1
|
Sun Z, Zeng Z, Chen LX, Xu JD, Zhou J, Kong M, Shen H, Mao Q, Wu CY, Long F, Zhou SS, Li SL. Integrated anti-fatigue effects of polysaccharides and small molecules coexisting in water extracts of ginseng: Gut microbiota-mediated mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118958. [PMID: 39427741 DOI: 10.1016/j.jep.2024.118958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Both clinical and animal studies have demonstrated that ginseng has curative effects on fatigue. Our previous study found that water extracts of ginseng (WEG) could significantly mitigate exercise-induced fatigue (EF). Notably, polysaccharides (GP) and small molecules (GS, mainly ginsenosides) coexist in WEG. Whether and how GP and GS contribute to the anti-EF effects of WEG remains unknown. AIM OF THE STUDY To evaluate the contribution of GP and GS to the anti-EF effects of WEG and clarify the potential gut microbiota-mediated mechanisms. MATERIALS AND METHODS Firstly, the anti-EF effects of WEG, GP and GS were comparatively investigated by determining fatigue phenotypes (energy metabolism and oxidative stress parameters), gut microbiota composition as well as exogenous and endogenous metabolites in EF modeling rats. Then, the gut microbiota mediated mechanisms were verified by antibiotics (ABX) intervention and fecal microbial transplantation (FMT). RESULTS GP, GS and WEG each exhibited distinct anti-EF effects in differentially improving EF-induced energy metabolism abnormality and oxidative stress, reshaping gut microbiota composition, and elevating systemic metabolites. Notably, WEG showed stronger anti-EF effects than both GP and GS, characterized by better alleviation of disturbances in energy metabolism (e.g. Glc) and oxidative stress parameters (e.g. SOD), regulation of gut microbiota homeostasis (e.g. enriching the genus Coprococcus and species Collinsella provencensis etc.), as well as increases in exogenous secondary ginsenosides (e.g. 20(S)-Rg3, 20(R)-Rg3, CK), endogenous bile acids (BAs) (e.g. CA, DCA, LCA), and short chain fatty acids (SCFAs) (e.g. butyric acid). The stronger anti-EF effects of WEG compared to GP and GS could be abolished by ABX intervention, and transferred by FMT. CONCLUSION GP and GS could collectively contribute to the anti-EF effects of WEG through integrated actions. Gut microbiota mediate the integrated anti-EF effects of GP and GS in WEG, potentially by regulating the levels of exogenous bioactive secondary ginsenosides, as well as endogenous BAs and SCFAs, thereby alleviating fatigue-related energy metabolic abnormalities and oxidative stress.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Zhen Zeng
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Lin-Xia Chen
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jin-Di Xu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| | - Jing Zhou
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| | - Ming Kong
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| | - Hong Shen
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| | - Qian Mao
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| | - Cheng-Ying Wu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| | - Fang Long
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| | - Shan-Shan Zhou
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.
| |
Collapse
|
2
|
Guo H, Chen Y, Dong W, Lu S, Du Y, Duan L. Fecal Coprococcus, hidden behind abdominal symptoms in patients with small intestinal bacterial overgrowth. J Transl Med 2024; 22:496. [PMID: 38796441 PMCID: PMC11128122 DOI: 10.1186/s12967-024-05316-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Small intestinal bacterial overgrowth (SIBO) is the presence of an abnormally excessive amount of bacterial colonization in the small bowel. Hydrogen and methane breath test has been widely applied as a non-invasive method for SIBO. However, the positive breath test representative of bacterial overgrowth could also be detected in asymptomatic individuals. METHODS To explore the relationship between clinical symptoms and gut dysbiosis, and find potential fecal biomarkers for SIBO, we compared the microbial profiles between SIBO subjects with positive breath test but without abdominal symptoms (PBT) and healthy controls (HC) using 16S rRNA amplicon sequencing. RESULTS Fecal samples were collected from 63 SIBO who complained of diarrhea, distension, constipation, or abdominal pain, 36 PBT, and 55 HC. For alpha diversity, the Shannon index of community diversity on the genus level showed a tendency for a slight increase in SIBO, while the Shannon index on the predicted function was significantly decreased in SIBO. On the genus level, significantly decreased Bacteroides, increased Coprococcus_2, and unique Butyrivibrio were observed in SIBO. There was a significant positive correlation between saccharolytic Coprococcus_2 and the severity of abdominal symptoms. Differently, the unique Veillonella in the PBT group was related to amino acid fermentation. Interestingly, the co-occurrence network density of PBT was larger than SIBO, which indicates a complicated interaction of genera. Coprococcus_2 showed one of the largest betweenness centrality in both SIBO and PBT microbiota networks. Pathway analysis based on the Kyoto Encyclopedia of Genes and Genome (KEGG) database reflected that one carbon pool by folate and multiple amino acid metabolism were significantly down in SIBO. CONCLUSIONS This study provides valuable insights into the fecal microbiota composition and predicted metabolic functional changes in patients with SIBO. Butyrivibrio and Coprococcus_2, both renowned for their role in carbohydrate fermenters and gas production, contributed significantly to the symptoms of the patients. Coprococcus's abundance hints at its use as a SIBO marker. Asymptomatic PBT individuals show a different microbiome, rich in Veillonella. PBT's complex microbial interactions might stabilize the intestinal ecosystem, but further study is needed due to the core microbiota similarities with SIBO. Predicted folate and amino acid metabolism reductions in SIBO merit additional validation.
Collapse
Affiliation(s)
- Huaizhu Guo
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Yuzhu Chen
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Wenxin Dong
- Department of Pediatrics, Peking University Third Hospital, Beijing, China
| | - Siqi Lu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Yanlin Du
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China.
- International Institute of Population Health, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
3
|
Notting F, Pirovano W, Sybesma W, Kort R. The butyrate-producing and spore-forming bacterial genus Coprococcus as a potential biomarker for neurological disorders. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e16. [PMID: 39295905 PMCID: PMC11406416 DOI: 10.1017/gmb.2023.14] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 09/21/2024]
Abstract
The host-intestinal microbiome interaction has gained much scientific attention in the past two decades, boosted by advances in DNA sequencing and cultivation techniques. An accumulating amount of evidence shows that gut microbes play crucial roles in gut homeostasis, immune system education, and are associated with quality-of-life indicators. Beneficial health factors are associated with the digestion of dietary fibres in the colon and the subsequent production of short-chain fatty acids, including acetate, propionate, and butyrate. Coprococcus is a butyrate-producing genus in the phylum Firmicutes, and its abundance is inversely correlated with several neuropsychological and neurodegenerative disorders. Case-control studies provide strong evidence of decreased abundance of Coprococcus spp. in depressed individuals. The species Coprococcus eutactus has the unique capacity to use two separate pathways for butyrate synthesis and has been found to be depleted in children with delayed language development and adults with Parkinson's disease. The combined literature on Coprococcus and the gut microbiota-brain axis points towards enhanced butyrate production and reduced colonisation of pathogenic clades as factors explaining its association with health effects. The genus Coprococcus is a promising candidate for a mental health biomarker and an interesting lead for novel dietary-based preventive therapies for specific neurological disorders.
Collapse
Affiliation(s)
- Fleur Notting
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Walter Pirovano
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Remco Kort
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- ARTIS-Micropia, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Metzler-Zebeli BU, Lerch F, Yosi F, Vötterl J, Ehmig J, Koger S, Verhovsek D. Temporal Microbial Dynamics in Feces Discriminate by Nutrition, Fecal Color, Consistency and Sample Type in Suckling and Newly Weaned Piglets. Animals (Basel) 2023; 13:2251. [PMID: 37508029 PMCID: PMC10376145 DOI: 10.3390/ani13142251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Feces enable frequent samplings for the same animal, which is valuable in studies investigating the development of the gut microbiome in piglets. Creep feed should prepare the piglet's gut for the postweaning period and shape the microbiome accordingly. Little is known about the variation that is caused by differences in fecal color and consistency and different sample types (feces versus swab samples). Therefore, this study evaluated the age-related alterations in the microbiome composition (16S rRNA gene) in feces of suckling and newly weaned piglets in the context of nutrition and fecal consistency, color and sample type from day 2 to 34 of life. Feces from 40 healthy piglets (2 each from 20 litters) were collected on days 2, 6, 13, 20, 27, 30 and 34. Weaning occurred on day 28. Half of the litters only drank sow milk during the suckling phase, whereas the other half had access to creep feed from day 10. Creep feeding during the suckling phase influenced the age-related total bacterial and archaeal abundances but had less of an influence on the relative bacterial composition. Results further showed different taxonomic compositions in feces of different consistency, color and sample type, emphasizing the need to consider these characteristics in comprehensive microbiome studies.
Collapse
Affiliation(s)
- Barbara U Metzler-Zebeli
- Unit Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Frederike Lerch
- Unit Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Fitra Yosi
- Unit Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department of Animal Science, Faculty of Agriculture, University of Sriwijaya, Palembang 30662, Indonesia
| | - Julia Vötterl
- Unit Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Juliane Ehmig
- Unit Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Simone Koger
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Doris Verhovsek
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
5
|
Rehner J, Schmartz GP, Kramer T, Keller V, Keller A, Becker SL. The Effect of a Planetary Health Diet on the Human Gut Microbiome: A Descriptive Analysis. Nutrients 2023; 15:nu15081924. [PMID: 37111144 PMCID: PMC10144214 DOI: 10.3390/nu15081924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
In 2019, researchers from the EAT-Lancet Commission developed the 'Planetary Health (PH) diet'. Specifically, they provided recommendations pertaining to healthy diets derived from sustainable food systems. Thus far, it has not been analysed how such a diet affects the human intestinal microbiome, which is important for health and disease development. Here, we present longitudinal genome-wide metagenomic sequencing and mass spectrometry data on the gut microbiome of healthy volunteers adhering to the PH diet, as opposed to vegetarian or vegan (VV) and omnivorous (OV) diets. We obtained basic epidemiological information from 41 healthy volunteers and collected stool samples at inclusion and after 2, 4, and 12 weeks. Individuals opting to follow the PH diet received detailed instructions and recipes, whereas individuals in the control groups followed their habitual dietary pattern. Whole-genome DNA was extracted from stool specimens and subjected to shotgun metagenomic sequencing (~3 GB per patient). Conventional bacterial stool cultures were performed in parallel and bacterial species were identified with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. We analysed samples from 16 PH, 16 OV, and 9 VV diet patterns. The α-diversity remained relatively stable for all dietary groups. In the PH group, we observed a constant increase from 3.79% at inclusion to 4.9% after 12 weeks in relative abundance of Bifidobacterium adolescentis. Differential PH abundance analysis highlighted a non-significant increase in possible probiotics such as Paraprevotella xylaniphila and Bacteroides clarus. The highest abundance of these bacteria was observed in the VV group. Dietary modifications are associated with rapid alterations to the human gut microbiome, and the PH diet led to a slight increase in probiotic-associated bacteria at ≥4 weeks. Additional research is required to confirm these findings.
Collapse
Affiliation(s)
- Jacqueline Rehner
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
| | - Georges P Schmartz
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Tabea Kramer
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
| | - Verena Keller
- Department of Medicine II, Saarland University Medical Center, 66421 Homburg, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
6
|
You C, Xu Q, Chen J, Xu Y, Pang J, Peng X, Tang Z, Sun W, Sun Z. Effects of Different Combinations of Sodium Butyrate, Medium-Chain Fatty Acids and Omega-3 Polyunsaturated Fatty Acids on the Reproductive Performance of Sows and Biochemical Parameters, Oxidative Status and Intestinal Health of Their Offspring. Animals (Basel) 2023; 13:ani13061093. [PMID: 36978634 PMCID: PMC10044250 DOI: 10.3390/ani13061093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of the study was to investigate the comparative effects of different combinations of sodium butyrate (SB), medium-chain fatty acids (MCFAs), and omega-3 polyunsaturated fatty acids (n-3 PUFAs) on the reproductive performances of sows, as well as on the biochemical parameters, oxidative statuses, and intestinal health of the sucking piglets. A total of 30 sows were randomly allocated to five treatments: (1) control diet (CON); (2) CON with 1 g/kg of coated SB and 7.75 g/kg of coated MCFAs (SM); (3) CON with 1 g/kg of coated SB and 68.2 g/kg of coated n-3 PUFAs (SP); (4) CON with 7.75 g/kg of coated MCFAs and 68.2 g/kg of coated n-3 PUFAs (MP); (5) CON with 1 g/kg of coated SB, 7.75 g/kg of coated MCFAs and 68.2 g/kg of coated n-3 PUFA (SMP). The results showed that sows fed the SP, MP, and SMP diets had shorter weaning-to-estrus intervals than those fed the CON diet (p < 0.01). The piglets in the SM, SP, and MP groups showed higher increases in the plasma catalase and glutathione peroxidase activities than those of the CON group (p < 0.01). The diarrhea incidence of piglets in the SM, SP and SMP groups was lower than that of piglets in the CON group (p < 0.01). Additionally, the addition of SM, SP, MP, and SMP to the sow diets increased the contents of immunoglobulin A, immunoglobulin G, fat, and proteins in the colostrum (p < 0.01), as well as the plasma total superoxide dismutase activities (p < 0.01) in the suckling piglets, whereas it decreased the mRNA expressions of tumor necrosis factor-α, interleukin-1β, and toll-like receptor 4 in the jejunum mucosa of the piglets. The relative abundances of Prevotella, Coprococcus, and Blautia in the colonic digesta of the piglets were increased in the SM group (p < 0.05), and the relative abundances of Faecalibacterium increased in the SMP group (p < 0.05), compared with the CON group. The relative abundances of Collinsella, Blautia, and Bulleidia in the MP group were higher than those in the CON group (p < 0.05). Collectively, dietary combinations of fatty acids with different chain lengths have positive effects on the growth performances and intestinal health of suckling piglets.
Collapse
Affiliation(s)
- Caiyun You
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Qingqing Xu
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Jinchao Chen
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Yetong Xu
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Xie Peng
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Weizhong Sun
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Zhihong Sun
- Key Laboratory for Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Singh V, Lee G, Son H, Koh H, Kim ES, Unno T, Shin JH. Butyrate producers, "The Sentinel of Gut": Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front Microbiol 2023; 13:1103836. [PMID: 36713166 PMCID: PMC9877435 DOI: 10.3389/fmicb.2022.1103836] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Gut-microbial butyrate is a short-chain fatty acid (SCFA) of significant physiological importance than the other major SCFAs (acetate and propionate). Most butyrate producers belong to the Clostridium cluster of the phylum Firmicutes, such as Faecalibacterium, Roseburia, Eubacterium, Anaerostipes, Coprococcus, Subdoligranulum, and Anaerobutyricum. They metabolize carbohydrates via the butyryl-CoA: acetate CoA-transferase pathway and butyrate kinase terminal enzymes to produce most of butyrate. Although, in minor fractions, amino acids can also be utilized to generate butyrate via glutamate and lysine pathways. Butyrogenic microbes play a vital role in various gut-associated metabolisms. Butyrate is used by colonocytes to generate energy, stabilizes hypoxia-inducible factor to maintain the anaerobic environment in the gut, maintains gut barrier integrity by regulating Claudin-1 and synaptopodin expression, limits pro-inflammatory cytokines (IL-6, IL-12), and inhibits oncogenic pathways (Akt/ERK, Wnt, and TGF-β signaling). Colonic butyrate producers shape the gut microbial community by secreting various anti-microbial substances, such as cathelicidins, reuterin, and β-defensin-1, and maintain gut homeostasis by releasing anti-inflammatory molecules, such as IgA, vitamin B, and microbial anti-inflammatory molecules. Additionally, butyrate producers, such as Roseburia, produce anti-carcinogenic metabolites, such as shikimic acid and a precursor of conjugated linoleic acid. In this review, we summarized the significance of butyrate, critically examined the role and relevance of butyrate producers, and contextualized their importance as microbial therapeutics.
Collapse
Affiliation(s)
- Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - HyunWoo Son
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hong Koh
- Department of Pediatrics, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Soo Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tatsuya Unno
- Faculty of Biotechnology, School of Life Sciences, SARI, Jeju National University, Jeju, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
8
|
Avelar GM, Dambuza IM, Ricci L, Yuecel R, Mackenzie K, Childers DS, Bain JM, Pradhan A, Larcombe DE, Netea MG, Erwig LP, Brown GD, Duncan SH, Gow NA, Walker AW, Brown AJ. Impact of changes at the Candida albicans cell surface upon immunogenicity and colonisation in the gastrointestinal tract. CELL SURFACE (AMSTERDAM, NETHERLANDS) 2022; 8:100084. [PMID: 36299406 PMCID: PMC9589014 DOI: 10.1016/j.tcsw.2022.100084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
The immunogenicity of Candida albicans cells is influenced by changes in the exposure of microbe-associated molecular patterns (MAMPs) on the fungal cell surface. Previously, the degree of exposure on the C. albicans cell surface of the immunoinflammatory MAMP β-(1,3)-glucan was shown to correlate inversely with colonisation levels in the gastrointestinal (GI) tract. This is important because life-threatening systemic candidiasis in critically ill patients often arises from translocation of C. albicans strains present in the patient's GI tract. Therefore, using a murine model, we have examined the impact of gut-related factors upon β-glucan exposure and colonisation levels in the GI tract. The degree of β-glucan exposure was examined by imaging flow cytometry of C. albicans cells taken directly from GI compartments, and compared with colonisation levels. Fungal β-glucan exposure was lower in the cecum than the small intestine, and fungal burdens were correspondingly higher in the cecum. This inverse correlation did not hold for the large intestine. The gut fermentation acid, lactate, triggers β-glucan masking in vitro, leading to attenuated anti-Candida immune responses. Additional fermentation acids are present in the GI tract, including acetate, propionate, and butyrate. We show that these acids also influence β-glucan exposure on C. albicans cells in vitro and, like lactate, they influence β-glucan exposure via Gpr1/Gpa2-mediated signalling. Significantly, C. albicans gpr1Δ gpa2Δ cells displayed elevated β-glucan exposure in the large intestine and a corresponding decrease in fungal burden, consistent with the idea that Gpr1/Gpa2-mediated β-glucan masking influences colonisation of this GI compartment. Finally, extracts from the murine gut and culture supernatants from the mannan grazing gut anaerobe Bacteroides thetaiotaomicron promote β-glucan exposure at the C. albicans cell surface. Therefore, the local microbiota influences β-glucan exposure levels directly (via mannan grazing) and indirectly (via fermentation acids), whilst β-glucan masking appears to promote C. albicans colonisation of the murine large intestine.
Collapse
Affiliation(s)
- Gabriela M. Avelar
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Ivy M. Dambuza
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Liviana Ricci
- Microbiome, Food Innovation and Food Security Research Theme, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Raif Yuecel
- Iain Fraser Cytometry Centre, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Kevin Mackenzie
- Microscopy & Histology Facility, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Delma S. Childers
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Judith M. Bain
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Arnab Pradhan
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Daniel E. Larcombe
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Lars P. Erwig
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
- Johnson-Johnson Innovation, EMEA Innovation Centre, One Chapel Place, London W1G 0BG, UK
| | - Gordon D. Brown
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Sylvia H. Duncan
- Microbiome, Food Innovation and Food Security Research Theme, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Neil A.R. Gow
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Alan W. Walker
- Microbiome, Food Innovation and Food Security Research Theme, Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J.P. Brown
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
- Corresponding author at: Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
9
|
Zhou Y, Luo Y, Yu B, Zheng P, Yu J, Huang Z, Mao X, Luo J, Yan H, He J. Agrobacterium sp. ZX09 β-Glucan Attenuates Enterotoxigenic Escherichia coli-Induced Disruption of Intestinal Epithelium in Weaned Pigs. Int J Mol Sci 2022; 23:ijms231810290. [PMID: 36142202 PMCID: PMC9499454 DOI: 10.3390/ijms231810290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 09/03/2022] [Indexed: 11/24/2022] Open
Abstract
To explore the protective effect of dietary β-glucan (BGL) supplementation on intestinal epithelium exposure to enterotoxigenic Escherichia coli (ETEC), thirty-two weaned pigs were assigned to four groups. Pigs were fed with a basal diet or basal diet containing 500 mg/kg BGL, and were orally infused with ETEC or culture medium. Results showed BGL supplementation had no influence on growth performance in weaned pigs. However, BGL supplementation increased the absorption of D-xylose, and significantly decreased the serum concentrations of D-lactate and diamine oxidase (DAO) in the ETEC-challenged pigs (p < 0.05). Interestingly, BGL significantly increased the abundance of the zonula occludens-1-(ZO-1) in the jejunal epithelium upon ETEC challenge (p < 0.05). BGL supplementation also increased the number of S-phase cells and the number of sIgA-positive cells, but significantly decreased the number of total apoptotic cells in the jejunal epithelium upon ETEC challenge (p < 0.05). Moreover, BGL significantly increased the duodenal catalase (CAT) activity and the ileal total superoxide dismutase (T-SOD) activity in the ETEC-challenged pigs (p < 0.05). Importantly, BGL significantly decreased the expression levels of critical inflammation related proteins such as the tumor necrosis factor-α (TNF-α), interlukin-6 (IL-6), myeloid differentiation factor 88 (MyD88), and nuclear factor-κB (NF-κB) in the jejunal and ileal mucosa upon ETEC challenge (p < 0.05). BGL also elevated the propanoic acid content and the abundance of Lactobacillus and Bacillus in the colon upon ETEC challenge (p < 0.05). These results suggested BGL could alleviate the ETEC-induced intestinal epithelium injury, which may be associated with suppressed inflammation and improved intestinal immunity and antioxidant capacity, as well as the improved intestinal macrobiotic.
Collapse
Affiliation(s)
- Yuankang Zhou
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Yuheng Luo
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Bing Yu
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Ping Zheng
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Jie Yu
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Zhiqing Huang
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Xiangbing Mao
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Junqiu Luo
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Hui Yan
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
| | - Jun He
- Animal Nutrition Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu 625014, China
- Correspondence:
| |
Collapse
|
10
|
Effect of β-Glucan Supplementation on Growth Performance and Intestinal Epithelium Functions in Weaned Pigs Challenged by Enterotoxigenic Escherichia coli. Antibiotics (Basel) 2022; 11:antibiotics11040519. [PMID: 35453270 PMCID: PMC9029716 DOI: 10.3390/antibiotics11040519] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background: To examine the effect of β-glucan (BGL) supplementation on growth performance and intestinal epithelium functions in weaned pigs upon Enterotoxigenic Escherichia coli (ETEC) challenge. Methods: Thirty-two weaned pigs (Duroc × Landrace × Yorkshire) were assigned into four groups. Pigs fed with a basal diet or basal diet containing 500 mg/kg BGL were orally infused with ETEC or culture medium. Results: Results showed BGL tended to increase the average daily gain (ADG) in ETEC-challenged pigs (0.05 < p < 0.1). Dietary BGL supplementation had no significant influence on nutrient digestibility (p > 0.05). However, BGL improved the serum concentrations of immunoglobulin (Ig) A and IgG, and was beneficial to relieve the increasement of the concentrations of inflammatory cytokines such as the TNF-α and IL-6 upon ETEC-challenge (p < 0.05). Interestingly, BGL significantly increased the duodenal, jejunal and ileal villus height, and increased the jejunal ratio of villus height to crypt depth (V/C) upon ETEC challenge (p < 0.05). BGL also increased the activities of mucosal, sucrase and maltase in the ETEC-challenged pigs (p < 0.05). Moreover, BGL elevated the abundance of Lactobacillus and the concentration of propanoic acid in colon in the ETEC-challenged pigs (p < 0.05). Importantly, BGL elevated the expression levels of zonula occludins-1 (ZO-1) and mucin-2 (MUC-2) in the small intestinal mucosa upon ETEC challenge (p < 0.05). BGL also upregulated the expressions of functional genes such as the claudin-1, cationic amino acid transporter-1 (CAT-1), LAT-1, L amino acid transporter-1 (LAT1), fatty acid transport proteins (FATP1), FATP4, and sodium/glucose cotransporter-1 (SGLT-1) in the duodenum, and the occludin-1 and CAT-1 in the jejunum upon ETEC challenge (p < 0.05). Conclusions: These results suggested that BGL can attenuate intestinal damage in weaned pigs upon ETEC challenge, which was connected with the suppressed secretion of inflammatory cytokines and enhanced serum immunoglobulins, as well as improved intestinal epithelium functions and microbiota.
Collapse
|
11
|
Heterologous expression and characterization of two novel glucanases derived from sheep rumen microbiota. World J Microbiol Biotechnol 2022; 38:87. [DOI: 10.1007/s11274-022-03269-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/22/2022] [Indexed: 11/27/2022]
|
12
|
In vitro fermentation of onion cell walls and model polysaccharides using human faecal inoculum: Effects of molecular interactions and cell wall architecture. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Azcarate-Peril MA, Roach J, Marsh A, Chey WD, Sandborn WJ, Ritter AJ, Savaiano DA, Klaenhammer TR. A double-blind, 377-subject randomized study identifies Ruminococcus, Coprococcus, Christensenella, and Collinsella as long-term potential key players in the modulation of the gut microbiome of lactose intolerant individuals by galacto-oligosaccharides. Gut Microbes 2022; 13:1957536. [PMID: 34365905 PMCID: PMC8354614 DOI: 10.1080/19490976.2021.1957536] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background. Our recent publication (Chey et al., Nutrients 2020) showed that a 30-day administration of pure galacto-oligosaccharides (GOS) significantly reduced symptoms and altered the fecal microbiome in patients with lactose intolerance (LI). Results. In this addendum, we performed an in-depth analysis of the fecal microbiome of the 377 LI patients randomized to one of two GOS doses (Low, 10-15 grams/day or High, 15-20 grams/day), or placebo in a multi-center, double-blinded, placebo-controlled trial. Sequencing of 16S rRNA amplicons was done on GOS or placebo groups at weeks zero (baseline), four (end of treatment), nine, 16 and 22. Taxa impacted by treatment and subsequent dairy consumption included lactose-fermenting species of Bifidobacterium, Lactobacillus, Lactococcus, and Streptococcus. Increased secondary fermentation microorganisms included Coprococcus and Ruminococcus species, Blautia producta, and Methanobrevibacterium. Finally, tertiary fermenters that use acetate to generate butyrate were also increased, including Faecalibacterium prausnitzii, Roseburia faecis, and C. eutactus. Conclusions. Results confirmed and expanded data on GOS microbiome modulation in LI individuals. Microbiome analysis at 16 and 22 weeks after treatment further suggested relatively long-term benefits when individuals continued consumption of dairy products.
Collapse
Affiliation(s)
- M. A. Azcarate-Peril
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA,UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, USA,CONTACT M. A. Azcarate-Peril Department of Medicine, School of Medicine, University of North Carolina, 332 Isaac Taylor Hall, Chapel Hill, NC27599-7545
| | - J. Roach
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, USA,UNC Information Technology Services and Research Computing, University of North Carolina, Chapel Hill, NC, USA
| | - A. Marsh
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA,UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - William D. Chey
- Departments of Internal Medicine and Nutritional Sciences, University of Michigan Health System, Ann Arbor, MI, USA
| | - William J. Sandborn
- Division of Gastroenterology, University of California San Diego, La Jolla, CA, USA
| | | | - Dennis A. Savaiano
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - T. R. Klaenhammer
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
14
|
Developmental Change of Yolk Microbiota and Its Role on Early Colonization of Intestinal Microbiota in Chicken Embryo. Animals (Basel) 2021; 12:ani12010016. [PMID: 35011123 PMCID: PMC8749561 DOI: 10.3390/ani12010016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023] Open
Abstract
Although the fertilized eggs were found to contain microbes in early studies, the detailed composition of yolk microbiota and its influence on embryo intestinal microbiota have not been satisfactorily examined yet. In this study, the yolk microbiota was explored by using 16s rRNA sequencing at different developmental stages of the broiler embryo. The results showed that the relative abundance of yolk microbiota was barely changed during embryogenesis. According to the KEGG analysis, the yolk microbiota were functionally related to amino acid, carbohydrate, and lipid metabolisms during chicken embryogenesis. The yolk microbiota influences the embryonic intestinal microbiota through increasing the colonization of Proteobacteria, Firmicutes, and Bacteroidetes in the intestine, particularly. The intestinal microbes of neonatal chicks showed higher proportions of Faecalibacterium, Blautia, Coprococcus, Dorea, and Roseburia compared to the embryonic intestinal microbiota. Our findings might give a better understanding of the composition and developmental change of yolk microbiota and its roles in shaping the intestinal microbiota.
Collapse
|
15
|
Golisch B, Lei Z, Tamura K, Brumer H. Configured for the Human Gut Microbiota: Molecular Mechanisms of Dietary β-Glucan Utilization. ACS Chem Biol 2021; 16:2087-2102. [PMID: 34709792 DOI: 10.1021/acschembio.1c00563] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The β-glucans are a disparate group of structurally diverse polysaccharides, whose members are widespread in human diets as components of the cell walls of plants, algae, and fungi (including yeasts), and as bacterial exopolysaccharides. Individual β-glucans from these sources have long been associated with positive effects on human health through metabolic and immunological effects. Remarkably, the β-configured glucosidic linkages that define these polysaccharides render them inaccessible to the limited repertoire of digestive enzymes encoded by the human genome. As a result, the various β-glucans become fodder for the human gut microbiota (HGM) in the lower gastrointestinal tract, where they influence community composition and metabolic output, including fermentation to short chain fatty acids (SCFAs). Only recently, however, have the specific molecular systems that enable the utilization of β-glucans by select members of the HGM been fully elucidated by combined genetic, biochemical, and structural biological approaches. In the context of β-glucan structures and their effects on human nutrition and health, we summarize here the functional characterization of individual polysaccharide utilization loci (PULs) responsible for the saccharification of mixed-linkage β(1→3)/β(1→4)-glucans, β(1→6)-glucans, β(1→3)-glucans, β(1→2)-glucans, and xyloglucans in symbiotic human gut bacteria. These exemplar PULs serve as well-defined biomarkers for the prediction of β-glucan metabolic capability in individual bacterial taxa and across the global human population.
Collapse
|
16
|
|
17
|
Abstract
The aim of this review is to provide an overview of the complex interactions between dietary fibre and the resident microbial community in the human gut. The microbiota influences both health maintenance and disease development. In the large intestine, the microbiota plays a crucial role in the degradation of dietary carbohydrates that remain undigested in the upper gut (non-digestible carbohydrates or fibre). Dietary fibre contains a variety of different types of carbohydrates, and its breakdown is facilitated by many different microbial enzymes. Some microbes, termed generalists, are able to degrade a range of different carbohydrates, whereas others are more specialised. Furthermore, the physicochemical characteristics of dietary fibre, such as whether it enters the gut in soluble or insoluble form, also likely influence which microbes can degrade it. A complex nutritional network therefore exists comprising primary degraders able to attack complex fibre and cross feeders that benefit from fibre breakdown intermediates or fermentation products. This leads predominately to the generation of the short-chain fatty acids (SCFA) acetate, propionate and butyrate, which exert various effects on host physiology, including the supply of energy, influencing glucose and lipid metabolism and anti-carcinogenic and anti-inflammatory actions. In order to effectively modulate the gut microbiota through diet, there is a need to better understand the complex competitive and cooperative interactions between gut microbes in dietary fibre breakdown, as well as how gut environmental factors and the physicochemical state of fibre originating from different types of diets influence microbial metabolism and ecology in the gut.
Collapse
|
18
|
Davis JA, Collier F, Mohebbi M, Pasco JA, Shivappa N, Hébert JR, Jacka FN, Loughman A. The associations of butyrate-producing bacteria of the gut microbiome with diet quality and muscle health. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2021; 2:e2. [PMID: 39296318 PMCID: PMC11406371 DOI: 10.1017/gmb.2021.2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/21/2021] [Accepted: 08/05/2021] [Indexed: 09/21/2024]
Abstract
This study aimed to investigate the relationships between diet quality, the relative abundance of butyrate-producing bacteria of the gut microbiome and muscle mass, strength and function. In this cross-sectional study, n = 490 men (64.4 ± 13.5 years) from the Geelong Osteoporosis Study provided food frequency questionnaire data, from which the Australian Recommended Food Score (ARFS) and Dietary Inflammatory Index (DII) score were calculated. Muscle mass (skeletal muscle index from DXA-derived lean mass), muscle strength (handgrip strength) and muscle function (Timed Up-and-Go test) were measured. Participants provided stool samples for 16S rRNA gene sequencing. There was no evidence of associations between alpha or beta diversity and muscle health measures. A healthier ARFS score was positively associated with the relative abundance of butyrate-producing bacteria (β 0.09, 95%CI 0.03, 0.15) and a higher (pro-inflammatory) DII score was associated with lower relative abundance of butyrate-producing bacteria (β -0.60, 95%CI -1.06, -0.15). The relative abundance of butyrate-producing bacteria was positively associated with healthier muscle mass, strength and function; however, these relationships were attenuated in multivariable models. These findings support the role of diet quality in achieving a healthier gut microbiome, however, further evidence is required for a gut-muscle axis in humans.
Collapse
Affiliation(s)
- Jessica A Davis
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Fiona Collier
- Geelong Centre for Emerging Infectious Diseases (GCEID), Barwon Health, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
| | - Mohammadreza Mohebbi
- Biostatistics Unit, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Julie A Pasco
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
- Department of Medicine - Western Health, The University of Melbourne, St Albans, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Prahran, VIC, Australia
| | - Nitin Shivappa
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - James R Hébert
- Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Felice N Jacka
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Black Dog Institute, Randwick, NSW, Australia
- James Cook University, Townsville, QLD, Australia
| | - Amy Loughman
- IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
19
|
Daud N, Currie V, Duncan G, Farquharson F, Yoshinari T, Louis P, Gratz SW. Prevalent Human Gut Bacteria Hydrolyse and Metabolise Important Food-Derived Mycotoxins and Masked Mycotoxins. Toxins (Basel) 2020; 12:toxins12100654. [PMID: 33066173 PMCID: PMC7601956 DOI: 10.3390/toxins12100654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022] Open
Abstract
Mycotoxins are important food contaminants that commonly co-occur with modified mycotoxins such as mycotoxin-glucosides in contaminated cereal grains. These masked mycotoxins are less toxic, but their breakdown and release of unconjugated mycotoxins has been shown by mixed gut microbiota of humans and animals. The role of different bacteria in hydrolysing mycotoxin-glucosides is unknown, and this study therefore investigated fourteen strains of human gut bacteria for their ability to break down masked mycotoxins. Individual bacterial strains were incubated anaerobically with masked mycotoxins (deoxynivalenol-3-β-glucoside, DON-Glc; nivalenol-3-β-glucoside, NIV-Glc; HT-2-β-glucoside, HT-2-Glc; diacetoxyscirpenol-α-glucoside, DAS-Glc), or unconjugated mycotoxins (DON, NIV, HT-2, T-2, and DAS) for up to 48 h. Bacterial growth, hydrolysis of mycotoxin-glucosides and further metabolism of mycotoxins were assessed. We found no impact of any mycotoxin on bacterial growth. We have demonstrated that Butyrivibrio fibrisolvens, Roseburia intestinalis and Eubacterium rectale hydrolyse DON-Glc, HT-2 Glc, and NIV-Glc efficiently and have confirmed this activity in Bifidobacterium adolescentis and Lactiplantibacillus plantarum (DON-Glc only). Prevotella copri and B. fibrisolvens efficiently de-acetylated T-2 and DAS, but none of the bacteria were capable of de-epoxydation or hydrolysis of α-glucosides. In summary we have identified key bacteria involved in hydrolysing mycotoxin-glucosides and de-acetylating type A trichothecenes in the human gut.
Collapse
Affiliation(s)
- Noshin Daud
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (N.D.); (V.C.); (G.D.); (F.F.); (P.L.)
| | - Valerie Currie
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (N.D.); (V.C.); (G.D.); (F.F.); (P.L.)
| | - Gary Duncan
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (N.D.); (V.C.); (G.D.); (F.F.); (P.L.)
| | - Freda Farquharson
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (N.D.); (V.C.); (G.D.); (F.F.); (P.L.)
| | - Tomoya Yoshinari
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan;
| | - Petra Louis
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (N.D.); (V.C.); (G.D.); (F.F.); (P.L.)
| | - Silvia W. Gratz
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (N.D.); (V.C.); (G.D.); (F.F.); (P.L.)
- Correspondence:
| |
Collapse
|
20
|
Soto-Martin EC, Warnke I, Farquharson FM, Christodoulou M, Horgan G, Derrien M, Faurie JM, Flint HJ, Duncan SH, Louis P. Vitamin Biosynthesis by Human Gut Butyrate-Producing Bacteria and Cross-Feeding in Synthetic Microbial Communities. mBio 2020; 11:e00886-20. [PMID: 32665271 PMCID: PMC7360928 DOI: 10.1128/mbio.00886-20] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/15/2020] [Indexed: 01/14/2023] Open
Abstract
We investigated the requirement of 15 human butyrate-producing gut bacterial strains for eight B vitamins and the proteinogenic amino acids by a combination of genome sequence analysis and in vitro growth experiments. The Ruminococcaceae species Faecalibacterium prausnitzii and Subdoligranulum variabile were auxotrophic for most of the vitamins and the amino acid tryptophan. Within the Lachnospiraceae, most species were prototrophic for all amino acids and several vitamins, but biotin auxotrophy was widespread. In addition, most of the strains belonging to Eubacterium rectale and Roseburia spp., but few of the other Lachnospiraceae strains, were auxotrophic for thiamine and folate. Synthetic coculture experiments of five thiamine or folate auxotrophic strains with different prototrophic bacteria in the absence and presence of different vitamin concentrations were carried out. This demonstrated that cross-feeding between bacteria does take place and revealed differences in cross-feeding efficiency between prototrophic strains. Vitamin-independent growth stimulation in coculture compared to monococulture was also observed, in particular for F. prausnitzii A2-165, suggesting that it benefits from the provision of other growth factors from community members. The presence of multiple vitamin auxotrophies in the most abundant butyrate-producing Firmicutes species found in the healthy human colon indicates that these bacteria depend upon vitamins supplied from the diet or via cross-feeding from other members of the microbial community.IMPORTANCE Microbes in the intestinal tract have a strong influence on human health. Their fermentation of dietary nondigestible carbohydrates leads to the formation of health-promoting short-chain fatty acids, including butyrate, which is the main fuel for the colonic wall and has anticarcinogenic and anti-inflammatory properties. A good understanding of the growth requirements of butyrate-producing bacteria is important for the development of efficient strategies to promote these microbes in the gut, especially in cases where their abundance is altered. The demonstration of the inability of several dominant butyrate producers to grow in the absence of certain vitamins confirms the results of previous in silico analyses. Furthermore, establishing that strains prototrophic for thiamine or folate (butyrate producers and non-butyrate producers) were able to stimulate growth and affect the composition of auxotrophic synthetic communities suggests that the provision of prototrophic bacteria that are efficient cross feeders may stimulate butyrate-producing bacteria under certain in vivo conditions.
Collapse
Affiliation(s)
- Eva C Soto-Martin
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Ines Warnke
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Freda M Farquharson
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | | | - Graham Horgan
- Biomathematics & Statistics Scotland, Aberdeen, United Kingdom
| | | | | | - Harry J Flint
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Sylvia H Duncan
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Petra Louis
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|