1
|
Ni S, Lv W, Ji Z, Wang K, Mei Y, Li Y. Progress of Crude Oil Gasification Technology Assisted by Microorganisms in Reservoirs. Microorganisms 2024; 12:702. [PMID: 38674646 PMCID: PMC11051786 DOI: 10.3390/microorganisms12040702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Crude oil gasification bacteria, including fermenting bacteria, hydrocarbon-oxidizing bacteria, reducing bacteria, and methanogenic bacteria, participate in multi-step reactions involving initial activation, intermediate metabolism, and the methanogenesis of crude oil hydrocarbons. These bacteria degrade crude oil into smaller molecules such as hydrogen, carbon dioxide, acetic acid, and formic acid. Ultimately, they convert it into methane, which can be utilized or stored as a strategic resource. However, the current challenges in crude oil gasification include long production cycles and low efficiency. This paper provides a summary of the microbial flora involved in crude oil gasification, the gasification metabolism pathways within reservoirs, and other relevant information. It specifically focuses on analyzing the factors that affect the efficiency of crude oil gasification metabolism and proposes suggestions for improving this efficiency. These studies deepen our understanding of the potential of reservoir ecosystems and provide valuable insights for future reservoir development and management.
Collapse
Affiliation(s)
- Shumin Ni
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Weifeng Lv
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China
| | - Zemin Ji
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Kai Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Yuhao Mei
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Yushu Li
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| |
Collapse
|
2
|
Bell E, Chen J, Richardson WDL, Fustic M, Hubert CRJ. Denitrification genotypes of endospore-forming Bacillota. ISME COMMUNICATIONS 2024; 4:ycae107. [PMID: 39263550 PMCID: PMC11388526 DOI: 10.1093/ismeco/ycae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Denitrification is a key metabolic process in the global nitrogen cycle and is performed by taxonomically diverse microorganisms. Despite the widespread importance of this metabolism, challenges remain in identifying denitrifying populations and predicting their metabolic end-products based on their genotype. Here, genome-resolved metagenomics was used to explore the denitrification genotype of Bacillota enriched in nitrate-amended high temperature incubations with confirmed N2O and N2 production. A set of 12 hidden Markov models (HMMs) was created to target the diversity of denitrification genes in members of the phylum Bacillota. Genomic potential for complete denitrification was found in five metagenome-assembled genomes from nitrate-amended enrichments, including two novel members of the Brevibacillaceae family. Genomes of complete denitrifiers encode N2O reductase gene clusters with clade II-type nosZ and often include multiple variants of the nitric oxide reductase gene. The HMM set applied to all genomes of Bacillota from the Genome Taxonomy Database identified 17 genera inferred to contain complete denitrifiers based on their gene content. Among complete denitrifiers it was common for three distinct nitric oxide reductases to be present (qNOR, bNOR, and sNOR) that may reflect the metabolic adaptability of Bacillota in environments with variable redox conditions.
Collapse
Affiliation(s)
- Emma Bell
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Jianwei Chen
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - William D L Richardson
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Milovan Fustic
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
- Department of Geology, Nazarbayev University, 53 Kabanbay Batyr Ave, Astana 010000, Kazakhstan
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
3
|
Scheffer G, Hubert CRJ, Enning DR, Lahme S, Mand J, de Rezende JR. Metagenomic Investigation of a Low Diversity, High Salinity Offshore Oil Reservoir. Microorganisms 2021; 9:2266. [PMID: 34835392 PMCID: PMC8621343 DOI: 10.3390/microorganisms9112266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022] Open
Abstract
Oil reservoirs can represent extreme environments for microbial life due to low water availability, high salinity, high pressure and naturally occurring radionuclides. This study investigated the microbiome of saline formation water samples from a Gulf of Mexico oil reservoir. Metagenomic analysis and associated anaerobic enrichment cultures enabled investigations into metabolic potential for microbial activity and persistence in this environment given its high salinity (4.5%) and low nutrient availability. Preliminary 16S rRNA gene amplicon sequencing revealed very low microbial diversity. Accordingly, deep shotgun sequencing resulted in nine metagenome-assembled genomes (MAGs), including members of novel lineages QPJE01 (genus level) within the Halanaerobiaceae, and BM520 (family level) within the Bacteroidales. Genomes of the nine organisms included respiratory pathways such as nitrate reduction (in Arhodomonas, Flexistipes, Geotoga and Marinobacter MAGs) and thiosulfate reduction (in Arhodomonas, Flexistipes and Geotoga MAGs). Genomic evidence for adaptation to high salinity, withstanding radioactivity, and metal acquisition was also observed in different MAGs, possibly explaining their occurrence in this extreme habitat. Other metabolic features included the potential for quorum sensing and biofilm formation, and genes for forming endospores in some cases. Understanding the microbiomes of deep biosphere environments sheds light on the capabilities of uncultivated subsurface microorganisms and their potential roles in subsurface settings, including during oil recovery operations.
Collapse
Affiliation(s)
- Gabrielle Scheffer
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Casey R. J. Hubert
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada;
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (S.L.); (J.R.d.R.)
| | - Dennis R. Enning
- Faculty of Life Sciences and Technology, Berlin University of Applied Sciences and Technology, D-13347 Berlin, Germany;
| | - Sven Lahme
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (S.L.); (J.R.d.R.)
- Exxon Mobil Upstream Research Company, Spring, TX 77389, USA;
| | - Jaspreet Mand
- Exxon Mobil Upstream Research Company, Spring, TX 77389, USA;
| | - Júlia R. de Rezende
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (S.L.); (J.R.d.R.)
- The Lyell Centre, Heriot-Watt University, Edinburgh EH14 4AS, UK
| |
Collapse
|
4
|
Wang B, Kuang S, Shao H, Wang L, Wang H. Anaerobic-petroleum degrading bacteria: Diversity and biotechnological applications for improving coastal soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112646. [PMID: 34399124 DOI: 10.1016/j.ecoenv.2021.112646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Due to the industrial emissions and accidental spills, the critical material for modern industrial society petroleum pollution causes severe ecological damage. The prosperous oil exploitation and transportation causes the recalcitrant, hazardous, and carcinogenic sludge widespread in the coastal wetlands. The costly physicochemical-based remediation remains the secondary and inadequate treatment for the derivatives along with the tailings. Anaerobic microbial petroleum degrading biotechnology has received extensive attention for its cost acceptable, eco-friendly, and fewer health hazards. As a result of the advances in biotechnology and microbiology, the anaerobic oil-degrading bacteria have been well developing to achieve the same remediation effects with lower operating costs. This review summarizes the advantages and potential scenarios of the anaerobic degrading bacteria, such as sulfate-reducing bacteria, denitrifying bacteria, and metal-reducing bacteria in the coastal area decomposing the alkanes, alkenes, aromatic hydrocarbons, polycyclic aromatic, and related derivatives. In the future, a complete theoretical basis of microbiological biotechnology, molecular biology, and electrochemistry is necessary to make efficient and environmental-friendly use of anaerobic degradation bacteria to mineralize oil sludge organic wastes.
Collapse
Affiliation(s)
- Bingchen Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Hongbo Shao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Institute of Agriculture Resources and Environment, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing 210014, PR China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224002, China.
| | - Lei Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Huihui Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
5
|
Lin X, Yang F, You LX, Wang H, Zhao F. Liposoluble quinone promotes the reduction of hydrophobic mineral and extracellular electron transfer of Shewanella oneidensis MR-1. ACTA ACUST UNITED AC 2021; 2:100104. [PMID: 34557755 PMCID: PMC8454672 DOI: 10.1016/j.xinn.2021.100104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/01/2021] [Indexed: 11/18/2022]
Abstract
A large number of reaction systems are composed of hydrophobic interfaces and microorganisms in natural environment. However, it is not clear how microorganisms adjust their breathing patterns and respond to hydrophobic interfaces. Here, Shewanella oneidensis MR-1 was used to reduce ferrihydrite of a hydrophobic surface. Through Fe(II) kinetic analysis, it was found that the reduction rate of hydrophobic ferrihydrite was 1.8 times that of hydrophilic one. The hydrophobic surface of the mineral hinders the way the electroactive microorganism uses the water-soluble electron mediator riboflavin for indirect electron transfer and promotes MR-1 to produce more liposoluble quinones. Ubiquinone can mediate electron transfer at the hydrophobic interface. Ubiquinone-30 (UQ-6) increases the reduction rate of hydrophobic ferrihydrite from 38.5 ± 4.4 to 52.2 ± 0.8 μM·h−1. Based on the above experimental results, we propose that liposoluble electron mediator ubiquinone can act on the extracellular hydrophobic surface, proving that the metabolism of hydrophobic minerals is related to endogenous liposoluble quinones. Hydrophobic modification of minerals encourages electroactive microorganisms to adopt differentiated respiratory pathways. This finding helps in understanding the electron transfer behavior of the microbes at the hydrophobic interface and provides new ideas for the study of hydrophobic reactions that may occur in systems, such as soil and sediment. Extracellular electron transfer can be regulated by wettability of mineral surface Hydrophobic surface hinders the transport of water-soluble mediator riboflavin Ubiquinone can mediate extracellular electron transfer at the hydrophobic interface
Collapse
Affiliation(s)
- Xiaohan Lin
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le-xing You
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Huan Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Corresponding author
| |
Collapse
|
6
|
Duan X, Chen Y, Feng L, Zhou Q. Metagenomic analysis reveals nonylphenol-shaped acidification and methanogenesis during sludge anaerobic digestion. WATER RESEARCH 2021; 196:117004. [PMID: 33730545 DOI: 10.1016/j.watres.2021.117004] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Nonylphenol (NP) is widely known for its estrogenic activity on organisms, but its influence on biochemical processes executed by complex microbiota is still unclear. The dose-specific effects of NP on sludge anaerobic digestion by shaping acidification and methanogenesis were reported. Both low (50 mg/kg) and high (1000 mg/kg) NP doses were beneficial to acidification and aceticlastic methanogenesis (AM), and high NP dose further stimulated hydrogenotrophic methanogenesis (HM). Stable isotope probing analysis indicated that the predominant methanogenic pathway was shifted from AM to a combination of AM and HM as NP dose increased. Acidogenic and methanogenic consortia were accumulated and restructured by NP in favor of acidification and substrate-based methanogenesis. Acidification-related genes for bioconversion of substrates into acetate (glycolysis, stickland reaction and pyruvate metabolism), acetate transportation and microbial robust performance were enriched with both low and high NP doses. Methanogenesis-related genes encoding acetyl-CoA dehydrogenase/synthetase (CODH/ACS) in aceticlastic pathway and transporters for coenzyme synthesis were enhanced by both NP doses. Besides, high NP dose promoted a majority of genes in CO2-reduction pathway and key material transporters for coenzyme F420 and heterodisulfide reductase synthesis. This study shed light on complex microbial processes rather than certain organisms affected by NP with dose-specific pattern at genetic level and had implications in resource utilization of sludge containing refractory organics.
Collapse
Affiliation(s)
- Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Qi Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
7
|
Shlimon A, Mansurbeg H, Othman R, Head I, Kjeldsen KU, Finster K. Identity and hydrocarbon degradation activity of enriched microorganisms from natural oil and asphalt seeps in the Kurdistan Region of Iraq (KRI). Biodegradation 2021; 32:251-271. [PMID: 33782778 DOI: 10.1007/s10532-021-09931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/19/2021] [Indexed: 10/21/2022]
Abstract
A previous cultivation-independent investigation of the microbial community structure of natural oil and asphalt seeps in the Kurdistan Region of Iraq (KRI) revealed the dominance of uncultured bacterial taxa belonging to the phyla Deferribacterota and Coprothermobacterota and the orders Thermodesulfobacteriales, Thermales, and Burkholderiales. Here we report on a cultivation-dependent approach to identify members of these groups involved in hydrocarbon degradation in the KRI oil and asphalt seeps. For this purpose, we set up anoxic crude oil-degrading enrichment cultures based on cultivation media known to support the growth of members of the above-mentioned taxonomic groups. During 100-200 days incubation periods, nitrate-reducing and fermentative enrichments showed up to 90% degradation of C8-C17 alkanes and up to 28% degradation of C18-C33 alkanes along with aromatic hydrocarbons. Community profiling of the enrichment cultures showed that they were dominated by diverse bacterial taxa, which were rare in situ community members in the investigated seeps. Groups initially targeted by our approach were not enriched, possibly because their members are slow-growing and involved in the degradation of recalcitrant hydrocarbons. Nevertheless, the enriched taxa were taxonomically related to phylotypes recovered from hydrocarbon-impacted environments as well as to characterized bacterial isolates not previously known to be involved in hydrocarbon degradation. Marker genes (assA and bssA), diagnostic for fumarate addition-based anaerobic hydrocarbon degradation, were not detectable in the enrichment cultures by PCR. We conclude that hydrocarbon biodegradation in our enrichments occurred via unknown pathways and synergistic interactions among the enriched taxa. We suggest, that although not representing abundant populations in situ, studies of the cultured close relatives of these taxa will reveal an unrecognized potential for anaerobic hydrocarbon degradation, possibly involving poorly characterized mechanisms.
Collapse
Affiliation(s)
- Adris Shlimon
- Department of Biology, Soran University, Soran, Iraq. .,Section of Microbiology, Department of Biology, Aarhus University, Ny Munkegade 116, 8000, Aarhus, Denmark.
| | - Howri Mansurbeg
- Department of Petroleum Geoscience, Soran University, Soran, Iraq.,Department of Earth and Environmental Sciences, University of Windsor, Windsor, ON, Canada
| | - Rushdy Othman
- Department of Petroleum Geoscience, Soran University, Soran, Iraq
| | - Ian Head
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Kasper U Kjeldsen
- Section of Microbiology, Department of Biology, Aarhus University, Ny Munkegade 116, 8000, Aarhus, Denmark
| | - Kai Finster
- Section of Microbiology, Department of Biology, Aarhus University, Ny Munkegade 116, 8000, Aarhus, Denmark
| |
Collapse
|