1
|
Aminu S, Ascandari A, Laamarti M, Safdi NEH, El Allali A, Daoud R. Exploring microbial worlds: a review of whole genome sequencing and its application in characterizing the microbial communities. Crit Rev Microbiol 2024; 50:805-829. [PMID: 38006569 DOI: 10.1080/1040841x.2023.2282447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
The classical microbiology techniques have inherent limitations in unraveling the complexity of microbial communities, necessitating the pivotal role of sequencing in studying the diversity of microbial communities. Whole genome sequencing (WGS) enables researchers to uncover the metabolic capabilities of the microbial community, providing valuable insights into the microbiome. Herein, we present an overview of the rapid advancements achieved thus far in the use of WGS in microbiome research. There was an upsurge in publications, particularly in 2021 and 2022 with the United States, China, and India leading the metagenomics research landscape. The Illumina platform has emerged as the widely adopted sequencing technology, whereas a significant focus of metagenomics has been on understanding the relationship between the gut microbiome and human health where distinct bacterial species have been linked to various diseases. Additionally, studies have explored the impact of human activities on microbial communities, including the potential spread of pathogenic bacteria and antimicrobial resistance genes in different ecosystems. Furthermore, WGS is used in investigating the microbiome of various animal species and plant tissues such as the rhizosphere microbiome. Overall, this review reflects the importance of WGS in metagenomics studies and underscores its remarkable power in illuminating the variety and intricacy of the microbiome in different environments.
Collapse
Affiliation(s)
- Suleiman Aminu
- Chemical and Biochemical Sciences-Green Process Engineering, University Mohammed VI Polytechnic, Ben Guerir, Morocco
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - AbdulAziz Ascandari
- Chemical and Biochemical Sciences-Green Process Engineering, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Meriem Laamarti
- Faculty of Medical Sciences, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Nour El Houda Safdi
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Achraf El Allali
- Bioinformatics Laboratory, College of Computing, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Rachid Daoud
- Chemical and Biochemical Sciences-Green Process Engineering, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| |
Collapse
|
2
|
Sadhukhan S, Jacques MA, Potnis N. Influence of Co-occurring Weakly Pathogenic Bacterial Species on Bacterial Spot Disease Dynamics on Tomato. PLANT DISEASE 2024; 108:190-199. [PMID: 37537791 DOI: 10.1094/pdis-05-23-0837-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Mixed infections caused by multiple pathogenic and weakly pathogenic strains inhabiting the same host plants are common in nature and may modify pathogen dynamics. However, traditional plant pathogen studies have mostly focused on the binary interaction between a single host and a single pathogen. In this study, we have looked beyond this binary interaction and evaluated the impact of coinfection on disease dynamics on tomato using the bacterial spot pathogen Xanthomonas perforans (Xp), the co-occurring weakly pathogenic strain of X. arboricola (Xa), and the co-occurring potential weak pathogenic strain of Pseudomonas capsici (Pc). Time-series coinfection experiments monitoring disease severity and within-host population dynamics revealed higher disease severity in coinfection by three species compared with infection by Xp alone. However, coinfection by dual species, Xp and Pc, or Xa resulted in lower disease severity compared with Xp alone. Thus, coinfection outcomes depend on interacting species. Weak pathogens could exploit Xp to colonize the host plant as indicated by their higher populations in coinfection. However, Xp population dynamics were dependent on the coinfecting partner. While resource competition might be a possible explanation for lower Xp population in dual coinfection, interaction of Pc with the host was found to influence Xp population. Interestingly, Xp population was higher in the presence of three-species interaction compared with Xp and Xa coinfection, suggesting potential modulation of cooperative interactions among Xp and Xa in three-species coinfection rather than competitive interactions. Humidity played a significant role in population dynamics of the three species. Overall, this study highlighted the importance of coinfection dynamics in studying plant disease outbreaks.
Collapse
Affiliation(s)
- Shreya Sadhukhan
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| | | | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| |
Collapse
|
3
|
Boixel AL, Goyeau H, Berder J, Moinard J, Suffert F, Soubeyrand S, Sache I, Vidal T. A landscape-scale field survey demonstrates the role of wheat volunteers as a local and diversified source of leaf rust inoculum. Sci Rep 2023; 13:20411. [PMID: 37990120 PMCID: PMC10663564 DOI: 10.1038/s41598-023-47499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023] Open
Abstract
Deploying disease-resistant cultivars is one of the most effective control strategies to manage crop diseases such as wheat leaf rust, caused by Puccinia triticina. After harvest, this biotrophic fungal pathogen can survive on wheat volunteers present at landscape scale and constitute a local source of primary inoculum for the next cropping season. In this study, we characterised the diversity of P. triticina populations surveyed on wheat volunteer seedlings for six consecutive years (2007-2012) at the landscape scale. A total of 642 leaf rust samples classified in 52 virulence profiles (pathotypes) were collected within a fixed 5-km radius. The pathotype composition (identity and abundance) of field-collected populations was analyzed according to the distance between the surveyed wheat plots and to the cultivars of origin of isolates. Our study emphasised the high diversity of P. triticina populations on wheat volunteers at the landscape scale. We observed an impact of cultivar of origin on pathogen population composition. Levels of population diversity differed between cultivars and their deployment in the study area. Our results suggest that wheat volunteers could provide a significant though highly variable contribution to the composition of primary inoculum and subsequent initiation of leaf rust epidemics.
Collapse
Affiliation(s)
- A-L Boixel
- Université Paris-Saclay, INRAE, UR BIOGER, 91123, Palaiseau, France
| | - H Goyeau
- Université Paris-Saclay, INRAE, UR BIOGER, 91123, Palaiseau, France
| | - J Berder
- Université Paris-Saclay, INRAE, UR BIOGER, 91123, Palaiseau, France
| | - J Moinard
- DRAAF Midi-Pyrénées, 31074, Toulouse, France
| | - F Suffert
- Université Paris-Saclay, INRAE, UR BIOGER, 91123, Palaiseau, France
| | | | - I Sache
- AgroParisTech, 91123, Palaiseau, France
| | - T Vidal
- Université Paris-Saclay, INRAE, UR BIOGER, 91123, Palaiseau, France.
| |
Collapse
|
4
|
Koirala S, Myers B, Shin GY, Gitaitis R, Kvitko BH, Dutta B. Evaluating Options to Increase the Efficacy of Biocontrol Agents for the Management of Pantoea spp. Under Field Conditions. PLANT DISEASE 2023; 107:2701-2708. [PMID: 36774574 DOI: 10.1094/pdis-11-22-2710-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Center rot of onion is caused by a complex of plant pathogenic Pantoea species, which can lead to significant yield losses in the field and during storage. Conventional growers use foliar protectants such as a mixture of copper bactericides and an ethylene-bis-dithiocarbamate (EBDC) fungicide to manage the disease; however, organic growers have limited management options besides copper-protectants. Biocontrol agents (BCAs) provide an alternative; however, their efficacy could be compromised due in part to their inability to colonize the foliage. We hypothesized that pretreatment with peroxide (OxiDate 2.0: a.i., hydrogen peroxide and peroxyacetic acid) enhances the colonizing ability of the subsequently applied BCAs, leading to effective center rot management. Field trials were conducted in 2020 and 2021 to assess the efficacy of peroxide, BCAs (Serenade ASO: Bacillus subtilis and BlightBan: Pseudomonas fluorescens), and an insecticide program (tank mix of spinosad and neem oil) to manage center rot. We observed no significant difference in foliar area under the disease progress curve (AUDPC) between the peroxide pretreated P. fluorescens plots and only P. fluorescens-treated plots in 2020 and 2021. Peroxide pretreatment before B. subtilis application significantly reduced the foliar AUDPC as compared with the stand-alone B. subtilis treatment in 2020; however, no such difference was observed in 2021. Similarly, peroxide pretreatment before either of the BCAs did not seem to reduce the incidence of bulb rot as compared with the stand-alone BCA treatment in any of the trials (2020 and 2021). Additionally, our foliar microbiome study showed comparatively higher P. fluorescens retention on peroxide pretreated onion foliage; however, at the end of the growing season, P. fluorescens was drastically reduced and was virtually nonexistent (<0.002% of the total reads). Overall, the pretreatment with peroxide had a limited effect in improving the foliar colonizing ability of BCAs and consequently a limited effect in managing center rot.
Collapse
Affiliation(s)
- Santosh Koirala
- Department of Plant Pathology, University of Georgia, Tifton, GA
| | - Brendon Myers
- Department of Plant Pathology, University of Georgia, Tifton, GA
| | - Gi Yoon Shin
- Department of Plant Pathology, University of Georgia, Athens, GA
| | - Ron Gitaitis
- Department of Plant Pathology, University of Georgia, Tifton, GA
| | - Brian H Kvitko
- Department of Plant Pathology, University of Georgia, Athens, GA
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, Tifton, GA
| |
Collapse
|
5
|
Sharma A, Timilsina S, Abrahamian P, Minsavage GV, Colee J, Ojiambo PS, Goss EM, Vallad GE, Jones JB. Need for speed: bacterial effector XopJ2 is associated with increased dispersal velocity of Xanthomonas perforans. Environ Microbiol 2021; 23:5850-5865. [PMID: 33891376 PMCID: PMC8597037 DOI: 10.1111/1462-2920.15541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/20/2021] [Indexed: 11/28/2022]
Abstract
Bacterial spot caused by Xanthomonas perforans (Xp) is an economically important disease in tomato. Previous studies have shown that the recently isolated Xp strains have acquired and retained the effector gene, xopJ2, which has been reported to increase fitness of the pathogen in the field. To elucidate the fitness benefit of xopJ2, we quantified the effect of xopJ2 on the dispersal and evolution of Xp populations on tomato. We compared movement of two wild-type Xp strains expressing xopJ2 to their respective xopJ2 mutants when co-inoculated in the field. We developed a binary logistic model to predict the presence of Xp over spatial and temporal dimensions with or without xopJ2. Based on the model, wild-type bacteria were dispersed approximately three times faster than the xopJ2 mutants. In a simulation experiment, the selective advantage due to increased dispersal velocity led to an increase in the frequency of xopJ2 gene in the Xp population and its apparent fixation within 10 to 12 cropping seasons of the tomato crop. Our results show that the presence of a single gene can affect the dispersal of a bacterial pathogen and significantly alter its population dynamics.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Plant PathologyUniversity of FloridaGainesvilleFloridaUSA
| | - Sujan Timilsina
- Department of Plant PathologyUniversity of FloridaGainesvilleFloridaUSA
| | - Peter Abrahamian
- Gulf Coast Research and Education CenterUniversity of FloridaWimaumaFloridaUSA
| | | | - James Colee
- Statistics Consulting Unit, Institute of Food and Agricultural SciencesUniversity of FloridaGainesvilleFloridaUSA
| | - Peter S. Ojiambo
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Erica M. Goss
- Department of Plant PathologyUniversity of FloridaGainesvilleFloridaUSA
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Gary E. Vallad
- Gulf Coast Research and Education CenterUniversity of FloridaWimaumaFloridaUSA
| | - Jeffrey B. Jones
- Department of Plant PathologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
6
|
Potnis N. Harnessing Eco-Evolutionary Dynamics of Xanthomonads on Tomato and Pepper to Tackle New Problems of an Old Disease. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:289-310. [PMID: 34030449 DOI: 10.1146/annurev-phyto-020620-101612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacterial spot is an endemic seedborne disease responsible for recurring outbreaks on tomato and pepper around the world. The disease is caused by four diverse species, Xanthomonas gardneri, Xanthomonas euvesicatoria, Xanthomonas perforans, and Xanthomonas vesicatoria. There are no commercially available disease-resistant tomato varieties, and the disease is managed by chemical/biological control options, although these have not reduced the incidence of outbreaks. The disease on peppers is managed by disease-resistant cultivars that are effective against X. euvesicatoria but not X. gardneri. A significant shift in composition and prevalence of different species and races of the pathogen has occurred over the past century. Here, I attempt to review ecological and evolutionary processes associated with the population dynamics leading to disease emergence and spread. The goal of this review is to integrate the knowledge on population genomics and molecular plant-microbe interactions for this pathosystem to tailor disease management strategies.
Collapse
Affiliation(s)
- Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama 36849, USA;
| |
Collapse
|
7
|
Abrahamian P, Klein-Gordon JM, Jones JB, Vallad GE. Epidemiology, diversity, and management of bacterial spot of tomato caused by Xanthomonas perforans. Appl Microbiol Biotechnol 2021; 105:6143-6158. [PMID: 34342710 DOI: 10.1007/s00253-021-11459-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022]
Abstract
Tomato is an important crop grown worldwide. Various plant diseases cause massive losses in tomato plants due to diverse biotic agents. Bacterial spot of tomato (BST) is a worldwide disease that results in high losses in processed and fresh tomato. Xanthomonas perforans, an aerobic, single-flagellated, rod-shaped, Gram-negative plant pathogenic bacterium, is one of the leading causes of BST. Over the past three decades, X. perforans has increasingly been reported from tomato-growing regions and became a major bacterial disease. X. perforans thrives under high humidity and high temperature, which is commonplace in tropical and subtropical climates. Distinguishing symptoms of BST are necrotic lesions that can coalesce and cause a shot-hole appearance. X. perforans can occasionally cause fruit symptoms depending on disease pressure during fruit development. Short-distance movement in the field is mainly dependent on wind-driven rain, whereas long distance movement occurs through contaminated seed or plant material. X. perforans harbors a suite of effectors that increase pathogen virulence, fitness, and dissemination. BST management mainly relies on copper-based compounds; however, resistance is widespread. Alternative compounds, such as nanomaterials, are currently being evaluated and show high potential for BST management. Resistance breeding remains difficult to attain due to limited resistant germplasm. While the increased genetic diversity and gain and loss of effectors in X. perforans limits the success of single-gene resistance, the adoption of effector-specific transgenes and quantitative resistance may lead to durable host resistance. However, further research that aims to more effectively implement novel management tools is required to curb disease spread. KEY POINTS: • Xanthomonas perforans causes bacterial spot on tomato epidemics through infected seedlings and movement of plant material. • Genetic diversity plays a major role in shaping populations which is evident in loss and gain of effectors. • Management relies on copper sprays, but nanoparticles are a promising alternative to reduce copper toxicity.
Collapse
Affiliation(s)
- Peter Abrahamian
- Beltsville Agricultural Research Center, Molecular Plant Pathology Laboratory, USDA-ARS, Beltsville, MD, 20705, USA.
| | | | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Gary E Vallad
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, 33598, USA.
| |
Collapse
|
8
|
Pruvost O, Richard D, Boyer K, Javegny S, Boyer C, Chiroleu F, Grygiel P, Parvedy E, Robène I, Maillot-Lebon V, Hamza A, Lobin KK, Naiken M, Vernière C. Diversity and Geographical Structure of Xanthomonas citri pv. citri on Citrus in the South West Indian Ocean Region. Microorganisms 2021; 9:microorganisms9050945. [PMID: 33925745 PMCID: PMC8146439 DOI: 10.3390/microorganisms9050945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 01/21/2023] Open
Abstract
A thorough knowledge of genotypic and phenotypic variations (e.g., virulence, resistance to antimicrobial compounds) in bacteria causing plant disease outbreaks is key for optimizing disease surveillance and management. Using a comprehensive strain collection, tandem repeat-based genotyping techniques and pathogenicity assays, we characterized the diversity of X. citri pv. citri from the South West Indian Ocean (SWIO) region. Most strains belonged to the prevalent lineage 1 pathotype A that has a wide host range among rutaceous species. We report the first occurrence of genetically unrelated, nonepidemic lineage 4 pathotype A* (strains with a host range restricted to Mexican lime and related species) in Mauritius, Moheli and Réunion. Microsatellite data revealed that strains from the Seychelles were diverse, grouped in three different clusters not detected in the Comoros and the Mascarenes. Pathogenicity data suggested a higher aggressiveness of strains of one of these clusters on citron (Citrus medica). With the noticeable exception of the Comoros, there was no sign of recent interisland movement of the pathogen. Consistent with this finding, the copL gene, a marker for the plasmid-borne copLAB copper resistance that was recently identified in Réunion, was not detected in 568 strains from any islands in the SWIO region apart from Réunion.
Collapse
Affiliation(s)
- Olivier Pruvost
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (D.R.); (K.B.); (S.J.); (C.B.); (F.C.); (P.G.); (E.P.); (I.R.); (V.M.-L.); (C.V.)
- Correspondence: ; Tel.: +262-262492720
| | - Damien Richard
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (D.R.); (K.B.); (S.J.); (C.B.); (F.C.); (P.G.); (E.P.); (I.R.); (V.M.-L.); (C.V.)
- ANSES, Plant Health Laboratory, F-97410 St Pierre, La Réunion, France
- UFR Sciences et Technologies, Université de la Réunion, UMR PVBMT, F-97490 St Denis, La Réunion, France
| | - Karine Boyer
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (D.R.); (K.B.); (S.J.); (C.B.); (F.C.); (P.G.); (E.P.); (I.R.); (V.M.-L.); (C.V.)
| | - Stéphanie Javegny
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (D.R.); (K.B.); (S.J.); (C.B.); (F.C.); (P.G.); (E.P.); (I.R.); (V.M.-L.); (C.V.)
| | - Claudine Boyer
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (D.R.); (K.B.); (S.J.); (C.B.); (F.C.); (P.G.); (E.P.); (I.R.); (V.M.-L.); (C.V.)
| | - Frédéric Chiroleu
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (D.R.); (K.B.); (S.J.); (C.B.); (F.C.); (P.G.); (E.P.); (I.R.); (V.M.-L.); (C.V.)
| | - Pierre Grygiel
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (D.R.); (K.B.); (S.J.); (C.B.); (F.C.); (P.G.); (E.P.); (I.R.); (V.M.-L.); (C.V.)
| | - Evelyne Parvedy
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (D.R.); (K.B.); (S.J.); (C.B.); (F.C.); (P.G.); (E.P.); (I.R.); (V.M.-L.); (C.V.)
| | - Isabelle Robène
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (D.R.); (K.B.); (S.J.); (C.B.); (F.C.); (P.G.); (E.P.); (I.R.); (V.M.-L.); (C.V.)
| | - Véronique Maillot-Lebon
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (D.R.); (K.B.); (S.J.); (C.B.); (F.C.); (P.G.); (E.P.); (I.R.); (V.M.-L.); (C.V.)
| | | | | | - Marc Naiken
- National Biosecurity Agency, Victoria P.O Box 464, Mahé, Seychelles;
| | - Christian Vernière
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, La Réunion, France; (D.R.); (K.B.); (S.J.); (C.B.); (F.C.); (P.G.); (E.P.); (I.R.); (V.M.-L.); (C.V.)
- PHIM Plant Health Institute, CIRAD, INRAE, Institut Agro, IRD, University Montpellier, F-34398 Montpellier, France
| |
Collapse
|
9
|
Kautsar SA, van der Hooft JJJ, de Ridder D, Medema MH. BiG-SLiCE: A highly scalable tool maps the diversity of 1.2 million biosynthetic gene clusters. Gigascience 2021; 10:giaa154. [PMID: 33438731 PMCID: PMC7804863 DOI: 10.1093/gigascience/giaa154] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/29/2020] [Accepted: 11/29/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Genome mining for biosynthetic gene clusters (BGCs) has become an integral part of natural product discovery. The >200,000 microbial genomes now publicly available hold information on abundant novel chemistry. One way to navigate this vast genomic diversity is through comparative analysis of homologous BGCs, which allows identification of cross-species patterns that can be matched to the presence of metabolites or biological activities. However, current tools are hindered by a bottleneck caused by the expensive network-based approach used to group these BGCs into gene cluster families (GCFs). RESULTS Here, we introduce BiG-SLiCE, a tool designed to cluster massive numbers of BGCs. By representing them in Euclidean space, BiG-SLiCE can group BGCs into GCFs in a non-pairwise, near-linear fashion. We used BiG-SLiCE to analyze 1,225,071 BGCs collected from 209,206 publicly available microbial genomes and metagenome-assembled genomes within 10 days on a typical 36-core CPU server. We demonstrate the utility of such analyses by reconstructing a global map of secondary metabolic diversity across taxonomy to identify uncharted biosynthetic potential. BiG-SLiCE also provides a "query mode" that can efficiently place newly sequenced BGCs into previously computed GCFs, plus a powerful output visualization engine that facilitates user-friendly data exploration. CONCLUSIONS BiG-SLiCE opens up new possibilities to accelerate natural product discovery and offers a first step towards constructing a global and searchable interconnected network of BGCs. As more genomes are sequenced from understudied taxa, more information can be mined to highlight their potentially novel chemistry. BiG-SLiCE is available via https://github.com/medema-group/bigslice.
Collapse
Affiliation(s)
- Satria A Kautsar
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Justin J J van der Hooft
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, sThe Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| |
Collapse
|
10
|
Maguire F, Jia B, Gray KL, Lau WYV, Beiko RG, Brinkman FSL. Metagenome-assembled genome binning methods with short reads disproportionately fail for plasmids and genomic Islands. Microb Genom 2020; 6:mgen000436. [PMID: 33001022 PMCID: PMC7660262 DOI: 10.1099/mgen.0.000436] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Metagenomic methods enable the simultaneous characterization of microbial communities without time-consuming and bias-inducing culturing. Metagenome-assembled genome (MAG) binning methods aim to reassemble individual genomes from this data. However, the recovery of mobile genetic elements (MGEs), such as plasmids and genomic islands (GIs), by binning has not been well characterized. Given the association of antimicrobial resistance (AMR) genes and virulence factor (VF) genes with MGEs, studying their transmission is a public-health priority. The variable copy number and sequence composition of MGEs makes them potentially problematic for MAG binning methods. To systematically investigate this issue, we simulated a low-complexity metagenome comprising 30 GI-rich and plasmid-containing bacterial genomes. MAGs were then recovered using 12 current prediction pipelines and evaluated. While 82-94 % of chromosomes could be correctly recovered and binned, only 38-44 % of GIs and 1-29 % of plasmid sequences were found. Strikingly, no plasmid-borne VF nor AMR genes were recovered, and only 0-45 % of AMR or VF genes within GIs. We conclude that short-read MAG approaches, without further optimization, are largely ineffective for the analysis of mobile genes, including those of public-health importance, such as AMR and VF genes. We propose that researchers should explore developing methods that optimize for this issue and consider also using unassembled short reads and/or long-read approaches to more fully characterize metagenomic data.
Collapse
Affiliation(s)
- Finlay Maguire
- Faculty of Computer Science, Dalhousie University, 6050 University Avenue, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Baofeng Jia
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Kristen L. Gray
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Wing Yin Venus Lau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Robert G. Beiko
- Faculty of Computer Science, Dalhousie University, 6050 University Avenue, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Fiona S. L. Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|