1
|
Gong J, Huang J, Liu Y, Zhang Y, Gao Y. Unveiling environmental transmission risks: comparative analysis of azole resistance in Aspergillus fumigatus clinical and environmental isolates from Yunnan, China. Microbiol Spectr 2024; 12:e0159424. [PMID: 39470286 PMCID: PMC11619395 DOI: 10.1128/spectrum.01594-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Azole resistance in Aspergillus fumigatus poses a significant clinical challenge globally. Our previous epidemiological analysis revealed a remarkably high frequency (~80%) of azole-resistant A. fumigatus in Yunnan's greenhouse environments, prompting increased local and regional research for targeted control strategies. In this study, we analyzed 94 clinical A. fumigatus isolates from Yunnan, comparing their susceptibility profiles and genotypic characteristics with environmental strains previously isolated. While the overall frequency of azole resistance in clinical isolates was lower than that in environmental samples, a significant prevalence of cross-resistance, with varying resistance patterns based on minimum inhibitory concentration (MIC) levels was observed, which exceeded rates in other regions of China. Specific mutation combinations in the cyp51A gene were linked to elevated MIC values in clinical and/or environmental samples, while some resistant strains with wild-type cyp51A remain unexplained, indicating a need for further investigation into their resistance mechanisms. The differences in unique genetic elements and the distinct genetic differentiation observed between clinical and environmental isolates can be attributed to Yunnan's unique geomorphology and potential genotype importation from other provinces and abroad. Extensive allele exchanges and sharing contributed to the selection of azole-resistant clinical isolates, suggesting a common environmental origin, and the transmission routes of local drug-resistant strains cannot be excluded. These findings emphasize the imperative for regional and targeted surveillance to monitor resistance trends and guide effective antifungal therapy, and management strategies to mitigate invasive aspergillosis risk in this region.IMPORTANCEAzole resistance in Aspergillus fumigatus is a major global health concern, with particularly high rates (~80%) observed in Yunnan's greenhouse environments. This study compares azole resistance in 94 clinical isolates from Yunnan with environmental strains, revealing lower clinical resistance but significant cross-resistance and distinct resistance patterns. Specific mutations in the cyp51A gene were associated with elevated minimum inhibitory concentration values, though some resistant strains had wild-type cyp51A, highlighting the need for further research. The unique genetic profiles and potential external genotype influences in Yunnan emphasize the need for targeted regional surveillance. Effective monitoring and control strategies are essential to manage and mitigate the risk of invasive aspergillosis.
Collapse
Affiliation(s)
- Jianchuan Gong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Chenggong District, Kunming, Yunnan, China
- College of Life Science, Yunnan University, Chenggong District, Kunming, Yunnan, China
| | - Jiarui Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Chenggong District, Kunming, Yunnan, China
- College of Life Science, Yunnan University, Chenggong District, Kunming, Yunnan, China
| | - Yongju Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Chenggong District, Kunming, Yunnan, China
- College of Life Science, Yunnan University, Chenggong District, Kunming, Yunnan, China
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Chenggong District, Kunming, Yunnan, China
| | - Yuhong Gao
- Department of clinical laboratory, The First People’s Hospital of Yunnan Province, Xishan District, Kunming, Yunnan, China
| |
Collapse
|
2
|
Zhou F, Zhou X, Jiao Y, Han A, Su H, Wang L, Zhou H, Li W, Liu R. Potential Mechanisms of Hexaconazole Resistance in Fusarium graminearum. PLANT DISEASE 2024; 108:3133-3145. [PMID: 38902883 DOI: 10.1094/pdis-04-24-0880-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Fusarium head blight (FHB) caused by Fusarium graminearum is a serious fungal disease that can dramatically impact wheat production. At present, disease control is mainly achieved by the use of chemical fungicides. Hexaconazole (IUPAC name: 2(2,4-dichlorophenyl)-1-(1,2,4-triazol-1-yl)hexan-2-ol) is a widely used triazole fungicide, but the sensitivity of F. graminearum to this compound has yet to be established. The current study found that the EC50 values of 83 field isolates of F. graminearum ranged between 0.06 and 4.33 μg/ml, with an average EC50 value of 0.78 μg/ml. Assessment of four hexaconazole-resistant laboratory mutants of F. graminearum revealed that their mycelial growth and pathogenicity were reduced compared with their parental isolates and that asexual reproduction was reduced by resistance to hexaconazole. Meanwhile, the mutants appeared to be more sensitive to abiotic stress associated with SDS and H2O2, while their tolerance to high concentrations of Congo red, and Na+ and K+ increased. Molecular analysis revealed numerous point mutations in the FgCYP51 target genes that resulted in amino acid substitutions, including L92P and N123S in FgCYP51A, as well as M331V, F62L, Q252R, A412V, and V488A in FgCYP51B, and S28L, S256A, V307A, D287G, and R515I in FgCYP51C, three of which (S28L, S256A, and V307A) were conserved in all of the resistant mutants. Furthermore, the expression of the FgCYP51 genes in resistant strains was found to be significantly (P < 0.05) reduced compared with their sensitive parental isolates. Positive cross-resistance was found between hexaconazole and metconazole and flutriafol, as well as with the diarylamine fungicide fluazinam, but not with propiconazole, and the phenylpyrrole fungicide fludioxonil, or with tebuconazole, which actually exhibited negative cross-resistance. These results provide valuable insight into resistant mechanisms to triazole fungicides in F. graminearum, as well as the appropriate selection of fungicide combinations for the control of FHB to ensure optimal wheat production.
Collapse
Affiliation(s)
- Feng Zhou
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaoli Zhou
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yan Jiao
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Aohui Han
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Haichuan Su
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Longhe Wang
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Huanhuan Zhou
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Weiguo Li
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Runqiang Liu
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
3
|
Matsuo T, Wurster S, Hoenigl M, Kontoyiannis DP. Current and emerging technologies to develop Point-of-Care Diagnostics in medical mycology. Expert Rev Mol Diagn 2024; 24:841-858. [PMID: 39294931 DOI: 10.1080/14737159.2024.2397515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024]
Abstract
INTRODUCTION Advances in diagnostic technologies, particularly Point-of-Care Diagnostics (POCDs), have revolutionized clinical practice by providing rapid, user-friendly, and affordable testing at or near the patient's location. POCDs have been increasingly introduced in medical mycology and hold promise to improve patient outcomes in a variety of important human fungal diseases. AREAS COVERED This review focuses on validated POCDs, particularly lateral flow assays (LFAs), for various fungal diseases. Additionally, we discuss emerging innovative techniques such as body fluid analysis, imaging methods, loop-mediated isothermal amplification (LAMP), microfluidic systems, clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostics, and the emerging role of artificial intelligence. EXPERT OPINION Compact and user-friendly POCDs have been increasingly introduced in medical mycology, and some of these tests (e.g. Cryptococcus and Histoplasma antigen LFAs) have become mainstream diagnostics, while others, such as LFA in invasive aspergillosis show promise to become part of our routine diagnostic armamentarium. POCDs offer immense benefits such as timely and accurate diagnostic results, reduced patient discomfort, and lower healthcare costs and might contribute to antifungal stewardship. Integrated fluidics combined with microtechnology having multiplex capabilities will be pivotal in medical mycology.
Collapse
Affiliation(s)
- Takahiro Matsuo
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Group, Medical University of Graz, Graz, Austria
- Bio TechMed, Graz, Austria
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Soldi LR, Silva MJB. Fluconazole and levofloxacin prophylaxis are ineffective strategies for preventing infections in acute myeloid leukemia patients undergoing chemotherapy. Cancer Epidemiol 2024; 91:102593. [PMID: 38815484 DOI: 10.1016/j.canep.2024.102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/31/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
INTRODUCTION Acute myeloid leukemia patients are at high risk for infections, which contribute to increased mortality rates of up to 70%. The use of antimicrobial prophylaxis has been shown to significantly lower rates of infection. Therefore, this retrospective study aimed to evaluate the effect of two agents that showed effective results in the literature, levofloxacin and fluconazole, as prophylaxis strategies in AML patients. METHODOLOGY A total of 85 AML patients' medical records treated with a 7+3 induction chemotherapy protocol in the Cancer Hospital of Uberlândia from 2017 to 2021 were screened and their data was collected. Within these patients, groups for analysis were created based on whether the acting physician included an antibacterial or antifungal prophylaxis protocol during induction. Contingency tables with χ² and odds ratio tests were realized to verify associations between prophylaxis and infection. Additionally, Kaplan-Meier curves with Cox regression were developed to analyze survival. RESULTS The use of prophylaxis with either fluconazole or levofloxacin did not lower rates of infection, as those who with prophylaxis did not demonstrate significant differences when compared to those without (20.3-29.7%, and 12.3-23.3%, respectively). Patients who suffered a bacterial infection during induction were shown to have lower overall survival, with a similar trend seen in fungal infections. CONCLUSION Bacterial and fungal infections were associated with higher rates of induction mortality and lower overall survival, and prophylaxis using fluconazole and levofloxacin did not present any significant difference in preventing these infections in this study, contrasting results found in the literature. The individuality of each treatment center should be taken into consideration and future studies should be realized to better determine the most effective methods and agents for prophylaxis.
Collapse
Affiliation(s)
- Luiz Ricardo Soldi
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil; Tumour Biomarkers and Osteoimmunology Laboratory, Av. Pará - 1720 - Block 6T, Room 07 - District Umuarama, Uberlândia, MG, Brazil.
| | - Marcelo José Barbosa Silva
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil; Tumour Biomarkers and Osteoimmunology Laboratory, Av. Pará - 1720 - Block 6T, Room 07 - District Umuarama, Uberlândia, MG, Brazil.
| |
Collapse
|
5
|
Dladla M, Gyzenhout M, Marias G, Ghosh S. Azole resistance in Aspergillus fumigatus- comprehensive review. Arch Microbiol 2024; 206:305. [PMID: 38878211 DOI: 10.1007/s00203-024-04026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Aspergillus fumigatus is a ubiquitous filamentous fungus commonly found in the environment. It is also an opportunistic human pathogen known to cause a range of respiratory infections, such as invasive aspergillosis, particularly in immunocompromised individuals. Azole antifungal agents are widely used for the treatment and prophylaxis of Aspergillus infections due to their efficacy and tolerability. However, the emergence of azole resistance in A. fumigatus has become a major concern in recent years due to their association with increased treatment failures and mortality rates. The development of azole resistance in A. fumigatus can occur through both acquired and intrinsic mechanisms. Acquired resistance typically arises from mutations in the target enzyme, lanosterol 14-α-demethylase (Cyp51A), reduces the affinity of azole antifungal agents for the enzyme, rendering them less effective, while intrinsic resistance refers to a natural resistance of certain A. fumigatus isolates to azole antifungals due to inherent genetic characteristics. The current review aims to provide a comprehensive overview of azole antifungal resistance in A. fumigatus, discusses underlying resistance mechanisms, including alterations in the target enzyme, Cyp51A, and the involvement of efflux pumps in drug efflux. Impact of azole fungicide uses in the environment and the spread of resistant strains is also explored.
Collapse
Affiliation(s)
- Mthokozisi Dladla
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Marieka Gyzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Gert Marias
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Birkat Al Mawz, Oman.
| |
Collapse
|
6
|
Atamna A, Yeshurun M, Shargian L, Raanani P, Kramer M, Ben Zvi H, Ben Ami R, Marr KA, Bishara J. Fatal invasive pulmonary and cerebral aspergillosis due to triazole-resistant Aspergillus fumigatus with multiple CYP51A mutations. J Antimicrob Chemother 2024; 79:1191-1192. [PMID: 38334380 DOI: 10.1093/jac/dkae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Affiliation(s)
- Alaa Atamna
- Infectious Diseases Unit, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
- Tel Aviv Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Moshe Yeshurun
- Tel Aviv Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
- Bone Marrow Transplantation Unit, Institute of Hematology, Davidoff Center, Rabin Medical Center, Petah Tikva, Israel
| | - Liat Shargian
- Tel Aviv Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
- Bone Marrow Transplantation Unit, Institute of Hematology, Davidoff Center, Rabin Medical Center, Petah Tikva, Israel
| | - Pia Raanani
- Tel Aviv Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
- Institute of Hematology, Davidoff Center, Rabin Medical Center, Petah Tikva, Israel
| | - Mordechai Kramer
- Tel Aviv Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
- Institute of Pulmonary and Allergy Medicine, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
| | - Haim Ben Zvi
- Tel Aviv Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
- Clinical Microbiology Laboratory, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
| | - Ronen Ben Ami
- Tel Aviv Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
- Infectious Diseases Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- National Reference Laboratory for Clinical Mycology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Kieren A Marr
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jihad Bishara
- Infectious Diseases Unit, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
- Tel Aviv Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
7
|
Ghazanfari M, Abastabar M, Haghani I, Kermani F, Keikha N, Kholoujini M, Minooeianhaghighi MH, Jeddi SA, Shokri A, Ghojoghi A, Amirizad K, Azish M, Nasirzadeh Y, Roohi B, Nosratabadi M, Hedayati S, Ghanbari S, Valadan R, Hedayati MT. Electronic equipment and appliances in special wards of hospitals as a source of azole-resistant Aspergillus fumigatus: a multi-centre study from Iran. J Hosp Infect 2024; 145:65-76. [PMID: 38199436 DOI: 10.1016/j.jhin.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Azole-resistant Aspergillus fumigatus (ARAf), reported as a global public health concern, has been unexpectedly observed in different countries. AIM To identify ARAf and detect azole resistance related to the CYP51A mutation in different hospital environmental samples. METHODS In this multi-centre study from Iran, surfaces of electronic equipment and appliances from different hospitals in Iran were sampled using cotton swabs. All samples were cultured using azole-containing agar plates (ACAPs). Recovered Aspergillus isolates were identified at the species level using partial DNA sequencing of the β-tubulin gene. The azole susceptibility testing of A. fumigatus isolates was performed using the Clinical and Laboratory Standards Institute M38-A3 guideline. The sequencing of the CYP51A gene was also performed to detect mutations related to resistance. FINDINGS Out of the 693 collected samples, 89 (12.8%) Aspergillus species were recovered from ACAPs. Aspergillus fumigatus (41.6%) was the most prevalent, followed by A. tubingensis (23.6%) and A. niger (15.6%). Among 37 isolates of A. fumigatus, 19 (51.3%) showed high minimum inhibitory concentration (MIC) values to at least one of the three azoles, voriconazole, itraconazole, and posaconazole. CYP51A polymorphisms were detected in all 19 isolates, of which 52.6% showed the TR34/L98H mutation. Other detected mutations were G432C, G448S, G54E/G138C, F46Y, and Y121F/M220I/D255E. T289F and G432C were the first reported mutations in ARAf. CONCLUSION There was a considerable level of azole resistance in hospital environmental samples, a serious warning for patients vulnerable to aspergillosis. Our findings have also revealed a different mutation pattern in the CYP51A gene.
Collapse
Affiliation(s)
- M Ghazanfari
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M Abastabar
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - I Haghani
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - F Kermani
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - N Keikha
- Infectious Disease and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - M Kholoujini
- Beheshti Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - M H Minooeianhaghighi
- Department of Medical Microbiology, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - S A Jeddi
- Department of Laboratory Sciences, School of Allied Sciences, Abadan University of Medical Sciences, Abadan, Iran
| | - A Shokri
- Vector-Borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - A Ghojoghi
- Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - K Amirizad
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - M Azish
- Department of Medical Parasitology and Mycology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Y Nasirzadeh
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - B Roohi
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M Nosratabadi
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Laboratory Sciences, Sirjan Faculty of Medical Sciences, Sirjan, Iran
| | - S Hedayati
- Student Research Committee Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - S Ghanbari
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - R Valadan
- Department of Immunology/Molecular and Cell Biology Research Center (MCBRC), Mazandaran University of Medical Sciences, Sari, Iran
| | - M T Hedayati
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
8
|
Verweij PE, Song Y, Buil JB, Zhang J, Melchers WJG. Antifungal Resistance in Pulmonary Aspergillosis. Semin Respir Crit Care Med 2024; 45:32-40. [PMID: 38196063 DOI: 10.1055/s-0043-1776997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Aspergilli may cause various pulmonary diseases in humans, including allergic bronchopulmonary aspergillosis (ABPA), chronic pulmonary aspergillosis (CPA), and acute invasive pulmonary aspergillosis (IPA). In addition, chronic colonization may occur in cystic fibrosis (CF). Aspergillus fumigatus represents the main pathogen, which may employ different morphotypes, for example, conidia, hyphal growth, and asexual sporulation, in the various Aspergillus diseases. These morphotypes determine the ease by which A. fumigatus can adapt to stress by antifungal drug exposure, usually resulting in one or more resistance mutations. Key factors that enable the emergence of resistance include genetic variation and selection. The ability to create genetic variation depends on the reproduction mode, including, sexual, parasexual, and asexual, and the population size. These reproduction cycles may take place in the host and/or in the environment, usually when specific conditions are present. Environmental resistance is commonly characterized by tandem repeat (TR)-mediated mutations, while in-host resistance selection results in single-resistance mutations. Reported cases from the literature indicate that environmental resistance mutations are almost exclusively present in patients with IA indicating that the risk for in-host resistance selection is very low. In aspergilloma, single-point mutations are the dominant resistance genotype, while in other chronic Aspergillus diseases, for example, ABPA, CPA, and CF, both TR-mediated and single-resistance mutations are reported. Insights into the pathogenesis of resistance selection in various Aspergillus diseases may help to improve diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
- Center for Infectious Disease Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Yinggai Song
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Dermatology and Venerology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, China
- National Clinical Research Center For Skin and Immune Diseases, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
| | - Jochem B Buil
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
| | - Jianhua Zhang
- Center for Infectious Disease Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Willem J G Melchers
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
| |
Collapse
|
9
|
Kühbacher A, Merschak P, Haas H, Liebl M, Müller C, Gsaller F. The cytochrome P450 reductase CprA is a rate-limiting factor for Cyp51A-mediated azole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 2023; 67:e0091823. [PMID: 37815358 PMCID: PMC10648939 DOI: 10.1128/aac.00918-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/12/2023] [Indexed: 10/11/2023] Open
Abstract
Azole antifungals remain the "gold standard" therapy for invasive aspergillosis. The world-wide emergence of isolates resistant to this drug class, however, developed into a steadily increasing threat to human health over the past years. In Aspergillus fumigatus, major mechanisms of resistance involve increased expression of cyp51A encoding one of two isoenzymes targeted by azoles. Yet, the level of resistance caused by cyp51A upregulation, driven by either clinically relevant tandem repeat mutations within its promoter or the use of high expressing heterologous promoters, is limited. Cytochrome P450 enzymes such as Cyp51A rely on redox partners that provide electrons for their activity. A. fumigatus harbors several genes encoding putative candidate proteins including two paralogous cytochrome P450 reductases, CprA and CprB, and the cytochrome b 5 CybE. In this work, we investigated the contribution of each cprA, cprB, and cybE overexpression to cyp51A-mediated resistance to different medical and agricultural azoles. Using the bidirectional promoter PxylP, we conditionally expressed these genes in combination with cyp51A, revealing cprA as the main limiting factor. Similar to this approach, we overexpressed cprA in an azole-resistant background strain carrying a cyp51A allele with TR34 in its promoter, which led to a further increase in its resistance. Employing sterol measurements, we demonstrate an enhanced eburicol turnover during upregulation of either cprA or cyp51A, which was even more pronounced during their simultaneous overexpression. In summary, our work suggests that mutations leading to increased Cyp51A activity through increased electron supply could be key factors that elevate azole resistance.
Collapse
Affiliation(s)
- Alexander Kühbacher
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Petra Merschak
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Maximilian Liebl
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians Universität München, Munich, Germany
| | - Christoph Müller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians Universität München, Munich, Germany
| | - Fabio Gsaller
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Zeng M, Zhou X, Yang C, Liu Y, Zhang J, Xin C, Qin G, Liu F, Song Z. Comparative analysis of the biological characteristics and mechanisms of azole resistance of clinical Aspergillus fumigatus strains. Front Microbiol 2023; 14:1253197. [PMID: 38029222 PMCID: PMC10665732 DOI: 10.3389/fmicb.2023.1253197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Aspergillus fumigatus is a common causative pathogen of aspergillosis. At present, triazole resistance of A. fumigatus poses an important challenge to human health globally. In this study, the biological characteristics and mechanisms of azole resistance of five A. fumigatus strains (AF1, AF2, AF4, AF5, and AF8) were explored. There were notable differences in the sporulation and biofilm formation abilities of the five test strains as compared to the standard strain AF293. The ability of strain AF1 to avoid phagocytosis by MH-S cells was significantly decreased as compared to strain AF293, while that of strains AF2, AF4, and AF5 were significantly increased. Fungal burden analysis with Galleria mellonella larvae revealed differences in pathogenicity among the five strains. Moreover, the broth microdilution and E-test assays confirmed that strains AF1 and AF2 were resistant to itraconazole and isaconazole, while strains AF4, AF5, and AF8 were resistant to voriconazole and isaconazole. Strains AF1 and AF2 carried the cyp51A mutations TR34/L98H/V242I/S297T/F495I combined with the hmg1 mutation S541G, whereas strains AF4 and AF8 carried the cyp51A mutation TR46/Y121F/V242I/T289A, while strain AF5 had no cyp51A mutation. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis revealed differences in the expression levels of genes associated with ergosterol synthesis and efflux pumps among the five strains. In addition, transcriptomics, RT-qPCR, and the NAD+/NADH ratio demonstrated that the mechanism of voriconazole resistance of strain AF5 was related to overexpression of genes associated with energy production and efflux pumps. These findings will help to further elucidate the triazole resistance mechanism in A. fumigatus.
Collapse
Affiliation(s)
- Meng Zeng
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Department of Clinical Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Chunhong Yang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yanfei Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinping Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Caiyan Xin
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Thorn V, Xu J. Mitogenome Variations in a Global Population of Aspergillus fumigatus. J Fungi (Basel) 2023; 9:995. [PMID: 37888251 PMCID: PMC10608017 DOI: 10.3390/jof9100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Aspergillus fumigatus is a ubiquitous, critical priority human fungal pathogen. Despite its clinical importance, there is limited knowledge regarding the variations of the genome within mitochondria, the powerhouse organelle within eukaryotic cells. In this study, we leveraged publicly available, raw, whole genome sequence data isolates from 1939 to investigate the variations in the mitochondrial genomes of A. fumigatus. These isolates were isolated from 22 countries on six continents, as well as from outer space and from within the International Space Station. In total, our analysis revealed 39 mitochondrial single nucleotide polymorphisms (mtSNPs) within this global sample, and, together, these 39 mtSNPs grouped the 1939 isolates into 79 mitochondrial multilocus genotypes (MLGs). Among the 79 MLGs, 39 were each distributed in at least two countries and 30 were each shared by at least two continents. The two most frequent MLGs were also broadly distributed: MLG11 represented 420 isolates from 11 countries and four continents and while MLG79 represented 418 isolates from 18 countries and five continents, consistent with long-distance dispersals of mitogenomes. Our population genetic analyses of the mtSNPs revealed limited differentiation among continental populations, but highly variable genetic differences among national populations, largely due to localized clonal expansions of different MLGs. Phylogenetic analysis and Discriminant Analysis of Principal Components of mtSNPs suggested the presence of at least three mitogenome clusters. Linkage disequilibrium, Index of Association, and phylogenetic incompatibility analyses collectively suggested evidence for mitogenome recombination in natural populations of A. fumigatus. In addition, sequence read depth analyses revealed an average ratio of ~20 mitogenomes per nuclear genome in this global population, but the ratios varied among strains within and between certain geographic populations. Together, our results suggest evidence for organelle dynamics, genetic differentiation, recombination, and both widespread and localized clonal expansion of the mitogenomes in the global A. fumigatus population.
Collapse
Affiliation(s)
| | - Jianping Xu
- Department of Biology, Institute of Infectious Diseases Research, McMaster University, Hamilton, ON L8S 4K1, Canada;
| |
Collapse
|
12
|
Barda O, Sadhasivam S, Gong D, Doron-Faigenboim A, Zakin V, Drott MT, Sionov E. Aneuploidy Formation in the Filamentous Fungus Aspergillus flavus in Response to Azole Stress. Microbiol Spectr 2023; 11:e0433922. [PMID: 37358460 PMCID: PMC10433848 DOI: 10.1128/spectrum.04339-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/06/2023] [Indexed: 06/27/2023] Open
Abstract
Aspergillus flavus is a mycotoxigenic fungus that contaminates many important agricultural crops with aflatoxin B1, the most toxic and carcinogenic natural compound. This fungus is also the second leading cause of human invasive aspergillosis, after Aspergillus fumigatus, a disease that is particularly prevalent in immunocompromised individuals. Azole drugs are considered the most effective compounds in controlling Aspergillus infections both in clinical and agricultural settings. Emergence of azole resistance in Aspergillus spp. is typically associated with point mutations in cyp51 orthologs that encode lanosterol 14α-demethylase, a component of the ergosterol biosynthesis pathway that is also the target of azoles. We hypothesized that alternative molecular mechanisms are also responsible for acquisition of azole resistance in filamentous fungi. We found that an aflatoxin-producing A. flavus strain adapted to voriconazole exposure at levels above the MIC through whole or segmental aneuploidy of specific chromosomes. We confirm a complete duplication of chromosome 8 in two sequentially isolated clones and a segmental duplication of chromosome 3 in another clone, emphasizing the potential diversity of aneuploidy-mediated resistance mechanisms. The plasticity of aneuploidy-mediated resistance was evidenced by the ability of voriconazole-resistant clones to revert to their original level of azole susceptibility following repeated transfers on drug-free media. This study provides new insights into mechanisms of azole resistance in a filamentous fungus. IMPORTANCE Fungal pathogens cause human disease and threaten global food security by contaminating crops with toxins (mycotoxins). Aspergillus flavus is an opportunistic mycotoxigenic fungus that causes invasive and noninvasive aspergillosis, diseases with high rates of mortality in immunocompromised individuals. Additionally, this fungus contaminates most major crops with the notorious carcinogen, aflatoxin. Voriconazole is the drug of choice to treat infections caused by Aspergillus spp. Although azole resistance mechanisms have been well characterized in clinical isolates of Aspergillus fumigatus, the molecular basis of azole resistance in A. flavus remains unclear. Whole-genome sequencing of eight voriconazole-resistant isolates revealed that, among other factors, A. flavus adapts to high concentrations of voriconazole by duplication of specific chromosomes (i.e., aneuploidy). Our discovery of aneuploidy-mediated resistance in a filamentous fungus represents a paradigm shift, as this type of resistance was previously thought to occur only in yeasts. This observation provides the first experimental evidence of aneuploidy-mediated azole resistance in the filamentous fungus A. flavus.
Collapse
Affiliation(s)
- Omer Barda
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Sudharsan Sadhasivam
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Di Gong
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Adi Doron-Faigenboim
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Varda Zakin
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Milton T. Drott
- Cereal Disease Laboratory, USDA-ARS, St. Paul, Minnesota, USA
| | - Edward Sionov
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
13
|
Souza ACO, Ge W, Wiederhold NP, Rybak JM, Fortwendel JR, Rogers PD. hapE and hmg1 Mutations Are Drivers of cyp51A-Independent Pan-Triazole Resistance in an Aspergillus fumigatus Clinical Isolate. Microbiol Spectr 2023; 11:e0518822. [PMID: 37140376 PMCID: PMC10269825 DOI: 10.1128/spectrum.05188-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023] Open
Abstract
Aspergillus fumigatus is a ubiquitous environmental mold that can cause severe disease in immunocompromised patients and chronic disease in individuals with underlying lung conditions. Triazoles are the most widely used class of antifungal drugs to treat A. fumigatus infections, but their use in the clinic is threatened by the emergence of triazole-resistant isolates worldwide, reinforcing the need for a better understanding of resistance mechanisms. The predominant mechanisms of A. fumigatus triazole resistance involve mutations affecting the promoter region or coding sequence of the target enzyme of the triazoles, Cyp51A. However, triazole-resistant isolates without cyp51A-associated mutations are frequently identified. In this study, we investigate a pan-triazole-resistant clinical isolate, DI15-105, that simultaneously carries the mutations hapEP88L and hmg1F262del, with no mutations in cyp51A. Using a Cas9-mediated gene-editing system, hapEP88L and hmg1F262del mutations were reverted in DI15-105. Here, we show that the combination of these mutations accounts for pan-triazole resistance in DI15-105. To our knowledge, DI15-105 is the first clinical isolate reported to simultaneously carry mutations in hapE and hmg1 and only the second with the hapEP88L mutation. IMPORTANCE Triazole resistance is an important cause of treatment failure and high mortality rates for A. fumigatus human infections. Although Cyp51A-associated mutations are frequently identified as the cause of A. fumigatus triazole resistance, they do not explain the resistance phenotypes for several isolates. In this study, we demonstrate that hapE and hmg1 mutations additively contribute to pan-triazole resistance in an A. fumigatus clinical isolate lacking cyp51-associated mutations. Our results exemplify the importance of and the need for a better understanding of cyp51A-independent triazole resistance mechanisms.
Collapse
Affiliation(s)
- Ana C. O. Souza
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Wenbo Ge
- Department of Clinical Pharmacy and Translational Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Nathan P. Wiederhold
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jeffrey M. Rybak
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jarrod R. Fortwendel
- Department of Clinical Pharmacy and Translational Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - P. David Rogers
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
14
|
AlShaheen H, Abuzied Y, Aldalbahi H, AlSheef M. Aspergilloma in an Immunocompetent Host: A Case Report. Cureus 2023; 15:e40727. [PMID: 37485205 PMCID: PMC10360449 DOI: 10.7759/cureus.40727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Aspergillosis is a serious pathologic condition caused by Aspergillus that commonly affects immunocompromised patients. In recent years, it has been demonstrated that Aspergillus infection can cause a wide spectrum of pulmonary diseases, including allergic bronchopulmonary aspergillosis, chronic necrotizing aspergillosis, aspergilloma, and invasive aspergillosis. The characteristic computed tomography (CT) and pathologic findings of the various pulmonary manifestations of Aspergillus infection are illustrated and reviewed in this case report. Aspergillus niger is an infrequent infection that affects the lungs in severely immunosuppressed patients. In this paper, we report the case of a 50-year-old female with well-controlled type 2 diabetes mellitus who presented to the emergency department with a history of shortness of breath, cough, and weight loss. She denied any use of immunosuppressive medications. High-resolution CT revealed a large right upper lung cavitary lesion, and the sputum examination and bronchoalveolar lavage revealed Aspergillus niger and positive Aspergillus galactomannan. In conclusion, immunocompetent hosts are rarely affected by aspergilloma with lung cavities. We recommend conducting a retrospective data registry on unreported aspergilloma cases in immunocompetent patients to understand the clinicopathological behavior and improve management.
Collapse
Affiliation(s)
- Hamad AlShaheen
- Infectious Disease and Internal Medicine, Medical Specialties Department, King Fahad Medical City, Riyadh, SAU
| | - Yacoub Abuzied
- Nursing Department, Rehabilitation Hospital, King Fahad Medical City, Riyadh, SAU
| | - Hosam Aldalbahi
- Internal Medicine, Medical Specialties Department, Main Hospital, King Fahad Medical City, Riyadh, SAU
| | - Mohammed AlSheef
- Internal Medicine and Thrombosis, Medical Specialties Department, King Fahad Medical City, Riyadh, SAU
| |
Collapse
|
15
|
Resendiz-Sharpe A, Vanhoffelen E, Velde GV. Bioluminescence Imaging, a Powerful Tool to Assess Fungal Burden in Live Mouse Models of Infection. Methods Mol Biol 2023; 2667:197-210. [PMID: 37145286 DOI: 10.1007/978-1-0716-3199-7_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Aspergillus fumigatus and Cryptococcus neoformans species infections are two of the most common life-threatening fungal infections in the immunocompromised population. Acute invasive pulmonary aspergillosis (IPA) and meningeal cryptococcosis are the most severe forms affecting patients with elevated associated mortality rates despite current treatments. As many unanswered questions remain concerning these fungal infections, additional research is greatly needed not only in clinical scenarios but also under controlled preclinical experimental settings to increase our understanding concerning their virulence, host-pathogen interactions, infection development, and treatments. Preclinical animal models are powerful tools to gain more insight into some of these needs. However, assessment of disease severity and fungal burden in mouse models of infection are often limited to less sensitive, single-time, invasive, and variability-prone techniques such as colony-forming unit counting. These issues can be overcome by in vivo bioluminescence imaging (BLI). BLI is a noninvasive tool that provides longitudinal dynamic visual and quantitative information on the fungal burden from the onset of infection and potential dissemination to different organs throughout the development of disease in individual animals. Hereby, we describe an entire experimental pipeline from mouse infection to BLI acquisition and quantification, readily available to researchers to provide a noninvasive, longitudinal readout of fungal burden and dissemination throughout the course of infection development, which can be applied for preclinical studies into pathophysiology and treatment of IPA and cryptococcosis in vivo.
Collapse
Affiliation(s)
| | - Eliane Vanhoffelen
- KU Leuven, Department of Imaging and Pathology, Biomedical MRI / MoSAIC, Leuven, Belgium
| | - Greetje Vande Velde
- KU Leuven, Department of Imaging and Pathology, Biomedical MRI / MoSAIC, Leuven, Belgium.
| |
Collapse
|
16
|
Orekhova A, De Angelis M, Cacciotti A, Reverberi M, Rotili D, Giorgi A, Protto V, Bonincontro G, Fiorentino F, Zgoda V, Mai A, Palamara AT, Simonetti G. Modulation of Virulence-Associated Traits in Aspergillus fumigatus by BET Inhibitor JQ1. Microorganisms 2022; 10:2292. [PMID: 36422362 PMCID: PMC9698166 DOI: 10.3390/microorganisms10112292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 08/18/2024] Open
Abstract
Aspergillus fumigatus is a disease-causing, opportunistic fungus that can establish infection due to its capacity to respond to a wide range of environmental conditions. Secreted proteins and metabolites, which play a critical role in fungal-host interactions and pathogenesis, are modulated by epigenetic players, such as bromodomain and extraterminal domain (BET) proteins. In this study, we evaluated the in vitro and in vivo capability of the BET inhibitor JQ1 to modulate the extracellular proteins and virulence of A. fumigatus. The abundance of 25 of the 76 extracellular proteins identified through LC-MS/MS proteomic analysis changed following JQ1 treatment. Among them, a ribonuclease, a chitinase, and a superoxide dismutase were dramatically downregulated. Moreover, the proteomic analysis of A. fumigatus intracellular proteins indicated that Abr2, an intracellular laccase involved in the last step of melanin synthesis, was absent in the JQ1-treated group. To investigate at which level this downregulation occurred and considering the ability of JQ1 to modulate gene expression we checked the level of ABR2, Chitinase, and Superoxide dismutase mRNA expression by qRT-PCR. Finally, the capacity of JQ1 to reduce the virulence of A. fumigatus has been proved using Galleria mellonella larvae, which are an in vivo model to evaluate fungal virulence. Overall, the promising activity exhibited by JQ1 suggests that A. fumigatus is sensitive to BET inhibition and BET proteins may be a viable target for developing antifungal agents.
Collapse
Affiliation(s)
- Anastasia Orekhova
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Andrea Cacciotti
- Department of Environmental Biology, “Sapienza” University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, “Sapienza” University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Alessandra Giorgi
- Department of Biochemical Sciences, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Virginia Protto
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Graziana Bonincontro
- Department of Environmental Biology, “Sapienza” University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Moscow, 10 Pogodinskaya Street, Moscow 119121, Russia
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giovanna Simonetti
- Department of Environmental Biology, “Sapienza” University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
17
|
Pokharel M, Konarzewska P, Roberge JY, Han GS, Wang Y, Carman GM, Xue C. The Anticancer Drug Bleomycin Shows Potent Antifungal Activity by Altering Phospholipid Biosynthesis. Microbiol Spectr 2022; 10:e0086222. [PMID: 36036637 PMCID: PMC9602507 DOI: 10.1128/spectrum.00862-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/10/2022] [Indexed: 12/30/2022] Open
Abstract
Invasive fungal infections are difficult to treat with limited drug options, mainly because fungi are eukaryotes and share many cellular mechanisms with the human host. Most current antifungal drugs are either fungistatic or highly toxic. Therefore, there is a critical need to identify important fungal specific drug targets for novel antifungal development. Numerous studies have shown the fungal phosphatidylserine (PS) biosynthetic pathway to be a potential target. It is synthesized from CDP-diacylglycerol and serine, and the fungal PS synthesis route is different from that in mammalian cells, in which preexisting phospholipids are utilized to produce PS in a base-exchange reaction. In this study, we utilized a Saccharomyces cerevisiae heterologous expression system to screen for inhibitors of Cryptococcus PS synthase Cho1, a fungi-specific enzyme essential for cell viability. We identified an anticancer compound, bleomycin, as a positive candidate that showed a phospholipid-dependent antifungal effect. Its inhibition on fungal growth can be restored by ethanolamine supplementation. Further exploration of the mechanism of action showed that bleomycin treatment damaged the mitochondrial membrane in yeast cells, leading to increased generation of reactive oxygen species (ROS), whereas supplementation with ethanolamine helped to rescue bleomycin-induced damage. Our results indicate that bleomycin does not specifically inhibit the PS synthase enzyme; however, it may affect phospholipid biosynthesis through disruption of mitochondrial function, namely, the synthesis of phosphatidylethanolamine (PE) and phosphatidylcholine (PC), which helps cells maintain membrane composition and functionality. IMPORTANCE Invasive fungal pathogens cause significant morbidity and mortality, with over 1.5 million deaths annually. Because fungi are eukaryotes that share much of their cellular machinery with the host, our armamentarium of antifungal drugs is highly limited, with only three classes of antifungal drugs available. Drug toxicity and emerging resistance have limited their use. Hence, targeting fungi-specific enzymes that are important for fungal survival, growth, or virulence poses a strategy for novel antifungal development. In this study, we developed a heterologous expression system to screen for chemical compounds with activity against Cryptococcus phosphatidylserine synthase, Cho1, a fungi-specific enzyme that is essential for viability in C. neoformans. We confirmed the feasibility of this screen method and identified a previously unexplored role of the anticancer compound bleomycin in disrupting mitochondrial function and inhibiting phospholipid synthesis.
Collapse
Affiliation(s)
- Mona Pokharel
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Paulina Konarzewska
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Jacques Y. Roberge
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, Piscataway, New Jersey, USA
| | - Gil-Soo Han
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Yina Wang
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - George M. Carman
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Chaoyang Xue
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
18
|
Resendiz-Sharpe A, Van Holm W, Merckx R, Pauwels M, Teughels W, Lagrou K, Vande Velde G. Quantitative PCR Effectively Quantifies Triazole-Susceptible and Triazole-Resistant Aspergillus fumigatus in Mixed Infections. J Fungi (Basel) 2022; 8:1120. [PMID: 36354887 PMCID: PMC9696238 DOI: 10.3390/jof8111120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 12/12/2024] Open
Abstract
Increasing resistance to triazole antifungals in Aspergillus fumigatus is worrisome because of the associated high mortality of triazole-resistant A. fumigatus (TRAF) infections. While most studies have focused on single triazole-susceptible (WT) or TRAF infections, reports of TRAF cases developing mixed WT and TRAF infections have been described in several studies. However, the prevalence of mixed infections and their responses to current recommended therapies are unknown and could be inappropriate, leading to poor clinical outcomes. To address the urgent need for tools to diagnose, monitor disease development and therapy efficacies in mixed infection settings where quantification of WT versus TRAF is key, this study developed a novel qPCR assay to differentiate WT and TRAF harboring the cyp51A-TR34/L98H mutation. The proposed assay successfully quantified A. fumigatus and discriminated TRAF-TR34 in vitro and in vivo, which was achieved by increasing the yield of extracted DNA through improved homogenization and specific primers targeting the WT-sequence or TR34-insertion and a TaqMan-probe directed to A. fumigatus. The here-developed qPCR assay overcomes sensitivity issues of methodologies such as CFU counts, providing specific, reproducible, and reliable quantitative information to study and follow up the (interplay and individual) effects of mixed A. fumigatus infections on disease development and treatment responses.
Collapse
Affiliation(s)
| | - Wannes Van Holm
- Department of Oral and Health Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Rita Merckx
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Martine Pauwels
- Department of Oral and Health Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Wim Teughels
- Department of Oral and Health Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, Excellence Center for Medical Mycology (ECMM), University Hospitals Leuven, 3000 Leuven, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
19
|
Handelman M, Osherov N. Experimental and in-host evolution of triazole resistance in human pathogenic fungi. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:957577. [PMID: 37746192 PMCID: PMC10512370 DOI: 10.3389/ffunb.2022.957577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 09/26/2023]
Abstract
The leading fungal pathogens causing systemic infections in humans are Candida spp., Aspergillus fumigatus, and Cryptococcus neoformans. The major class of antifungals used to treat such infections are the triazoles, which target the cytochrome P450 lanosterol 14-α-demethylase, encoded by the ERG11 (yeasts)/cyp51A (molds) genes, catalyzing a key step in the ergosterol biosynthetic pathway. Triazole resistance in clinical fungi is a rising concern worldwide, causing increasing mortality in immunocompromised patients. This review describes the use of serial clinical isolates and in-vitro evolution toward understanding the mechanisms of triazole resistance. We outline, compare, and discuss how these approaches have helped identify the evolutionary pathways taken by pathogenic fungi to acquire triazole resistance. While they all share a core mechanism (mutation and overexpression of ERG11/cyp51A and efflux transporters), their timing and mechanism differs: Candida and Cryptococcus spp. exhibit resistance-conferring aneuploidies and copy number variants not seen in A. fumigatus. Candida spp. have a proclivity to develop resistance by undergoing mutations in transcription factors (TAC1, MRR1, PDR5) that increase the expression of efflux transporters. A. fumigatus is especially prone to accumulate resistance mutations in cyp51A early during the evolution of resistance. Recently, examination of serial clinical isolates and experimental lab-evolved triazole-resistant strains using modern omics and gene editing tools has begun to realize the full potential of these approaches. As a result, triazole-resistance mechanisms can now be analyzed at increasingly finer resolutions. This newfound knowledge will be instrumental in formulating new molecular approaches to fight the rapidly emerging epidemic of antifungal resistant fungi.
Collapse
Affiliation(s)
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
20
|
Triazole Priming as an Adaptive Response and Gateway to Resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 2022; 66:e0045822. [PMID: 35856665 PMCID: PMC9380525 DOI: 10.1128/aac.00458-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Invasive aspergillosis (IA), caused predominantly by Aspergillus fumigatus, is the most common opportunistic mold infection in immunocompromised patients. Resistance of A. fumigatus to triazoles has been increasingly reported, leading to poor outcomes of IA to the front-line azoles. Triazole resistance is in part driven by exposure to agricultural azoles through mechanisms that are poorly understood beyond mutations in ergosterol biosynthetic genes. Priming is defined as a process in which prior exposures to sublethal stressful stimuli, such as antimicrobial drugs, can enhance the ability of pathogens to withstand reexposure to the same or other stressors. Here, we describe, for the first time, triazole priming, where exposure of conidia of three A. fumigatus strains to subinhibitory concentrations of either agricultural (tebuconazole difenoconazole, epoxiconazole) or medical triazoles (voriconazole) increases germination and growth during subsequent reexposure to subinhibitory triazole challenge. We demonstrate that priming in A. fumigatus is class specific to triazoles, is not confined to a particular isolate, and is retained for extended periods in primed dormant conidia, but is not transferred to subsequent generations. Furthermore, azole priming at subinhibitory triazole concentrations increased the frequency of development of stable resistance development at inhibitory triazole exposures. Triazole priming could have far-reaching clinical implications in generating resistance due to the widespread use of agricultural triazoles or breakthrough IA in patients with subtherapeutic serum levels of azoles.
Collapse
|
21
|
Wang Y, Zhang L, Zhou L, Zhang M, Xu Y. Epidemiology, Drug Susceptibility, and Clinical Risk Factors in Patients With Invasive Aspergillosis. Front Public Health 2022; 10:835092. [PMID: 35493371 PMCID: PMC9051236 DOI: 10.3389/fpubh.2022.835092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThis study aimed to investigate the Aspergillus species distribution, antifungal sensitivities, clinical characteristics, and risk factors of patients with invasive aspergillosis (IA) in a tertiary teaching hospital in Anhui Province.MethodsIn the present study, 156 Aspergillus isolates were collected from patients admitted to a 2,800-bed comprehensive hospital between January 2019 and April 2021. The epidemiology of Aspergillus species was well-examined, and its antifungal susceptibility was specifically measured by the microbroth dilution method. The risk factors of patients with IA were documented and analyzed intensively. In addition, gene sequencing was employed to determine gene mutations of cytochrome P450 14-α sterol demethylase-Aspergillus (cyp51A) associated with azole resistance among Aspergillus fumigatus.ResultsThe Aspergillus species distribution was dominated by A. fumigatus (56.41%), Aspergillus flavus (20.51%), and Aspergillus niger (15.38%) locally. In particular, all Aspergillus species showed very low minimum inhibitory concentrations (MICs, ≤ 0.5 μg/ml) for azoles and echinocandins, slightly high MICs (1.66–2.91 μg/ml) for amphotericin B, and exceptionally high MICs (>64 μg/ml) for flucytosine. Azole-resistant rate of Aspergillus species in this local region reached up to 5.79%. Correlation analyses of multiple antifungals indicate a significant MIC relevance between isavuconazole and voriconazole (Pearson correlation coefficient was 0.81, P < 0.0001). The clinical risk factors for patients with IA were found primarily to be pulmonary diseases (P = 0.007) and patients' age (P < 0.001). Notably, three mutant loci (TR46/Y121F/T289A) of the cyp51A gene were identified in azole-resistant A. fumigatus.ConclusionsThe Aspergillus species emerged increasingly, of which A. fumigatus and A. flavus remained the main pathogens for invasive Aspergillus infections in the local region. The vast majority of Aspergillus species exhibited good susceptibility to all the antifungals, except flucytosine. The local occurrence of azole-resistant Aspergillus species grew gradually and needed monitoring in time. Pulmonary diseases and age were likely considered as highly associated risk factors for IA. To our knowledge, the clinically isolated azole-resistant A. fumigatus with TR46/Y121F/T289A mutations identified here were rarely reported in the area of China.
Collapse
|
22
|
Denning DW. Antifungal drug resistance: an update. Eur J Hosp Pharm 2022; 29:109-112. [PMID: 35190454 PMCID: PMC8899664 DOI: 10.1136/ejhpharm-2020-002604] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/06/2021] [Indexed: 12/13/2022] Open
Abstract
The number of antifungal classes is small, and resistance is becoming a much more frequent problem. Much greater emphasis needs to be placed on susceptibility testing and antifungal stewardship. Such efforts demonstrably improve survival and overall clinical outcomes. Positively diagnosing a fungal infection with laboratory markers often allows antibacterial therapy to be stopped (ie, anti-tuberculous therapy in chronic pulmonary aspergillosis or antibiotics other than cotrimoxazole in Pneumocystis pneumonia), contributing to antimicrobial resistance control generally. Non-culture based diagnostics for fungal disease are transformational in terms of sensitivity and speed, but only occasionally identify antifungal resistance.
Collapse
|
23
|
Resendiz-Sharpe A, da Silva RP, Geib E, Vanderbeke L, Seldeslachts L, Hupko C, Brock M, Lagrou K, Vande Velde G. Longitudinal multimodal imaging-compatible mouse model of triazole-sensitive and -resistant invasive pulmonary aspergillosis. Dis Model Mech 2022; 15:274857. [PMID: 35352801 PMCID: PMC8990085 DOI: 10.1242/dmm.049165] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 01/09/2022] [Indexed: 12/18/2022] Open
Abstract
Invasive pulmonary aspergillosis (IPA) caused by the mold Aspergillus fumigatus is one of the most important life-threatening infections in immunocompromised patients. The alarming increase of isolates resistant to the first-line recommended antifungal therapy urges more insights into triazole-resistant A. fumigatus infections. In this study, we systematically optimized a longitudinal multimodal imaging-compatible neutropenic mouse model of IPA. Reproducible rates of pulmonary infection were achieved through immunosuppression (sustained neutropenia) with 150 mg/kg cyclophosphamide at day −4, −1 and 2, and an orotracheal inoculation route in both sexes. Furthermore, increased sensitivity of in vivo bioluminescence imaging for fungal burden detection, as early as the day after infection, was achieved by optimizing luciferin dosing and through engineering isogenic red-shifted bioluminescent A. fumigatus strains, one wild type and two triazole-resistant mutants. We successfully tested appropriate and inappropriate antifungal treatment scenarios in vivo with our optimized multimodal imaging strategy, according to the in vitro susceptibility of our luminescent fungal strains. Therefore, we provide novel essential mouse models with sensitive imaging tools for investigating IPA development and therapy in triazole-susceptible and triazole-resistant scenarios. Summary: A novel reproducible longitudinal multimodal imaging-compatible neutropenic mouse model of invasive pulmonary aspergillosis provides increased early fungal detection through novel red-shifted luciferase-expressing triazole-susceptible and -resistant Aspergillus fumigatus strains, and boosted bioluminescence.
Collapse
Affiliation(s)
- Agustin Resendiz-Sharpe
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Roberta Peres da Silva
- Fungal Biology Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Elena Geib
- Fungal Biology Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Lore Vanderbeke
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Laura Seldeslachts
- Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, KU Leuven, 3000 Leuven, Belgium
| | - Charlien Hupko
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium
| | - Matthias Brock
- Fungal Biology Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Katrien Lagrou
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit (KU) Leuven, 3000 Leuven, Belgium.,Department of Laboratory Medicine and National Reference Centre for Mycosis, Excellence Centre for Medical Mycology (ECMM), University Hospitals Leuven, 3000 Leuven, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI unit/MoSAIC, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
24
|
Guirao-Abad JP, Weichert M, Askew DS. Cell death induction in Aspergillus fumigatus: accentuating drug toxicity through inhibition of the unfolded protein response (UPR). CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100119. [PMID: 35909601 PMCID: PMC9325865 DOI: 10.1016/j.crmicr.2022.100119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
The UPR is an adaptive stress response network that is tightly linked to the ability of Aspergillus fumigatus, and other pathogenic fungi, to sustain viability in the presence of adverse environmental conditions, including the stress of infection. In this review, we summarize the evidence that supports the concept of targeting the A. fumigatus UPR as a strategy to reduce the ability of the fungus to withstand stress.
One of the most potent opportunistic fungal pathogens of humans is Aspergillus fumigatus, an environmental mold that causes a life-threatening pneumonia with a high rate of morbidity and mortality. Despite advances in therapy, issues of drug toxicity and antifungal resistance remain an obstacle to effective therapy. This underscores the need for more information on fungal pathways that could be pharmacologically manipulated to either reduce the viability of the fungus during infection, or to unleash the fungicidal potential of current antifungal drugs. In this review, we summarize the emerging evidence that the ability of A. fumigatus to sustain viability during stress relies heavily on an adaptive signaling pathway known as the unfolded protein response (UPR), thereby exposing a vulnerability in this fungus that has strong potential for future therapeutic intervention.
Collapse
|
25
|
Lavergne RA, Albassier M, Hardouin JB, Alvarez-Moreno C, Pagniez F, Morio F, Le Pape P, Ourliac-Garnier I. Impact of TR 34/L98H, TR 46/Y121F/T289A and TR 53 Alterations in Azole-Resistant Aspergillus fumigatus on Sterol Composition and Modifications after In Vitro Exposure to Itraconazole and Voriconazole. Microorganisms 2022; 10:microorganisms10010104. [PMID: 35056552 PMCID: PMC8778474 DOI: 10.3390/microorganisms10010104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Sterols are the main components of fungal membranes. Inhibiting their biosynthesis is the mode of action of azole antifungal drugs that are widely used to treat fungal disease including aspergillosis. Azole resistance has emerged as a matter of concern but little is known about sterols biosynthesis in azole resistant Aspergillus fumigatus. METHODS We explored the sterol composition of 12 A. fumigatus isolates, including nine azole resistant isolates with TR34/L98H, TR46/Y121F/T289A or TR53 alterations in the cyp51A gene and its promoter conferring azole resistance. Modifications in sterol composition were also investigated after exposure to two azole drugs, itraconazole and voriconazole. RESULTS Overall, under basal conditions, sterol compositions were qualitatively equivalent, whatever the alterations in the target of azole drugs with ergosterol as the main sterol detected. Azole exposure reduced ergosterol composition and the qualitative composition of sterols was similar in both susceptible and resistant isolates. Interestingly TR53 strains behaved differently than other strains. CONCLUSIONS Elucidating sterol composition in azole-susceptible and resistant isolates is of interest for a better understanding of the mechanism of action of these drugs and the mechanism of resistance of fungi.
Collapse
Affiliation(s)
- Rose-Anne Lavergne
- Nantes Université, CHU de Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (R.-A.L.); (F.M.); (P.L.P.)
| | - Marjorie Albassier
- Nantes Université, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (M.A.); (F.P.)
| | - Jean-Benoît Hardouin
- Nantes Université, Univ Tours, INSERM, Methods in Patients-Centered Outcomes and Health Research, SPHERE, UMR 1246, F-44000 Nantes, France;
- Service de Santé Publique et Plateforme de Méthodologie et Biostatistique, CHU de Nantes, F-44000 Nantes, France
| | - Carlos Alvarez-Moreno
- Departamento de Medicina Interna, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111176, Colombia;
- Clínica Colsanitas Groupo Keralty, Clínica Universitaria Colombia, Bogotá 111176, Colombia
| | - Fabrice Pagniez
- Nantes Université, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (M.A.); (F.P.)
| | - Florent Morio
- Nantes Université, CHU de Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (R.-A.L.); (F.M.); (P.L.P.)
| | - Patrice Le Pape
- Nantes Université, CHU de Nantes, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (R.-A.L.); (F.M.); (P.L.P.)
| | - Isabelle Ourliac-Garnier
- Nantes Université, Cibles et Médicaments des Infections et de l’Immunité, IICiMed, UR 1155, F-44000 Nantes, France; (M.A.); (F.P.)
- Correspondence:
| |
Collapse
|
26
|
Ali E, Alfwuaires M, Badr G. Therapeutic potential of Calotropis gigantea extract against invasive pulmonary aspergillosis: In vitro and in vivo study. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.345516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Rivelli Zea SM, Toyotome T. Azole-resistant Aspergillus fumigatus as an emerging worldwide pathogen. Microbiol Immunol 2021; 66:135-144. [PMID: 34870333 DOI: 10.1111/1348-0421.12957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022]
Abstract
Aspergillus fumigatus, a ubiquitous pathogen, causes aspergillosis in humans, especially in immunodeficient patients. Azoles are frontline antifungal drugs for treating aspergillosis. The recent global emergence of azole resistance in A. fumigatus has become a serious problem worldwide. It has arisen through two routes: long-term azole medical therapy, called the patient route, and the use of azole fungicides in its habitats especially for agricultural activities, called the environmental route. Resistant strains developed through the latter route show cross-resistance to medical azoles because of the identical molecular target Cyp51A between azole compounds used for medical treatment and agricultural disease control. In azole-resistant strains arising through the environmental route, A. fumigatus is observed frequently possessing mutations in the cyp51A gene linked to tandem repeats in the promoter region such as TR34 /L98H and TR46 /Y121F/T289A. Results of microsatellite genotyping analyses of resistant A. fumigatus strains have suggested a transboundary spread of this microorganism in many countries. Diverse actors are involved in the global highway of transmission. Therefore, the matter must be addressed as a "One Health" issue. This review presents a background of azole resistance in A. fumigatus and introduces newly discovered difficulties generated as this pathogen spreads worldwide. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Takahito Toyotome
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine.,Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine.,Medical Mycology Research Center, Chiba University
| |
Collapse
|
28
|
Doughty KJ, Sierotzki H, Semar M, Goertz A. Selection and Amplification of Fungicide Resistance in Aspergillus fumigatus in Relation to DMI Fungicide Use in Agronomic Settings: Hotspots versus Coldspots. Microorganisms 2021; 9:2439. [PMID: 34946041 PMCID: PMC8704312 DOI: 10.3390/microorganisms9122439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Aspergillus fumigatus is a ubiquitous saprophytic fungus. Inhalation of A. fumigatus spores can lead to Invasive Aspergillosis (IA) in people with weakened immune systems. The use of triazole antifungals with the demethylation inhibitor (DMI) mode of action to treat IA is being hampered by the spread of DMI-resistant "ARAf" (azole-resistant Aspergillus fumigatus) genotypes. DMIs are also used in the environment, for example, as fungicides to protect yield and quality in agronomic settings, which may lead to exposure of A. fumigatus to DMI residues. An agronomic setting can be a "hotspot" for ARAf if it provides a suitable substrate and favourable conditions for the growth of A. fumigatus in the presence of DMI fungicides at concentrations capable of selecting ARAf genotypes at the expense of the susceptible wild-type, followed by the release of predominantly resistant spores. Agronomic settings that do not provide these conditions are considered "coldspots". Identifying and mitigating hotspots will be key to securing the agronomic use of DMIs without compromising their use in medicine. We provide a review of studies of the prevalence of ARAf in various agronomic settings and discuss the mitigation options for confirmed hotspots, particularly those relating to the management of crop waste.
Collapse
Affiliation(s)
- Kevin J. Doughty
- Bayer AG, Alfred Nobel Strasse 50, 40789 Monheim-am-Rhein, Germany;
| | - Helge Sierotzki
- Syngenta Crop Protection, Schaffhauserstrasse 101, 4332 Stein, Switzerland;
| | - Martin Semar
- BASF SE, Speyerer Strasse 2, 67117 Limburgerhof, Germany;
| | - Andreas Goertz
- Bayer AG, Alfred Nobel Strasse 50, 40789 Monheim-am-Rhein, Germany;
| |
Collapse
|
29
|
Fan Y, Korfanty GA, Xu J. Genetic Analyses of Amphotericin B Susceptibility in Aspergillus fumigatus. J Fungi (Basel) 2021; 7:860. [PMID: 34682281 PMCID: PMC8538161 DOI: 10.3390/jof7100860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Aspergillus fumigatus is a ubiquitous saprophytic mold that can cause a range of clinical syndromes, from allergic reactions to invasive infections. Amphotericin B (AMB) is a polyene antifungal drug that has been used to treat a broad range of systemic mycoses since 1958, including as a primary treatment option against invasive aspergillosis in regions with high rates (≥10%) of environmental triazole resistance. However, cases of AMB-resistant A. fumigatus strains have been increasingly documented over the years, and high resistance rates were recently reported in Brazil and Canada. The objective of this study is to identify candidate mutations associated with AMB susceptibility using a genome-wide association analysis of natural strains, and to further investigate a subset of the mutations in their putative associations with differences in AMB minimum inhibitory concentration (MIC) and in growths at different AMB concentrations through the analysis of progeny from a laboratory genetic cross. Together, our results identified a total of 34 candidate single-nucleotide polymorphisms (SNPs) associated with AMB MIC differences-comprising 18 intergenic variants, 14 missense variants, one synonymous variant, and one non-coding transcript variant. Importantly, progeny from the genetic cross allowed us to identify putative SNP-SNP interactions impacting progeny growth at different AMB concentrations.
Collapse
Affiliation(s)
| | | | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.F.); (G.A.K.)
| |
Collapse
|
30
|
Gonzalez-Jimenez I, Lucio J, Roldan A, Alcazar-Fuoli L, Mellado E. Are Point Mutations in HMG-CoA Reductases (Hmg1 and Hmg2) a Step towards Azole Resistance in Aspergillus fumigatus? Molecules 2021; 26:5975. [PMID: 34641518 PMCID: PMC8512156 DOI: 10.3390/molecules26195975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Invasive aspergillosis, mainly caused by Aspergillus fumigatus, can lead to severe clinical outcomes in immunocompromised individuals. Antifungal treatment, based on the use of azoles, is crucial to increase survival rates. However, the recent emergence of azole-resistant A. fumigatus isolates is affecting the efficacy of the clinical therapy and lowering the success rate of azole strategies against aspergillosis. Azole resistance mechanisms described to date are mainly associated with mutations in the azole target gene cyp51A that entail structural changes in Cyp51A or overexpression of the gene. However, strains lacking cyp51A modifications but resistant to clinical azoles have recently been detected. Some genes have been proposed as new players in azole resistance. In this study, the gene hmg1, recently related to azole resistance, and its paralogue hmg2 were studied in a collection of fifteen azole-resistant strains without cyp51A modifications. Both genes encode HMG-CoA reductases and are involved in the ergosterol biosynthesis. Several mutations located in the sterol sensing domain (SSD) of Hmg1 (D242Y, G307D/S, P309L, K319Q, Y368H, F390L and I412T) and Hmg2 (I235S, V303A, I312S, I360F and V397C) were detected. The role of these mutations in conferring azole resistance is discussed in this work.
Collapse
Affiliation(s)
- Irene Gonzalez-Jimenez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain; (I.G.-J.); (J.L.); (A.R.); (L.A.-F.)
| | - Jose Lucio
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain; (I.G.-J.); (J.L.); (A.R.); (L.A.-F.)
| | - Alejandra Roldan
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain; (I.G.-J.); (J.L.); (A.R.); (L.A.-F.)
| | - Laura Alcazar-Fuoli
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain; (I.G.-J.); (J.L.); (A.R.); (L.A.-F.)
- Spanish Network for Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), ISCIII, 28220 Majadahonda, Madrid, Spain
| | - Emilia Mellado
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), 28220 Majadahonda, Madrid, Spain; (I.G.-J.); (J.L.); (A.R.); (L.A.-F.)
- Spanish Network for Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), ISCIII, 28220 Majadahonda, Madrid, Spain
| |
Collapse
|
31
|
Bauer I, Graessle S. Fungal Lysine Deacetylases in Virulence, Resistance, and Production of Small Bioactive Compounds. Genes (Basel) 2021; 12:1470. [PMID: 34680865 PMCID: PMC8535771 DOI: 10.3390/genes12101470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
The growing number of immunocompromised patients begs for efficient therapy strategies against invasive fungal infections. As conventional antifungal treatment is increasingly hampered by resistance to commonly used antifungals, development of novel therapy regimens is required. On the other hand, numerous fungal species are industrially exploited as cell factories of enzymes and chemicals or as producers of medically relevant pharmaceuticals. Consequently, there is immense interest in tapping the almost inexhaustible fungal portfolio of natural products for potential medical and industrial applications. Both the pathogenicity and production of those small metabolites are significantly dependent on the acetylation status of distinct regulatory proteins. Thus, classical lysine deacetylases (KDACs) are crucial virulence determinants and important regulators of natural products of fungi. In this review, we present an overview of the members of classical KDACs and their complexes in filamentous fungi. Further, we discuss the impact of the genetic manipulation of KDACs on the pathogenicity and production of bioactive molecules. Special consideration is given to inhibitors of these enzymes and their role as potential new antifungals and emerging tools for the discovery of novel pharmaceutical drugs and antibiotics in fungal producer strains.
Collapse
Affiliation(s)
| | - Stefan Graessle
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
32
|
Takahashi H, Oiki S, Kusuya Y, Urayama S, Hagiwara D. Intimate genetic relationships and fungicide resistance in multiple strains of Aspergillus fumigatus isolated from a plant bulb. Environ Microbiol 2021; 23:5621-5638. [PMID: 34464008 PMCID: PMC9292267 DOI: 10.1111/1462-2920.15724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
Fungal infections are increasingly dangerous because of environmentally dispersed resistance to antifungal drugs. Azoles are commonly used antifungal drugs, but they are also used as fungicides in agriculture, which may enable enrichment of azole-resistant strains of the human pathogen Aspergillus fumigatus in the environment. Understanding of environmental dissemination and enrichment of genetic variation associated with azole resistance in A. fumigatus is required to suppress resistant strains. Here, we focused on eight strains of azole-resistant A. fumigatus isolated from a single tulip bulb for sale in Japan. This set includes strains with TR34 /L98H/T289A/I364V/G448S and TR46 /Y121F/T289A/S363P/I364V/G448S mutations in the cyp51A gene, which showed higher tolerance to several azoles than strains harbouring TR46 /Y121F/T289A mutation. The strains were typed by microsatellite typing, single nucleotide polymorphism profiles, and mitochondrial and nuclear genome analyses. The strains grouped differently using each typing method, suggesting historical genetic recombination among the strains. Our data also revealed that some strains isolated from the tulip bulb showed tolerance to other classes of fungicides, such as QoI and carbendazim, followed by related amino acid alterations in the target proteins. Considering spatial-temporal factors, plant bulbs are an excellent environmental niche for fungal strains to encounter partners, and to obtain and spread resistance-associated mutations.
Collapse
Affiliation(s)
- Hiroki Takahashi
- Medical Mycology Research CenterChiba University, 1‐8‐1 InohanaChuo‐kuChiba260‐8673Japan
- Molecular Chirality Research CenterChiba University, 1‐33 Yayoi‐choInage‐kuChiba263‐8522Japan
- Plant Molecular Science CenterChiba University, 1‐8‐1 InohanaChuo‐kuChiba260‐8675Japan
| | - Sayoko Oiki
- Faculty of Life and Environmental SciencesUniversity of Tsukuba, 1‐1‐1 TennodaiTsukubaIbaraki305‐8577Japan
| | - Yoko Kusuya
- Medical Mycology Research CenterChiba University, 1‐8‐1 InohanaChuo‐kuChiba260‐8673Japan
| | - Syun‐ichi Urayama
- Faculty of Life and Environmental SciencesUniversity of Tsukuba, 1‐1‐1 TennodaiTsukubaIbaraki305‐8577Japan
- Microbiology Research Center for SustainabilityUniversity of Tsukuba, 1‐1‐1 TennodaiTsukubaIbaraki305‐8577Japan
| | - Daisuke Hagiwara
- Faculty of Life and Environmental SciencesUniversity of Tsukuba, 1‐1‐1 TennodaiTsukubaIbaraki305‐8577Japan
- Microbiology Research Center for SustainabilityUniversity of Tsukuba, 1‐1‐1 TennodaiTsukubaIbaraki305‐8577Japan
| |
Collapse
|
33
|
Trabasso P, Matsuzawa T, Arai T, Hagiwara D, Mikami Y, Moretti ML, Watanabe A. Development and validation of LAMP primer sets for rapid identification of Aspergillus fumigatus carrying the cyp51A TR 46 azole resistance gene. Sci Rep 2021; 11:17087. [PMID: 34429488 PMCID: PMC8384855 DOI: 10.1038/s41598-021-96651-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/09/2021] [Indexed: 11/09/2022] Open
Abstract
Infections due to triazole-resistant Aspergillus fumigatus are increasingly reported worldwide and are associated with treatment failure and mortality. The principal class of azole-resistant isolates is characterized by tandem repeats of 34 bp or 46 bp within the promoter region of the cyp51A gene. Loop-mediated isothermal amplification (LAMP) is a widely used nucleic acid amplification system that is fast and specific. Here we describe a LAMP assay method to detect the 46 bp tandem repeat insertion in the cyp51A gene promoter region based on novel LAMP primer sets. It also differentiated strains with TR46 tandem repeats from those with TR34 tandem repeats. These results showed this TR46-LAMP method is specific, rapid, and provides crucial insights to develop novel antifungal therapeutic strategies against severe fungal infections due to A. fumigatus with TR46 tandem repeats.
Collapse
Affiliation(s)
- Plinio Trabasso
- School of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil.
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Rua Tessalia Vieira de Camargo, Campinas, Sao Paulo, 126, Brazil.
| | | | - Teppei Arai
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Ibaraki, Japan
| | - Yuzuru Mikami
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Maria Luiza Moretti
- School of Medical Sciences, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Akira Watanabe
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
34
|
Point mutation or overexpression of A. fumigatus cyp51B, encoding lanosterol 14α-sterol demethylase, leads to triazole resistance. Antimicrob Agents Chemother 2021; 65:e0125221. [PMID: 34310208 DOI: 10.1128/aac.01252-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus is the most common cause of invasive fungal mold infections in immunocompromised individuals. Current antifungal treatment relies heavily on the triazole antifungals which inhibit fungal Erg11/Cyp51 activity and subsequent ergosterol biosynthesis. However, resistance, due primarily to cyp51 mutation, is rapidly increasing. A. fumigatus contains two Cyp51 isoenzymes, Cyp51A and Cyp51B. Overexpression and mutation of Cyp51A is a major cause of triazole resistance in A. fumigatus. The role of Cyp51B in generating resistance is unclear. Here we show that overexpression or mutation of cyp51B results in triazole resistance. We demonstrate that introduction of a G457S Cyp51B mutation identified in a resistant clinical isolate, results in voriconazole resistance in the naïve recipient strain. Our results indicate that mutations in cyp51B resulting in clinical resistance do exist and should be monitored.
Collapse
|
35
|
Triazole resistant Aspergillus fumigatus in an Israeli patient with Chronic Cavitary Pulmonary Aspergillosis due to a novel E306K Substitution in Hmg1. Antimicrob Agents Chemother 2021; 65:e0108921. [PMID: 34280014 DOI: 10.1128/aac.01089-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Triazole resistance in the pathogenic mold Aspergillus fumigatus has increased worldwide, posing a growing therapeutic challenge. Recently, mutations in the 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase gene (hmg1) have been associated with triazole resistance. Here, we describe a novel E306K triazole resistance-conferring mutation in the HMG-CoA reductase gene from an Israeli patient with chronic cavitary pulmonary aspergillosis (CCPA).
Collapse
|
36
|
van der Torre MH, Shen H, Rautemaa-Richardson R, Richardson MD, Novak-Frazer L. Molecular Epidemiology of Aspergillus fumigatus in Chronic Pulmonary Aspergillosis Patients. J Fungi (Basel) 2021; 7:jof7020152. [PMID: 33672698 PMCID: PMC7924367 DOI: 10.3390/jof7020152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Molecular fungal genotyping techniques developed and employed for epidemiological studies have understandably concentrated on establishing the genetic diversity of Aspergillus fumigatus in invasive aspergillosis due to its severity, the urgency for treatment, and the need to demonstrate possible sources. Some early studies suggested that these strains were phenotypically, if not genotypically, different from others. However, with improved discrimination and evaluations, incorporating environmental as well as clinical isolates from other Aspergillus conditions (e.g., chronic pulmonary aspergillosis and cystic fibrosis), this premise is no longer upheld. Moreover, with the onset of increased global triazole resistance, there has been a concerted effort to incorporate resistance profiling into genotyping studies and the realisation that the wider population of non-immunocompromised aspergillosis patients are at risk. This review summarises the developments in molecular genotyping studies that incorporate resistance profiling with attention to chronic pulmonary aspergillosis and an example of our UK experience.
Collapse
Affiliation(s)
- Mireille H. van der Torre
- Mycology Reference Centre Manchester, ECMM Centre of Excellence in Clinical and Laboratory Mycology and Clinical Studies, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (R.R.-R.); (M.D.R.)
- Division of Infection, Inflammation and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Hongwei Shen
- Division of Infection, Inflammation and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Riina Rautemaa-Richardson
- Mycology Reference Centre Manchester, ECMM Centre of Excellence in Clinical and Laboratory Mycology and Clinical Studies, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (R.R.-R.); (M.D.R.)
- Division of Infection, Inflammation and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Department of Infectious Diseases, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK
| | - Malcolm D. Richardson
- Mycology Reference Centre Manchester, ECMM Centre of Excellence in Clinical and Laboratory Mycology and Clinical Studies, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (R.R.-R.); (M.D.R.)
- Division of Infection, Inflammation and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Lilyann Novak-Frazer
- Mycology Reference Centre Manchester, ECMM Centre of Excellence in Clinical and Laboratory Mycology and Clinical Studies, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (R.R.-R.); (M.D.R.)
- Division of Infection, Inflammation and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Correspondence: ; Tel.: +44-161-2915856
| |
Collapse
|
37
|
Hospital Environment as a Source of Azole-Resistant Aspergillus fumigatus Strains with TR34/L98H and G448S Cyp51A Mutations. J Fungi (Basel) 2021; 7:jof7010022. [PMID: 33401764 PMCID: PMC7824632 DOI: 10.3390/jof7010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 01/22/2023] Open
Abstract
Azole-resistant Aspergillus fumigatus is an emerging worldwide problem with increasing reports of therapy failure cases produced by resistant isolates. A case of azole-resistant A. fumigatus hospital colonization in a patient is reported here. Investigations of the hospital environment led to the recovery of A. fumigatus strains harboring the TR34/L98H and the G448S Cyp51A azole resistance mechanisms. Isolate genotyping showed that one strain from the environment was isogenic with the patient strains. These are the first environmental A. fumigatus azole resistant strains collected in a hospital in Spain; it supports the idea of the hospital environment as a source of dissemination and colonization/infection by azole resistant A. fumigatus in patients. The isolation of an azole-resistant strain from an azole-naïve patient is an interesting finding, suggesting that an effective analysis of clinical and environmental sources must be done to detect azole resistance in A. fumigatus. The emergence and spread of these resistance mechanisms in A. fumigatus is of major concern because it confers high resistance to voriconazole and is associated with treatment failure in patients with invasive aspergillosis.
Collapse
|