1
|
Mass S, Cohen H, Podicheti R, Rusch DB, Gerlic M, Ushijima B, van Kessel JC, Bosis E, Salomon D. The coral pathogen Vibrio coralliilyticus uses a T6SS to secrete a group of novel anti-eukaryotic effectors that contribute to virulence. PLoS Biol 2024; 22:e3002734. [PMID: 39226241 PMCID: PMC11371242 DOI: 10.1371/journal.pbio.3002734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/03/2024] [Indexed: 09/05/2024] Open
Abstract
Vibrio coralliilyticus is a pathogen of coral and shellfish, leading to devastating economic and ecological consequences worldwide. Although rising ocean temperatures correlate with increased V. coralliilyticus pathogenicity, the specific molecular mechanisms and determinants contributing to virulence remain poorly understood. Here, we systematically analyzed the type VI secretion system (T6SS), a contact-dependent toxin delivery apparatus, in V. coralliilyticus. We identified 2 omnipresent T6SSs that are activated at temperatures in which V. coralliilyticus becomes virulent; T6SS1 is an antibacterial system mediating interbacterial competition, whereas T6SS2 mediates anti-eukaryotic toxicity and contributes to mortality during infection of an aquatic model organism, Artemia salina. Using comparative proteomics, we identified the T6SS1 and T6SS2 toxin arsenals of 3 V. coralliilyticus strains with distinct disease etiologies. Remarkably, T6SS2 secretes at least 9 novel anti-eukaryotic toxins comprising core and accessory repertoires. We propose that T6SSs differently contribute to V. coralliilyticus's virulence: T6SS2 plays a direct role by targeting the host, while T6SS1 plays an indirect role by eliminating competitors.
Collapse
Affiliation(s)
- Shir Mass
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hadar Cohen
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ram Podicheti
- Center for Genomics and Bioinformatics Indiana University, Bloomington, Indiana, United States of America
| | - Douglas B. Rusch
- Center for Genomics and Bioinformatics Indiana University, Bloomington, Indiana, United States of America
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, United States of America
| | - Julia C. van Kessel
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Eran Bosis
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Kennedy NW, Comstock LE. Mechanisms of bacterial immunity, protection, and survival during interbacterial warfare. Cell Host Microbe 2024; 32:794-803. [PMID: 38870897 PMCID: PMC11216714 DOI: 10.1016/j.chom.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024]
Abstract
Most bacteria live in communities, often with closely related strains and species with whom they must compete for space and resources. Consequently, bacteria have acquired or evolved mechanisms to antagonize competitors through the production of antibacterial toxins. Similar to bacterial systems that combat phage infection and mechanisms to thwart antibiotics, bacteria have also acquired and evolved features to protect themselves from antibacterial toxins. Just as there is a large body of research identifying and characterizing antibacterial proteins and toxin delivery systems, studies of bacterial mechanisms to resist and survive assault from competitors' weapons have also expanded tremendously. Emerging data are beginning to reveal protective processes and mechanisms that are as diverse as the toxins themselves. Protection against antibacterial toxins can be acquired by horizontal gene transfer, receptor or target alteration, induction of protective functions, physical barriers, and other diverse processes. Here, we review recent studies in this rapidly expanding field.
Collapse
Affiliation(s)
- Nolan W Kennedy
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Laurie E Comstock
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
3
|
Otto SB, Servajean R, Lemopoulos A, Bitbol AF, Blokesch M. Interactions between pili affect the outcome of bacterial competition driven by the type VI secretion system. Curr Biol 2024; 34:2403-2417.e9. [PMID: 38749426 DOI: 10.1016/j.cub.2024.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024]
Abstract
The bacterial type VI secretion system (T6SS) is a widespread, kin-discriminatory weapon capable of shaping microbial communities. Due to the system's dependency on contact, cellular interactions can lead to either competition or kin protection. Cell-to-cell contact is often accomplished via surface-exposed type IV pili (T4Ps). In Vibrio cholerae, these T4Ps facilitate specific interactions when the bacteria colonize natural chitinous surfaces. However, it has remained unclear whether and, if so, how these interactions affect the bacterium's T6SS-mediated killing. In this study, we demonstrate that pilus-mediated interactions can be harnessed by T6SS-equipped V. cholerae to kill non-kin cells under liquid growth conditions. We also show that the naturally occurring diversity of pili determines the likelihood of cell-to-cell contact and, consequently, the extent of T6SS-mediated competition. To determine the factors that enable or hinder the T6SS's targeted reduction of competitors carrying pili, we developed a physics-grounded computational model for autoaggregation. Collectively, our research demonstrates that T4Ps involved in cell-to-cell contact can impose a selective burden when V. cholerae encounters non-kin cells that possess an active T6SS. Additionally, our study underscores the significance of T4P diversity in protecting closely related individuals from T6SS attacks through autoaggregation and spatial segregation.
Collapse
Affiliation(s)
- Simon B Otto
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Richard Servajean
- Laboratory of Computational Biology and Theoretical Biophysics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Alexandre Lemopoulos
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anne-Florence Bitbol
- Laboratory of Computational Biology and Theoretical Biophysics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Lemopoulos A, Miwanda B, Drebes Dörr NC, Stutzmann S, Bompangue D, Muyembe-Tamfum JJ, Blokesch M. Genome sequences of Vibrio cholerae strains isolated in the DRC between 2009 and 2012. Microbiol Resour Announc 2024; 13:e0082723. [PMID: 38345380 DOI: 10.1128/mra.00827-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/21/2024] [Indexed: 03/13/2024] Open
Abstract
Vibrio cholerae has caused seven cholera pandemics in the past two centuries. The seventh and ongoing pandemic has been particularly severe on the African continent. Here, we report long read-based genome sequences of six V. cholerae strains isolated in the Democratic Republic of the Congo between 2009 and 2012.
Collapse
Affiliation(s)
- Alexandre Lemopoulos
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Berthe Miwanda
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of Congo
| | - Natália C Drebes Dörr
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sandrine Stutzmann
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Didier Bompangue
- Département de Microbiologie, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Jean-Jacques Muyembe-Tamfum
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of Congo
- Département de Microbiologie, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
5
|
Mathieu-Denoncourt A, Duperthuy M. The VxrAB two-component system is important for the polymyxin B-dependent activation of the type VI secretion system in Vibrio cholerae O1 strain A1552. Can J Microbiol 2023; 69:393-406. [PMID: 37343290 DOI: 10.1139/cjm-2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The type VI secretion system (T6SS) is used by bacteria for virulence, resistance to grazing, and competition with other bacteria. We previously demonstrated that the role of the T6SS in interbacterial competition and in resistance to grazing is enhanced in Vibrio cholerae in the presence of subinhibitory concentrations of polymyxin B. Here, we performed a global quantitative proteomic analysis and a targeted transcriptomic analysis of the T6SS-known regulators in V. cholerae grown with and without polymyxin B. The proteome of V. cholerae is greatly modified by polymyxin B with more than 39% of the identified cellular proteins displaying a difference in their abundance, including T6SS-related proteins. We identified a regulator whose abundance and expression are increased in the presence of polymyxin B, vxrB, the response regulator of the two-component system VxrAB (VCA0565-66). In vxrAB, vxrA and vxrB deficient mutants, the expression of both hcp copies (VC1415 and VCA0017), although globally reduced, was not modified by polymyxin B. These hcp genes encode an identical protein Hcp, which is the major component of the T6SS syringe. Thus, the upregulation of the T6SS in the presence of polymyxin B appears to be, at least in part, due to the two-component system VxrAB.
Collapse
Affiliation(s)
- Annabelle Mathieu-Denoncourt
- Département de Microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Marylise Duperthuy
- Département de Microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
6
|
Kanarek K, Fridman CM, Bosis E, Salomon D. The RIX domain defines a class of polymorphic T6SS effectors and secreted adaptors. Nat Commun 2023; 14:4983. [PMID: 37591831 PMCID: PMC10435454 DOI: 10.1038/s41467-023-40659-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Bacteria use the type VI secretion system (T6SS) to deliver toxic effectors into bacterial or eukaryotic cells during interbacterial competition, host colonization, or when resisting predation. Identifying effectors is a challenging task, as they lack canonical secretion signals or universally conserved domains. Here, we identify a protein domain, RIX, that defines a class of polymorphic T6SS cargo effectors. RIX is widespread in the Vibrionaceae family and is located at N-termini of proteins containing diverse antibacterial and anti-eukaryotic toxic domains. We demonstrate that RIX-containing proteins are delivered via T6SS into neighboring cells and that RIX is necessary and sufficient for T6SS-mediated secretion. In addition, RIX-containing proteins can enable the T6SS-mediated delivery of other cargo effectors by a previously undescribed mechanism. The identification of RIX-containing proteins significantly enlarges the repertoire of known T6SS effectors, especially those with anti-eukaryotic activities. Furthermore, our findings also suggest that T6SSs may play an underappreciated role in the interactions between vibrios and eukaryotes.
Collapse
Affiliation(s)
- Katarzyna Kanarek
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chaya Mushka Fridman
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Bosis
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel.
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Proutière A, Drebes Dörr NC, Bader L, Stutzmann S, Metzger LC, Isaac S, Chiaruttini N, Blokesch M. Sporadic type VI secretion in seventh pandemic Vibrio cholerae. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37134007 DOI: 10.1099/mic.0.001329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Vibrio cholerae is a pathogen that causes disease in millions of people every year by colonizing the small intestine and then secreting the potent cholera toxin. How the pathogen overcomes the colonization barrier created by the host's natural microbiota is, however, still not well understood. In this context, the type VI secretion system (T6SS) has gained considerable attention given its ability to mediate interbacterial killing. Interestingly, and in contrast to non-pandemic or environmental V. cholerae isolates, strains that are causing the ongoing cholera pandemic (7PET clade) are considered T6SS-silent under laboratory conditions. Since this idea was recently challenged, we performed a comparative in vitro study on T6SS activity using diverse strains or regulatory mutants. We show that modest T6SS activity is detectable in most of the tested strains under interbacterial competition conditions. The system's activity was also observed through immunodetection of the T6SS tube protein Hcp in culture supernatants, a phenotype that can be masked by the strains' haemagglutinin/protease. We further investigated the low T6SS activity within the bacterial populations by imaging 7PET V. cholerae at the single-cell level. The micrographs showed the production of the machinery in only a small fraction of cells within the population. This sporadic T6SS production was higher at 30 °C than at 37 °C and occurred independently of the known regulators TfoX and TfoY but was dependent on the VxrAB two-component system. Overall, our work provides new insight into the heterogeneity of T6SS production in populations of 7PET V. cholerae strains in vitro and provides a possible explanation of the system's low activity in bulk measurements.
Collapse
Affiliation(s)
- Alexis Proutière
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Natália C Drebes Dörr
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Loriane Bader
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sandrine Stutzmann
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lisa C Metzger
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sandrine Isaac
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nicolas Chiaruttini
- Bioimaging and Optics Platform (PT-BIOP), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Smith WPJ, Wucher BR, Nadell CD, Foster KR. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol 2023:10.1038/s41579-023-00877-3. [PMID: 37095190 DOI: 10.1038/s41579-023-00877-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/26/2023]
Abstract
Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution.
Collapse
Affiliation(s)
- William P J Smith
- Division of Genomics, Infection and Evolution, University of Manchester, Manchester, UK.
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Benjamin R Wucher
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Carey D Nadell
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Type VI Secretion Systems: Environmental and Intra-host Competition of Vibrio cholerae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:41-63. [PMID: 36792870 DOI: 10.1007/978-3-031-22997-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The Vibrio Type VI Secretion System (T6SS) is a harpoon-like nanomachine that serves as a defense system and is encoded by approximately 25% of all gram-negative bacteria. In this chapter, we describe the structure of the T6SS in different Vibrio species and outline how the use of different T6SS effector and immunity proteins control kin selection. We summarize the genetic loci that encode the structural elements that make up the Vibrio T6SSs and how these gene clusters are regulated. Finally, we provide insights into T6SS-based competitive dynamics, the role of T6SS genetic exchange in those competitive dynamics, and roles for the Vibrio T6SS in virulence.
Collapse
|
10
|
Liu M, Zhao MY, Wang H, Wang ZH, Wang Z, Liu Y, Li YP, Dong T, Fu Y. Pesticin-Like Effector VgrG3 cp Targeting Peptidoglycan Delivered by the Type VI Secretion System Contributes to Vibrio cholerae Interbacterial Competition. Microbiol Spectr 2023; 11:e0426722. [PMID: 36625646 PMCID: PMC9927483 DOI: 10.1128/spectrum.04267-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Vibrio cholerae can utilize a type VI secretion system (T6SS) to increase its intra- and interspecies competition. However, much still remains to be understood about the underlying mechanism of this intraspecies competition. In this study, we isolated an environmental V. cholerae strain E1 that lacked the typical virulence factors toxin-coregulated pilus and cholera toxin and that encoded a functional T6SS. We identified an evolved VgrG3 variant with a predicted C-terminal pesticin-like domain in V. cholerae E1, designated VgrG3cp. Using heterologous expression, protein secretion, and peptidoglycan-degrading assays, we demonstrated that VgrG3cp is a T6SS-dependent effector harboring cell wall muramidase activity and that its toxicity can be neutralized by cognate immunity protein TsiV3cp. Site-directed mutagenesis proved that the aspartic acid residue at position 867 is crucial for VgrG3cp-mediated antibacterial activity. Bioinformatic analysis showed that genes encoding VgrG3cp-like homologs are distributed in Vibrio species, are linked with T6SS structural genes and auxiliary genes, and the vgrG3cp-tsiV3cp gene pair of V. cholerae probably evolved from Vibrio anguillarum and Vibrio fluvialis via homologous recombination. Through a time-lapse microscopy assay, we directly determined that cells accumulating VgrG3cp disrupted bacterial division, while the cells continued to increase in size until the loss of membrane potential and cell wall breakage and finally burst. The results of the competitive killing assay showed that VgrG3cp contributes to V. cholerae interspecies competition. Collectively, our study revealed a novel T6SS E-I pair representing a new T6SS toxin family which allows V. cholerae to gain dominance within polymicrobial communities by T6SS. IMPORTANCE The type VI secretion system used by a broad range of Gram-negative bacteria delivers toxic proteins to target adjacent eukaryotic and prokaryotic cells. Diversification of effector proteins determines the complex bacterium-bacterium interactions and impacts the health of hosts and environmental ecosystems in which bacteria reside. This work uncovered an evolved valine-glycine repeat protein G3, carrying a C-terminal pesticin-like domain (VgrG3cp), which has been suggested to harbor cell wall hydrolase activity and is able to affect cell division and the integrity of cell wall structure. Pesticin-like homologs constitute a family of T6SS-associated effectors targeting bacterial peptidoglycan which are distributed in Vibrio species, and genetic loci of them are linked with T6SS structural genes and auxiliary genes. T6SS-delivered VgrG3cp mediated broad-spectrum antibacterial activity for several microorganisms tested, indicating that VgrG3cp-mediated antimicrobial activity is capable of conferring bacteria a competitive advantage over competitors in the same niches.
Collapse
Affiliation(s)
- Ming Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Meng-Yu Zhao
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Heng Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zeng-Hang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhao Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Ying Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yin-Peng Li
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
11
|
Santoriello FJ, Kirchberger PC, Boucher Y, Pukatzki S. Pandemic Vibrio cholerae acquired competitive traits from an environmental Vibrio species. Life Sci Alliance 2023; 6:6/2/e202201437. [PMID: 36446527 PMCID: PMC9711863 DOI: 10.26508/lsa.202201437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Vibrio cholerae is a human pathogen that thrives in estuarine environments. Within the environment and human host, V. cholerae uses the type VI secretion system (T6SS) to inject toxic effectors into neighboring microbes and to establish its replicative niche. V. cholerae strains encode a wide variety of horizontally shared effectors, but pandemic isolates encode an identical set of distinct effectors. Effector set retention in pandemic strains despite mobility between disparate strains suggests that horizontal acquisition of these effectors was crucial for evolving pandemic V. cholerae We attempted to locate the donor of the pandemic effectors to V. cholerae To this end, we identified potential gene transfer events of the pandemic-associated T6SS clusters between a fish pathogen, Vibrio anguillarum, and V. cholerae We supported the likelihood of interaction between these species by demonstrating that homologous effector-immunity pairs from V. cholerae and V. anguillarum can cross-neutralize one another. Thus, V. anguillarum constitutes an environmental reservoir of pandemic-associated V. cholerae T6SS effectors that may have initially facilitated competition between pre-pandemic V. cholerae and V. anguillarum for an environmental niche.
Collapse
Affiliation(s)
- Francis J Santoriello
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Biology, The City College of New York, New York, NY, USA
| | - Paul C Kirchberger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Yann Boucher
- Saw Swee Hock School of Public Health and National University Hospital System, National University of Singapore, Singapore, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore.,Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore and National University Hospital System, Singapore, Singapore
| | - Stefan Pukatzki
- Department of Biology, The City College of New York, New York, NY, USA
| |
Collapse
|
12
|
Tai JSB, Ferrell MJ, Yan J, Waters CM. New Insights into Vibrio cholerae Biofilms from Molecular Biophysics to Microbial Ecology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:17-39. [PMID: 36792869 PMCID: PMC10726288 DOI: 10.1007/978-3-031-22997-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
With the discovery that 48% of cholera infections in rural Bangladesh villages could be prevented by simple filtration of unpurified waters and the detection of Vibrio cholerae aggregates in stools from cholera patients it was realized V. cholerae biofilms had a central function in cholera pathogenesis. We are currently in the seventh cholera pandemic, caused by O1 serotypes of the El Tor biotypes strains, which initiated in 1961. It is estimated that V. cholerae annually causes millions of infections and over 100,000 deaths. Given the continued emergence of cholera in areas that lack access to clean water, such as Haiti after the 2010 earthquake or the ongoing Yemen civil war, increasing our understanding of cholera disease remains a worldwide public health priority. The surveillance and treatment of cholera is also affected as the world is impacted by the COVID-19 pandemic, raising significant concerns in Africa. In addition to the importance of biofilm formation in its life cycle, V. cholerae has become a key model system for understanding bacterial signal transduction networks that regulate biofilm formation and discovering fundamental principles about bacterial surface attachment and biofilm maturation. This chapter will highlight recent insights into V. cholerae biofilms including their structure, ecological role in environmental survival and infection, regulatory systems that control them, and biomechanical insights into the nature of V. cholerae biofilms.
Collapse
Affiliation(s)
- Jung-Shen B Tai
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Micah J Ferrell
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Christopher M Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
13
|
Liu M, Wang H, Liu Y, Tian M, Wang Z, Shu RD, Zhao MY, Chen WD, Wang H, Wang H, Fu Y. The phospholipase effector Tle1 Vc promotes Vibrio cholerae virulence by killing competitors and impacting gene expression. Gut Microbes 2023; 15:2241204. [PMID: 37526354 PMCID: PMC10395195 DOI: 10.1080/19490976.2023.2241204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
Vibrio cholerae utilizes the Type VI secretion system (T6SS) to gain an advantage in interbacterial competition by delivering anti-prokaryotic effectors in a contact-dependent manner. However, the impact of T6SS and its secreted effectors on physiological behavior remains poorly understood. In this study, we present Tle1Vc, a phospholipase effector in atypical pathogenic V. cholerae E1 that is secreted by T6SS via its interaction with VgrG1E1. Tle1Vc contains a DUF2235 domain and belongs to the Tle1 (type VI lipase effector) family. Bacterial toxicity assays, lipase activity assays and site-directed mutagenesis revealed that Tle1Vc possessed phospholipase A1 activity and phospholipase A2 activity, and that Tle1Vc-induced toxicity required a serine residue (S356) and two aspartic acid residues (D417 and D496). Cells intoxication with Tle1Vc lead to membrane depolarization and alter membrane permeability. Tli1tox-, a cognate immunity protein, directly interacts with Tle1Vc to neutralize its toxicity. Moreover, Tle1Vc can kill multiple microorganisms by T6SS and promote in vivo fitness of V. cholerae through mediating antibacterial activity. Tle1Vc induces bacterial motility by increasing the expression of flagellar-related genes independently of functional T6SS and the tit-for-tat (TFT) response, where Pseudomonas aeruginosa uses its T6SS-H1 cluster to counterattack other offensive attackers. Our study also demonstrated that the physical puncture of E1 T6SS can induce a moderate TFT response, which is essential to the Tle1Vc-mediated strong TFT response, maximizing effector functions. Overall, our study characterized the antibacterial mechanism of phospholipase effector Tle1Vc and its multiple physiological significance.
Collapse
Affiliation(s)
- Ming Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Heng Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Ying Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Miao Tian
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhao Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Run-Dong Shu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Meng-Yu Zhao
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Wei-Di Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hao Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hui Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
14
|
Ng SL, Kammann S, Steinbach G, Hoffmann T, Yunker PJ, Hammer BK. Evolution of a cis-Acting SNP That Controls Type VI Secretion in Vibrio cholerae. mBio 2022; 13:e0042222. [PMID: 35604123 PMCID: PMC9239110 DOI: 10.1128/mbio.00422-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
Mutations in regulatory mechanisms that control gene expression contribute to phenotypic diversity and thus facilitate the adaptation of microbes and other organisms to new niches. Comparative genomics can be used to infer rewiring of regulatory architecture based on large effect mutations like loss or acquisition of transcription factors but may be insufficient to identify small changes in noncoding, intergenic DNA sequence of regulatory elements that drive phenotypic divergence. In human-derived Vibrio cholerae, the response to distinct chemical cues triggers production of multiple transcription factors that can regulate the type VI secretion system (T6), a broadly distributed weapon for interbacterial competition. However, to date, the signaling network remains poorly understood because no regulatory element has been identified for the major T6 locus. Here we identify a conserved cis-acting single nucleotide polymorphism (SNP) controlling T6 transcription and activity. Sequence alignment of the T6 regulatory region from diverse V. cholerae strains revealed conservation of the SNP that we rewired to interconvert V. cholerae T6 activity between chitin-inducible and constitutive states. This study supports a model of pathogen evolution through a noncoding cis-regulatory mutation and preexisting, active transcription factors that confers a different fitness advantage to tightly regulated strains inside a human host and unfettered strains adapted to environmental niches. IMPORTANCE Organisms sense external cues with regulatory circuits that trigger the production of transcription factors, which bind specific DNA sequences at promoters ("cis" regulatory elements) to activate target genes. Mutations of transcription factors or their regulatory elements create phenotypic diversity, allowing exploitation of new niches. Waterborne pathogen Vibrio cholerae encodes the type VI secretion system "nanoweapon" to kill competitor cells when activated. Despite identification of several transcription factors, no regulatory element has been identified in the promoter of the major type VI locus, to date. Combining phenotypic, genetic, and genomic analysis of diverse V. cholerae strains, we discovered a single nucleotide polymorphism in the type VI promoter that switches its killing activity between a constitutive state beneficial outside hosts and an inducible state for constraint in a host. Our results support a role for noncoding DNA in adaptation of this pathogen.
Collapse
Affiliation(s)
- Siu Lung Ng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Diseases and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sophia Kammann
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Diseases and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Gabi Steinbach
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Diseases and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Tobias Hoffmann
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter J. Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Diseases and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Brian K. Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Diseases and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Drebes Dörr NC, Proutière A, Jaskólska M, Stutzmann S, Bader L, Blokesch M. Single nucleotide polymorphism determines constitutive versus inducible type VI secretion in Vibrio cholerae. THE ISME JOURNAL 2022; 16:1868-1872. [PMID: 35411099 PMCID: PMC9213491 DOI: 10.1038/s41396-022-01234-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022]
Abstract
Vibrio cholerae is a well-studied human pathogen that is also a common inhabitant of marine habitats. In both environments, the bacterium is subject to interbacterial competition. A molecular nanomachine that is often involved in such competitive behavior is the type VI secretion system (T6SS). Interestingly and in contrast to non-pandemic or environmental isolates, the T6SS of the O1 El Tor clade of V. cholerae, which is responsible for the ongoing 7th cholera pandemic, is largely silent under standard laboratory culture conditions. Instead, these strains induce their full T6SS capacity only under specific conditions such as growth on chitinous surfaces (signaled through TfoX and QstR) or when the cells encounter low intracellular c-di-GMP levels (TfoY-driven). In this study, we identified a single nucleotide polymorphism (SNP) within an intergenic region of the major T6SS gene cluster of V. cholerae that determines the T6SS status of the cell. We show that SNP conversion is sufficient to induce T6SS production in numerous pandemic strains, while the converse approach renders non-pandemic/environmental V. cholerae strains T6SS-silent. We further demonstrate that SNP-dependent T6SS production occurs independently of the known T6SS regulators TfoX, QstR, and TfoY. Finally, we identify a putative promoter region adjacent to the identified SNP that is required for all forms of T6SS regulation in V. cholerae.
Collapse
Affiliation(s)
- Natália C Drebes Dörr
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexis Proutière
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Milena Jaskólska
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sandrine Stutzmann
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Loriane Bader
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
16
|
Jaskólska M, Adams DW, Blokesch M. Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae. Nature 2022; 604:323-329. [PMID: 35388218 PMCID: PMC7613841 DOI: 10.1038/s41586-022-04546-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/11/2022] [Indexed: 12/16/2022]
Abstract
Horizontal gene transfer can trigger rapid shifts in bacterial evolution. Driven by a variety of mobile genetic elements-in particular bacteriophages and plasmids-the ability to share genes within and across species underpins the exceptional adaptability of bacteria. Nevertheless, invasive mobile genetic elements can also present grave risks to the host; bacteria have therefore evolved a vast array of defences against these elements1. Here we identify two plasmid defence systems conserved in the Vibrio cholerae El Tor strains responsible for the ongoing seventh cholera pandemic2-4. These systems, termed DdmABC and DdmDE, are encoded on two major pathogenicity islands that are a hallmark of current pandemic strains. We show that the modules cooperate to rapidly eliminate small multicopy plasmids by degradation. Moreover, the DdmABC system is widespread and can defend against bacteriophage infection by triggering cell suicide (abortive infection, or Abi). Notably, we go on to show that, through an Abi-like mechanism, DdmABC increases the burden of large low-copy-number conjugative plasmids, including a broad-host IncC multidrug resistance plasmid, which creates a fitness disadvantage that counterselects against plasmid-carrying cells. Our results answer the long-standing question of why plasmids, although abundant in environmental strains, are rare in pandemic strains; have implications for understanding the dissemination of antibiotic resistance plasmids; and provide insights into how the interplay between two defence systems has shaped the evolution of the most successful lineage of pandemic V. cholerae.
Collapse
Affiliation(s)
- Milena Jaskólska
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David W Adams
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
17
|
Giometto A, Nelson DR, Murray AW. Antagonism between killer yeast strains as an experimental model for biological nucleation dynamics. eLife 2021; 10:e62932. [PMID: 34866571 PMCID: PMC8730724 DOI: 10.7554/elife.62932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Antagonistic interactions are widespread in the microbial world and affect microbial evolutionary dynamics. Natural microbial communities often display spatial structure, which affects biological interactions, but much of what we know about microbial antagonism comes from laboratory studies of well-mixed communities. To overcome this limitation, we manipulated two killer strains of the budding yeast Saccharomyces cerevisiae, expressing different toxins, to independently control the rate at which they released their toxins. We developed mathematical models that predict the experimental dynamics of competition between toxin-producing strains in both well-mixed and spatially structured populations. In both situations, we experimentally verified theory's prediction that a stronger antagonist can invade a weaker one only if the initial invading population exceeds a critical frequency or size. Finally, we found that toxin-resistant cells and weaker killers arose in spatially structured competitions between toxin-producing strains, suggesting that adaptive evolution can affect the outcome of microbial antagonism in spatial settings.
Collapse
Affiliation(s)
- Andrea Giometto
- School of Civil and Environmental Engineering, Cornell UniversityIthacaUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - David R Nelson
- Department of Physics, Harvard UniversityCambridgeUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- John A Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeUnited States
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
18
|
Gallegos-Monterrosa R, Coulthurst SJ. The ecological impact of a bacterial weapon: microbial interactions and the Type VI secretion system. FEMS Microbiol Rev 2021; 45:fuab033. [PMID: 34156081 PMCID: PMC8632748 DOI: 10.1093/femsre/fuab033] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/20/2021] [Indexed: 12/13/2022] Open
Abstract
Bacteria inhabit all known ecological niches and establish interactions with organisms from all kingdoms of life. These interactions are mediated by a wide variety of mechanisms and very often involve the secretion of diverse molecules from the bacterial cells. The Type VI secretion system (T6SS) is a bacterial protein secretion system that uses a bacteriophage-like machinery to secrete a diverse array of effectors, usually translocating them directly into neighbouring cells. These effectors display toxic activity in the recipient cell, making the T6SS an effective weapon during inter-bacterial competition and interactions with eukaryotic cells. Over the last two decades, microbiology research has experienced a shift towards using systems-based approaches to study the interactions between diverse organisms and their communities in an ecological context. Here, we focus on this aspect of the T6SS. We consider how our perspective of the T6SS has developed and examine what is currently known about the impact that bacteria deploying the T6SS can have in diverse environments, including niches associated with plants, insects and mammals. We consider how T6SS-mediated interactions can affect host organisms by shaping their microbiota, as well as the diverse interactions that can be established between different microorganisms through the deployment of this versatile secretion system.
Collapse
Affiliation(s)
| | - Sarah J Coulthurst
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
19
|
Human commensal gut Proteobacteria withstand type VI secretion attacks through immunity protein-independent mechanisms. Nat Commun 2021; 12:5751. [PMID: 34599171 PMCID: PMC8486750 DOI: 10.1038/s41467-021-26041-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
While the major virulence factors for Vibrio cholerae, the cause of the devastating diarrheal disease cholera, have been extensively studied, the initial intestinal colonization of the bacterium is not well understood because non-human adult animals are refractory to its colonization. Recent studies suggest the involvement of an interbacterial killing device known as the type VI secretion system (T6SS). Here, we tested the T6SS-dependent interaction of V. cholerae with a selection of human gut commensal isolates. We show that the pathogen efficiently depleted representative genera of the Proteobacteria in vitro, while members of the Enterobacter cloacae complex and several Klebsiella species remained unaffected. We demonstrate that this resistance against T6SS assaults was mediated by the production of superior T6SS machinery or a barrier exerted by group I capsules. Collectively, our data provide new insights into immunity protein-independent T6SS resistance employed by the human microbiota and colonization resistance in general.
Collapse
|
20
|
Mathieu-Denoncourt A, Duperthuy M. Secretome analysis reveals a role of subinhibitory concentrations of polymyxin B in the survival of Vibrio cholerae mediated by the type VI secretion system. Environ Microbiol 2021; 24:1133-1149. [PMID: 34490971 DOI: 10.1111/1462-2920.15762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/04/2021] [Indexed: 11/30/2022]
Abstract
Antimicrobials are commonly used in prevention of infections including in aquaculture, agriculture and medicine. Subinhibitory concentrations of antimicrobial peptides can modulate resistance, virulence and persistence effectors in Gram-negative pathogens. In this study, we investigated the effect of subinhibitory concentrations of polymyxin B (PmB) on the secretome of Vibrio cholerae, a natural inhabitant of aquatic environments and the pathogen responsible for the cholera disease. Our proteomic approach revealed that the abundance of many extracellular proteins is affected by PmB and some of them are detected only either in the presence or in the absence of PmB. The type VI secretion system (T6SS) secreted hemolysin-coregulated protein (Hcp) displayed an increased abundance in the presence of PmB. Hcp is also more abundant in the bacterial cells in the presence of PmB and hcp expression is upregulated upon PmB supplementation. No effect of the T6SS on antimicrobial resistance was observed. Conversely, PmB increases the T6SS-dependent cytotoxicity of V. cholerae towards the amoeba Dictyostelium discoideum and its ability to compete with Escherichia coli.
Collapse
Affiliation(s)
- Annabelle Mathieu-Denoncourt
- Department de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Marylise Duperthuy
- Department de Microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
| |
Collapse
|
21
|
Getting ahead of the competition. Nat Rev Microbiol 2021; 19:551. [PMID: 34211159 DOI: 10.1038/s41579-021-00599-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
22
|
Crisan CV, Chandrashekar H, Everly C, Steinbach G, Hill SE, Yunker PJ, Lieberman RR, Hammer BK. A New Contact Killing Toxin Permeabilizes Cells and Belongs to a Broadly Distributed Protein Family. mSphere 2021; 6:e0031821. [PMID: 34287011 PMCID: PMC8386463 DOI: 10.1128/msphere.00318-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/21/2021] [Indexed: 01/12/2023] Open
Abstract
Vibrio cholerae is an aquatic Gram-negative bacterium that causes severe diarrheal cholera disease when ingested by humans. To eliminate competitor cells in both the external environment and inside hosts, V. cholerae uses the type VI secretion system (T6SS). The T6SS is a macromolecular contact-dependent weapon employed by many Gram-negative bacteria to deliver cytotoxic proteins into adjacent cells. In addition to canonical T6SS gene clusters encoded by all sequenced V. cholerae isolates, strain BGT49 encodes another locus, which we named auxiliary (Aux) cluster 4. The Aux 4 cluster is located on a mobile genetic element and can be used by killer cells to eliminate both V. cholerae and Escherichia coli cells in a T6SS-dependent manner. A putative toxin encoded in the cluster, which we name TpeV (type VI permeabilizing effector Vibrio), shares no homology to known proteins and does not contain motifs or domains indicative of function. Ectopic expression of TpeV in the periplasm of E. coli permeabilizes cells and disrupts the membrane potential. Using confocal microscopy, we confirm that susceptible target cells become permeabilized when competed with killer cells harboring the Aux 4 cluster. We also determine that tpiV, the gene located immediately downstream of tpeV, encodes an immunity protein that neutralizes the toxicity of TpeV. Finally, we show that TpeV homologs are broadly distributed across important human, animal, and plant pathogens and are localized in proximity to other T6SS genes. Our results suggest that TpeV is a toxin that belongs to a large family of T6SS proteins. IMPORTANCE Bacteria live in polymicrobial communities where competition for resources and space is essential for survival. Proteobacteria use the T6SS to eliminate neighboring cells and cause disease. However, the mechanisms by which many T6SS toxins kill or inhibit susceptible target cells are poorly understood. The sequence of the TpeV toxin that we describe here is unlike any previously described protein. We demonstrate that it has antimicrobial activity by permeabilizing cells, eliminating membrane potentials, and causing severe cytotoxicity. TpeV homologs are found near known T6SS genes in human, animal, and plant bacterial pathogens, indicating that the toxin is a representative member of a broadly distributed protein family. We propose that TpeV-like toxins contribute to the fitness of many bacteria. Finally, since antibiotic resistance is a critical global health threat, the discovery of new antimicrobial mechanisms could lead to the development of new treatments against resistant strains.
Collapse
Affiliation(s)
- Cristian V. Crisan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Harshini Chandrashekar
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Catherine Everly
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Gabi Steinbach
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Shannon E. Hill
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter J. Yunker
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Raquel R. Lieberman
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Brian K. Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Formylglycine-generating enzyme-like proteins constitute a novel family of widespread type VI secretion system immunity proteins. J Bacteriol 2021; 203:e0028121. [PMID: 34398661 DOI: 10.1128/jb.00281-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Competition is a critical aspect of bacterial life, as it enables niche establishment and facilitates the acquisition of essential nutrients. Warfare between Gram-negative bacteria is largely mediated by the type VI secretion system (T6SS), a dynamic nanoweapon that delivers toxic effector proteins from an attacking cell to adjacent bacteria in a contact-dependent manner. Effector-encoding bacteria prevent self-intoxication and kin cell killing by the expression of immunity proteins, which prevent effector toxicity by specifically binding their cognate effector and either occluding its active site or preventing structural rearrangements necessary for effector activation. In this study, we investigate Tsi3, a previously uncharacterized T6SS immunity protein present in multiple strains of the human pathogen Acinetobacter baumannii. We show that Tsi3 is the cognate immunity protein of the antibacterial effector of unknown function Tse3. Our bioinformatic analyses indicate that Tsi3 homologs are widespread among Gram-negative bacteria, often encoded within T6SS effector-immunity modules. Surprisingly, we found that Tsi3 homologs are predicted to possess a characteristic formylglycine-generating enzyme (FGE) domain, which is present in various enzymatic proteins. Our data shows that Tsi3-mediated immunity is dependent on Tse3-Tsi3 protein-protein interactions and that Tsi3 homologs from various bacteria do not provide immunity against non-kin Tse3. Thus, we conclude that Tsi3 homologs are unlikely to be functional enzymes. Collectively, our work identifies FGE domain-containing proteins as important mediators of immunity against T6SS attacks and indicates that the FGE domain can be co-opted as a scaffold in multiple proteins to carry out diverse functions. Importance Despite the wealth of knowledge on the diversity of biochemical activities carried out by T6SS effectors, comparably little is known about the various strategies bacteria employ to prevent susceptibility to T6SS-dependent bacterial killing. Our work establishes a novel family of T6SS immunity proteins with a characteristic FGE domain. This domain is present in enzymatic proteins with various catalytic activities. Our characterization of Tsi3 expands the known functions carried out by FGE-like proteins to include defense during T6SS-mediated bacterial warfare. Moreover, it highlights the evolution of FGE domain-containing proteins to carry out diverse biological functions.
Collapse
|
24
|
Hussain NAS, Kirchberger PC, Case RJ, Boucher YF. Modular Molecular Weaponry Plays a Key Role in Competition Within an Environmental Vibrio cholerae Population. Front Microbiol 2021; 12:671092. [PMID: 34122386 PMCID: PMC8189183 DOI: 10.3389/fmicb.2021.671092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
The type VI secretion system (T6SS) operons of Vibrio cholerae contain extraordinarily diverse arrays of toxic effector and cognate immunity genes, which are thought to play an important role in the environmental lifestyle and adaptation of this human pathogen. Through the T6SS, proteinaceous "spears" tipped with antibacterial effectors are injected into adjacent cells, killing those not possessing immunity proteins to these effectors. Here, we investigate the T6SS-mediated dynamics of bacterial competition within a single environmental population of V. cholerae. We show that numerous members of a North American V. cholerae population possess strain-specific repertoires of cytotoxic T6SS effector and immunity genes. Using pairwise competition assays, we demonstrate that the vast majority of T6SS-mediated duels end in stalemates between strains with different T6SS repertoires. However, horizontally acquired effector and immunity genes can significantly alter the outcome of these competitions. Frequently observed horizontal gene transfer events can both increase or reduce competition between distantly related strains by homogenizing or diversifying the T6SS repertoire. Our results also suggest temperature-dependent outcomes in T6SS competition, with environmental isolates faring better against a pathogenic strain under native conditions than under those resembling a host-associated environment. Taken altogether, these interactions produce density-dependent fitness effects and a constant T6SS-mediated arms race in individual V. cholerae populations, which could ultimately preserve intraspecies diversity. Since T6SSs are widespread, we expect within-population diversity in T6SS repertoires and the resulting competitive dynamics to be a common theme in bacterial species harboring this machinery.
Collapse
Affiliation(s)
- Nora A. S. Hussain
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Paul C. Kirchberger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States
| | - Rebecca J. Case
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yann F. Boucher
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Baker-Austin C, Pruzzo C, Oliver JD, Destoumieux-Garzon D. Vibrios - from genes to ecosystems. Environ Microbiol 2020; 22:4093-4095. [PMID: 32902106 DOI: 10.1111/1462-2920.15229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture (CEFAS), Weymouth, Dorset, DT4 8UB, UK
| | - Carla Pruzzo
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | | | | |
Collapse
|