suggest the presence of putative endosymbionts and phytopathogens in the microbiota of wild tardigrades in North America.
Collapse
Affiliation(s)
- Laura E. Tibbs-Cortes
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, United States
- *Correspondence: Laura E. Tibbs-Cortes,
| | - Bienvenido W. Tibbs-Cortes
- Department of Animal Science, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
15
|
Schurkman J, Liu R, Alavi S, Tandingan De Ley I, Hsiao A, Dillman AR. The Native Microbial Community of Gastropod-Associated Phasmarhabditis Species Across Central and Southern California. Front Microbiol 2022; 13:903136. [PMID: 35910595 PMCID: PMC9329066 DOI: 10.3389/fmicb.2022.903136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Nematodes in the genus Phasmarhabditis can infect and kill slugs and snails, which are important agricultural pests. This useful trait has been commercialized by the corporation BASF after they mass produced a product labeled Nemaslug®. The product contains Phasmarhabditis hermaphrodita, which has been cultured with Moraxella osloensis, a bacterial strain that was originally thought to be responsible for causing mortality in slugs and snails. The exact mechanism leading to death in a Phasmarhabditis infected host is unknown but may involve contributions from nematode-associated bacteria. The naturally occurring microbial community of Phasmarhabditis is unexplored; the previous Phasmarhabditis microbial community studies have focused on laboratory grown or commercially reared nematodes, and in order to obtain a deeper understanding of the parasite and its host interactions, it is crucial to characterize the natural microbial communities associated with this organism in the wild. We sampled Phasmarhabditis californica, Phasmarhabditis hermaphrodita, and Phasmarhabditis papillosa directly from their habitats in Central and Southern California nurseries and garden centers and identified their native microbial community via 16S amplicon sequencing. We found that the Phasmarhabditis microbial community was influenced by species, location, and possibly gastropod host from which the nematode was collected. The predominant bacteria of the Phasmarhabditis isolates collected included Shewanella, Clostridium perfringens, Aeromonadaceae, Pseudomonadaceae, and Acinetobacter. Phasmarhabditis papillosa isolates exhibited an enrichment with species belonging to Acinetobacter or Pseudomonadaceae. However, further research must be performed to determine if this is due to the location of isolate collection or a species specific microbial community pattern. More work on the natural microbial community of Phasmarhabditis is needed to determine the role of bacteria in nematode virulence.
Collapse
Affiliation(s)
- Jacob Schurkman
- Department of Nematology, University of California Riverside, Riverside, CA, United States
| | - Rui Liu
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, United States
| | - Salma Alavi
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, United States
| | - Irma Tandingan De Ley
- Department of Nematology, University of California Riverside, Riverside, CA, United States
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA, United States
- *Correspondence: Adler R. Dillman,
| | - Adler R. Dillman
- Department of Nematology, University of California Riverside, Riverside, CA, United States
- *Correspondence: Adler R. Dillman,
| |
Collapse
|
16
|
Pérez-Carrascal OM, Choi R, Massot M, Pees B, Narayan V, Shapira M. Host Preference of Beneficial Commensals in a Microbially-Diverse Environment. Front Cell Infect Microbiol 2022; 12:795343. [PMID: 35782135 PMCID: PMC9240469 DOI: 10.3389/fcimb.2022.795343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Gut bacteria are often described by the neutral term commensals. However, the more we learn about their interactions with hosts, the more apparent it becomes that gut commensals often contribute positively to host physiology and fitness. Whether hosts can prefer beneficial bacteria, and how they do so, is not clear. This is of particular interest in the case of the bacterivore C. elegans, which depends on bacteria as food source, but also as gut colonizers that contribute to its physiology, from development to immunity. It is further unclear to what extent worms living in their microbially-diverse habitats can sense and distinguish between beneficial bacteria, food, and pathogens. Focusing on Enterobacteriaceae and members of closely related families, we isolated gut bacteria from worms raised in compost microcosms, as well as bacteria from the respective environments and evaluated their contributions to host development. Most isolates, from worms or from the surrounding environment, promoted faster development compared to the non-colonizing E. coli food strain. Pantoea strains further showed differential contributions of gut isolates versus an environmental isolate. Characterizing bacterial ability to hinder pathogenic colonization with Pseudomonas aeruginosa, supported the trend of Pantoea gut commensals being beneficial, in contrast to the environmental strain. Interestingly, worms were attracted to the beneficial Pantoea strains, preferring them over non-beneficial bacteria, including the environmental Pantoea strain. While our understanding of the mechanisms underlying these host-microbe interactions are still rudimentary, the results suggest that hosts can sense and prefer beneficial commensals.
Collapse
|
17
|
Hönemann M, Viehweger A, Dietze N, Johnke J, Rodloff AC. Leclercia pneumoniae sp. nov., a bacterium isolated from clinical specimen in Leipzig, Germany. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain 49125T was isolated from an infant with pneumonia and septicaemia at the Leipzig University Hospital. Phenotypic and genomic traits were investigated. The strain's biochemical profile and its MALDI-TOF spectrogram did not differ from comparative samples of
Leclercia adecarboxylata
, thus far the sole member of the
Leclercia
species. A circular genome with a size of 4.4 Mbp and a G+C content of 55.0 mol% was reconstructed using hybrid Illumina and Nanopore sequencing. Phylogenetic analysis was based on 172 marker genes and validated using a k-mer-based search against a large genome collection including subsequent in silico DNA–DNA hybridization. Whole genome average nucleotide identity to any described species was below 95%, suggesting that strain 49125T represents a new species, for which we propose the name Leclercia pneumoniae sp. nov. with the type strain 49125T (=LMG 32245T=DSM 112336T).
Collapse
Affiliation(s)
- Mario Hönemann
- Institute Medical Microbiology and Virology, Virology Section, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Adrian Viehweger
- Institute for Medical Microbiology and Virology, Microbiology Section, Leipzig University, Liebigstraße 21, 04103 Leipzig, Germany
| | - Nadine Dietze
- Institute for Medical Microbiology and Virology, Microbiology Section, Leipzig University, Liebigstraße 21, 04103 Leipzig, Germany
| | - Julia Johnke
- Department of Evolutionary Ecology and Genetics, Zoological Institute, CAU Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Arne C. Rodloff
- Institute for Medical Microbiology and Virology, Microbiology Section, Leipzig University, Liebigstraße 21, 04103 Leipzig, Germany
| |
Collapse
|
18
|
Lousada MB, Lachnit T, Edelkamp J, Paus R, Bosch TCG. Hydra and the hair follicle - An unconventional comparative biology approach to exploring the human holobiont. Bioessays 2022; 44:e2100233. [PMID: 35261041 DOI: 10.1002/bies.202100233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
The microbiome of human hair follicles (HFs) has emerged as an important player in different HF and skin pathologies, yet awaits in-depth exploration. This raises questions regarding the tightly linked interactions between host environment, nutrient dependency of host-associated microbes, microbial metabolism, microbe-microbe interactions and host immunity. The use of simple model systems facilitates addressing generally important questions and testing overarching, therapeutically relevant principles that likely transcend obvious interspecies differences. Here, we evaluate the potential of the freshwater polyp Hydra, to dissect fundamental principles of microbiome regulation by the host, that is the human HF. In particular, we focus on therapeutically targetable host-microbiome interactions, such as nutrient dependency, microbial interactions and host defence. Offering a new lens into the study of HF - microbiota interactions, we argue that general principles of how Hydra manages its microbiota can inform the development of novel, microbiome-targeting therapeutic interventions in human skin disease.
Collapse
Affiliation(s)
- Marta B Lousada
- Monasterium Laboratory Skin & Hair Research, Münster, Germany.,Zoological Institute, Christian-Albrechts, University of Kiel, Kiel, Germany
| | - Tim Lachnit
- Zoological Institute, Christian-Albrechts, University of Kiel, Kiel, Germany
| | - Janin Edelkamp
- Monasterium Laboratory Skin & Hair Research, Münster, Germany
| | - Ralf Paus
- Monasterium Laboratory Skin & Hair Research, Münster, Germany.,Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Thomas C G Bosch
- Zoological Institute, Christian-Albrechts, University of Kiel, Kiel, Germany
| |
Collapse
|
19
|
Vega NM, Ludington WB. From a parts list to assembly instructions and an operating manual: how small host models can re-write microbiome theory. Curr Opin Microbiol 2021; 64:146-151. [PMID: 34739919 DOI: 10.1016/j.mib.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/10/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Nic M Vega
- Biology Department, Emory University, Atlanta, GA, United States.
| | - William B Ludington
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD, United States
| |
Collapse
|
20
|
Predation strategies of the bacterium Bdellovibrio bacteriovorus result in overexploitation and bottlenecks. Appl Environ Microbiol 2021; 88:e0108221. [PMID: 34669451 DOI: 10.1128/aem.01082-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
With increasing antimicrobial resistance, alternatives for treating infections or removing resistant bacteria are urgently needed, such as the bacterial predator Bdellovibrio bacteriovorus or bacteriophage. Therefore, we need to better understand microbial predator-prey dynamics. We developed mass-action mathematical models of predation for chemostats, which capture the low substrate concentration and slow growth typical for intended application areas of the predators such as wastewater treatment, aquaculture or the gut. Our model predicted that predator survival required a minimal prey cell size, explaining why Bdellovibrio is much smaller than its prey. A too good predator (attack rate too high, mortality too low) overexploited its prey leading to extinction (tragedy of the commons). Surprisingly, a predator taking longer to produce more offspring outcompeted a predator producing fewer offspring more rapidly (rate versus yield trade-off). Predation was only efficient in a narrow region around optimal parameters. Moreover, extreme oscillations under a wide range of conditions led to severe bottlenecks. These could be avoided when two prey species became available in alternating seasons. A bacteriophage outcompeted Bdellovibrio due to its higher burst size and faster life cycle. Together, results suggest that Bdellovibrio would struggle to survive on a single prey, explaining why it must be a generalist predator and suggesting it is better suited than phage to environments with multiple prey. Importance The discovery of antibiotics led to a dramatic drop in deaths due to infectious disease. Increasing levels of antimicrobial resistance, however, threaten to reverse this progress. There is thus a need for alternatives, such as therapies based on phage and predatory bacteria that kill bacteria regardless of whether they are pathogens or resistant to antibiotics. To best exploit them, we need to better understand what determines their effectiveness. By using a mathematical model to study bacterial predation in realistic slow growth conditions, we found that the generalist predator Bdellovibrio is most effective within a narrow range of conditions for each prey. For example, a minimum prey cell size is required, and the predator should not be too good as this would result in over-exploitation risking extinction. Together these findings give insights into the ecology of microbial predation and help explain why Bdellovibrio needs to be a generalist predator.
Collapse
|
21
|
Pees B, Johnke J, Möhl M, Hamerich IK, Leippe M, Petersen C. Microbes to-go: slugs as source for Caenorhabditis elegans microbiota acquisition. Environ Microbiol 2021; 23:6721-6733. [PMID: 34414649 DOI: 10.1111/1462-2920.15730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022]
Abstract
Research on the Caenorhabditis elegans microbiota only recently started, with little known about how C. elegans acquires its microbiota. Slugs live in the same habitat as C. elegans and are known vectors for the worm. Hence, we wondered how the passage through a slug affects the C. elegans gut microbiota and whether worms can acquire bacteria from the slug. Using fluorescently labelled microbiota and 16S rRNA gene amplicon sequencing, we evaluated microbiota persistence and acquisition in C. elegans after slug passage. We compared C. elegans gut microbiomes isolated from wild-caught slugs to the microbiomes of worms after experimental slug passage to compare similarities and differences in microbiome composition. We found that microbiota persists in C. elegans while passing the slug gut and that worms simultaneously acquire additional bacteria species from the slug. Although the amplicon sequencing variant (ASV) richness of worms from the experiment did not exceed the richness of worms that naturally occur in slugs, we found a high number of shared ASVs indicating the importance of commonly associated microbiota. We demonstrate that C. elegans can take advantage of its passage through the slug by acquiring new potential microbiota without losing its native microbiota.
Collapse
Affiliation(s)
- Barbara Pees
- Department of Comparative Immunobiology, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | - Julia Johnke
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | - Michelle Möhl
- Department of Comparative Immunobiology, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | - Inga K Hamerich
- Department of Comparative Immunobiology, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | - Matthias Leippe
- Department of Comparative Immunobiology, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| | - Carola Petersen
- Department of Comparative Immunobiology, Zoological Institute, Christian-Albrechts University, Kiel, Germany
| |
Collapse
|
22
|
Ortiz A, Vega NM, Ratzke C, Gore J. Interspecies bacterial competition regulates community assembly in the C. elegans intestine. THE ISME JOURNAL 2021; 15:2131-2145. [PMID: 33589765 PMCID: PMC8245486 DOI: 10.1038/s41396-021-00910-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/31/2023]
Abstract
From insects to mammals, a large variety of animals hold in their intestines complex bacterial communities that play an important role in health and disease. To further our understanding of how intestinal bacterial communities assemble and function, we study the C. elegans microbiota with a bottom-up approach by feeding this nematode with bacterial monocultures as well as mixtures of two to eight bacterial species. We find that bacteria colonizing well in monoculture do not always do well in co-cultures due to interspecies bacterial interactions. Moreover, as community diversity increases, the ability to colonize the worm gut in monoculture becomes less important than interspecies interactions for determining community assembly. To explore the role of host-microbe adaptation, we compare bacteria isolated from C. elegans intestines and non-native isolates, and we find that the success of colonization is determined more by a species' taxonomy than by the isolation source. Lastly, by comparing the assembled microbiotas in two C. elegans mutants, we find that innate immunity via the p38 MAPK pathway decreases bacterial abundances yet has little influence on microbiota composition. These results highlight that bacterial interspecies interactions, more so than host-microbe adaptation or gut environmental filtering, play a dominant role in the assembly of the C. elegans microbiota.
Collapse
Affiliation(s)
- Anthony Ortiz
- grid.116068.80000 0001 2341 2786Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Nicole M. Vega
- grid.116068.80000 0001 2341 2786Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.189967.80000 0001 0941 6502Present Address: Department of Biology, Emory University, Atlanta, GA USA
| | - Christoph Ratzke
- grid.116068.80000 0001 2341 2786Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.10392.390000 0001 2190 1447Present Address: Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence ‘CMFI’, University of Tübingen, Tübingen, Germany
| | - Jeff Gore
- grid.116068.80000 0001 2341 2786Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA USA
| |
Collapse
|
23
|
Zhang F, Weckhorst JL, Assié A, Hosea C, Ayoub CA, Khodakova AS, Cabrera ML, Vidal Vilchis D, Félix MA, Samuel BS. Natural genetic variation drives microbiome selection in the Caenorhabditis elegans gut. Curr Biol 2021; 31:2603-2618.e9. [PMID: 34048707 PMCID: PMC8222194 DOI: 10.1016/j.cub.2021.04.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Host genetic landscapes can shape microbiome assembly in the animal gut by contributing to the establishment of distinct physiological environments. However, the genetic determinants contributing to the stability and variation of these microbiome types remain largely undefined. Here, we use the free-living nematode Caenorhabditis elegans to identify natural genetic variation among wild strains of C. elegans that drives assembly of distinct microbiomes. To achieve this, we first established a diverse model microbiome that represents the strain-level phylogenetic diversity naturally encountered by C. elegans in the wild. Using this community, we show that C. elegans utilizes immune, xenobiotic, and metabolic signaling pathways to favor the assembly of different microbiome types. Variations in these pathways were associated with enrichment for specific commensals, including the Alphaproteobacteria Ochrobactrum. Using RNAi and mutant strains, we showed that host selection for Ochrobactrum is mediated specifically by host insulin signaling pathways. Ochrobactrum recruitment is blunted in the absence of DAF-2/IGFR and modulated by the competitive action of insulin signaling transcription factors DAF-16/FOXO and PQM-1/SALL2. Further, the ability of C. elegans to enrich for Ochrobactrum as adults is correlated with faster animal growth rates and larger body size at the end of development. These results highlight a new role for the highly conserved insulin signaling pathways in the regulation of gut microbiome composition in C. elegans.
Collapse
Affiliation(s)
- Fan Zhang
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Jessica L Weckhorst
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Program in Quantitative and Computational Biosciences, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Adrien Assié
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Ciara Hosea
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Christopher A Ayoub
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Anastasia S Khodakova
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Mario Loeza Cabrera
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Daniela Vidal Vilchis
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Marie-Anne Félix
- Ecole Normale Supérieure, IBENS, CNRS UMR8197, INSERM U1024, Paris, France
| | - Buck S Samuel
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Program in Quantitative and Computational Biosciences, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA; Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Bates KA, Bolton JS, King KC. A globally ubiquitous symbiont can drive experimental host evolution. Mol Ecol 2021; 30:3882-3892. [PMID: 34037279 DOI: 10.1111/mec.15998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/04/2023]
Abstract
Organisms harbour myriad microbes which can be parasitic or protective against harm. The costs and benefits resulting from these symbiotic relationships can be context-dependent, but the evolutionary consequences to hosts of these transitions remain unclear. Here, we mapped the Leucobacter genus across 13,715 microbiome samples (163 studies) to reveal a global distribution as a free-living microbe or a symbiont of animals and plants. We showed that across geographically distant locations (South Africa, France, Cape Verde), Leucobacter isolates vary substantially in their virulence to an associated animal host, Caenorhabditis nematodes. We further found that multiple Leucobacter sequence variants co-occur in wild Caenorhabditis spp. which combined with natural variation in virulence provides real-world potential for Leucobacter community composition to influence host fitness. We examined this by competing C. elegans genotypes that differed in susceptibility to different Leucobacter species in an evolution experiment. One Leucobacter species was found to be host-protective against another, virulent parasitic species. We tested the impact of host genetic background and Leucobacter community composition on patterns of host-based defence evolution. We found host genotypes conferring defence against the parasitic species were maintained during infection. However, when hosts were protected during coinfection, host-based defences were nearly lost from the population. Overall, our results provide insight into the role of community context in shaping host evolution during symbioses.
Collapse
Affiliation(s)
| | - Jai S Bolton
- Department of Zoology, University of Oxford, Oxford, UK
| | - Kayla C King
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Radeke LJ, Herman MA. Take a Walk to the Wild Side of Caenorhabditis elegans-Pathogen Interactions. Microbiol Mol Biol Rev 2021; 85:e00146-20. [PMID: 33731489 PMCID: PMC8139523 DOI: 10.1128/mmbr.00146-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Microbiomes form intimate functional associations with their hosts. Much has been learned from correlating changes in microbiome composition to host organismal functions. However, in-depth functional studies require the manipulation of microbiome composition coupled with the precise interrogation of organismal physiology-features available in few host study systems. Caenorhabditis elegans has proven to be an excellent genetic model organism to study innate immunity and, more recently, microbiome interactions. The study of C. elegans-pathogen interactions has provided in depth understanding of innate immune pathways, many of which are conserved in other animals. However, many bacteria were chosen for these studies because of their convenience in the lab setting or their implication in human health rather than their native interactions with C. elegans In their natural environment, C. elegans feed on a variety of bacteria found in rotting organic matter, such as rotting fruits, flowers, and stems. Recent work has begun to characterize the native microbiome and has identified a common set of bacteria found in the microbiome of C. elegans While some of these bacteria are beneficial to C. elegans health, others are detrimental, leading to a complex, multifaceted understanding of bacterium-nematode interactions. Current research on nematode-bacterium interactions is focused on these native microbiome components, both their interactions with each other and with C. elegans We will summarize our knowledge of bacterial pathogen-host interactions in C. elegans, as well as recent work on the native microbiome, and explore the incorporation of these bacterium-nematode interactions into studies of innate immunity and pathogenesis.
Collapse
Affiliation(s)
- Leah J Radeke
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Michael A Herman
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
26
|
Chan SY, Liu SY, Seng Z, Chua SL. Biofilm matrix disrupts nematode motility and predatory behavior. ISME JOURNAL 2020; 15:260-269. [PMID: 32958848 DOI: 10.1038/s41396-020-00779-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 01/09/2023]
Abstract
In nature, bacteria form biofilms by producing exopolymeric matrix that encases its entire community. While it is widely known that biofilm matrix can prevent bacterivore predation and contain virulence factors for killing predators, it is unclear if they can alter predator motility. Here, we report a novel "quagmire" phenotype, where Pseudomonas aeruginosa biofilms could retard the motility of bacterivorous nematode Caenorhabditis elegans via the production of a specific exopolysaccharide, Psl. Psl could reduce the roaming ability of C. elegans by impeding the slithering velocity of C. elegans. Furthermore, the presence of Psl in biofilms could entrap C. elegans within the matrix, with dire consequences to the nematode. After being trapped in biofilms, C. elegans could neither escape effectively from aversive stimuli (noxious blue light), nor leave easily to graze on susceptible biofilm areas. Hence, this reduced the ability of C. elegans to roam and predate on biofilms. Taken together, our work reveals a new function of motility interference by specific biofilm matrix components, and emphasizes its importance in predator-prey interactions.
Collapse
Affiliation(s)
- Shepherd Yuen Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Sylvia Yang Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Zijing Seng
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China. .,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
27
|
Dirksen P, Assié A, Zimmermann J, Zhang F, Tietje AM, Marsh SA, Félix MA, Shapira M, Kaleta C, Schulenburg H, Samuel BS. CeMbio - The Caenorhabditis elegans Microbiome Resource. G3 (BETHESDA, MD.) 2020; 10:3025-3039. [PMID: 32669368 PMCID: PMC7466993 DOI: 10.1534/g3.120.401309] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/07/2020] [Indexed: 12/23/2022]
Abstract
The study of microbiomes by sequencing has revealed a plethora of correlations between microbial community composition and various life-history characteristics of the corresponding host species. However, inferring causation from correlation is often hampered by the sheer compositional complexity of microbiomes, even in simple organisms. Synthetic communities offer an effective approach to infer cause-effect relationships in host-microbiome systems. Yet the available communities suffer from several drawbacks, such as artificial (thus non-natural) choice of microbes, microbe-host mismatch (e.g., human microbes in gnotobiotic mice), or hosts lacking genetic tractability. Here we introduce CeMbio, a simplified natural Caenorhabditis elegans microbiota derived from our previous meta-analysis of the natural microbiome of this nematode. The CeMbio resource is amenable to all strengths of the C. elegans model system, strains included are readily culturable, they all colonize the worm gut individually, and comprise a robust community that distinctly affects nematode life-history. Several tools have additionally been developed for the CeMbio strains, including diagnostic PCR primers, completely sequenced genomes, and metabolic network models. With CeMbio, we provide a versatile resource and toolbox for the in-depth dissection of naturally relevant host-microbiome interactions in C. elegans.
Collapse
Affiliation(s)
- Philipp Dirksen
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University, Kiel, Germany
| | - Adrien Assié
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston TX
| | - Johannes Zimmermann
- Medical Systems Biology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Fan Zhang
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston TX
| | - Adina-Malin Tietje
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University, Kiel, Germany
| | | | - Marie-Anne Félix
- Institute of Biology of the Ecole Normale Supérieure, Paris, France
| | - Michael Shapira
- Department of Integrative Biology, University of California, Berkeley CA
| | - Christoph Kaleta
- Medical Systems Biology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University, Kiel, Germany
| | - Buck S Samuel
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston TX
| |
Collapse
|
28
|
Huang Y, Kammenga JE. Genetic Variation in Caenorhabditis elegans Responses to Pathogenic Microbiota. Microorganisms 2020; 8:E618. [PMID: 32344661 PMCID: PMC7232262 DOI: 10.3390/microorganisms8040618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/30/2022] Open
Abstract
The bacterivorous nematode Caenorhabditis elegans is an important model species for understanding genetic variation of complex traits. So far, most studies involve axenic laboratory settings using Escherichia coli as the sole bacterial species. Over the past decade, however, investigations into the genetic variation of responses to pathogenic microbiota have increasingly received attention. Quantitative genetic analyses have revealed detailed insight into loci, genetic variants, and pathways in C. elegans underlying interactions with bacteria, microsporidia, and viruses. As various quantitative genetic platforms and resources like C. elegans Natural Diversity Resource (CeNDR) and Worm Quantitative Trait Loci (WormQTL) have been developed, we anticipate that expanding C. elegans research along the lines of genetic variation will be a treasure trove for opening up new insights into genetic pathways and gene functionality of microbiota interactions.
Collapse
Affiliation(s)
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|