1
|
Shu X, Wang R, Li Z, Xue Q, Wang J, Liu J, Cheng F, Liu C, Zhao H, Hu C, Li J, Ouyang S, Li M. CRISPR-repressed toxin-antitoxin provides herd immunity against anti-CRISPR elements. Nat Chem Biol 2025; 21:337-347. [PMID: 39075253 DOI: 10.1038/s41589-024-01693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 07/09/2024] [Indexed: 07/31/2024]
Abstract
Prokaryotic clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems are highly vulnerable to phage-encoded anti-CRISPR (Acr) factors. How CRISPR-Cas systems protect themselves remains unclear. Here we uncovered a broad-spectrum anti-anti-CRISPR strategy involving a phage-derived toxic protein. Transcription of this toxin is normally repressed by the CRISPR-Cas effector but is activated to halt cell division when the effector is inhibited by any anti-CRISPR proteins or RNAs. We showed that this abortive infection-like effect efficiently expels Acr elements from bacterial population. Furthermore, we exploited this anti-anti-CRISPR mechanism to develop a screening method for specific Acr candidates for a CRISPR-Cas system and successfully identified two distinct Acr proteins that enhance the binding of CRISPR effector to nontarget DNA. Our data highlight the broad-spectrum role of CRISPR-repressed toxins in counteracting various types of Acr factors. We propose that the regulatory function of CRISPR-Cas confers host cells herd immunity against Acr-encoding genetic invaders whether they are CRISPR targeted or not.
Collapse
Affiliation(s)
- Xian Shu
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Rui Wang
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Zhihua Li
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Xue
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiajun Wang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jingfang Liu
- Institutional Center for Shared Technologies and Facilities of Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feiyue Cheng
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huiwei Zhao
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chunyi Hu
- Department of Biological Sciences, Faculty of Science, Department of Biochemistry, Yong Loo Lin School of Medicine, Precision Medicine Translational Research Programme (TRP), National University of Singapore, Singapore, Singapore
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China.
| | - Ming Li
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Myers T, Dykstra CM. Teaching old dogs new tricks: genetic engineering methanogens. Appl Environ Microbiol 2024; 90:e0224723. [PMID: 38856201 PMCID: PMC11267900 DOI: 10.1128/aem.02247-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Methanogenic archaea, which are integral to global carbon and nitrogen cycling, currently face challenges in genetic manipulation due to unique physiology and limited genetic tools. This review provides a survey of current and past developments in the genetic engineering of methanogens, including selection and counterselection markers, reporter systems, shuttle vectors, mutagenesis methods, markerless genetic exchange, and gene expression control. This review discusses genetic tools and emphasizes challenges tied to tool scarcity for specific methanogenic species. Mutagenesis techniques for methanogens, including physicochemical, transposon-mediated, liposome-mediated mutagenesis, and natural transformation, are outlined, along with achievements and challenges. Markerless genetic exchange strategies, such as homologous recombination and CRISPR/Cas-mediated genome editing, are also detailed. Finally, the review concludes by examining the control of gene expression in methanogens. The information presented underscores the urgent need for refined genetic tools in archaeal research. Despite historical challenges, recent advancements, notably CRISPR-based systems, hold promise for overcoming obstacles, with implications for global health, agriculture, climate change, and environmental engineering. This comprehensive review aims to bridge existing gaps in the literature, guiding future research in the expanding field of archaeal genetic engineering.
Collapse
Affiliation(s)
- Tyler Myers
- Department of Civil, Construction and Environmental Engineering, San Diego State University, San Diego, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Christy M. Dykstra
- Department of Civil, Construction and Environmental Engineering, San Diego State University, San Diego, California, USA
| |
Collapse
|
3
|
Michaelis T, Kaplar F, Baumann T, Wunderlich A, Einsiedl F. High methane ebullition throughout one year in a regulated central European stream. Sci Rep 2024; 14:5359. [PMID: 38438465 PMCID: PMC11310342 DOI: 10.1038/s41598-024-54760-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/16/2024] [Indexed: 03/06/2024] Open
Abstract
Ebullition transports large amounts of the potent greenhouse gas methane (CH4 ) from aquatic sediments to the atmosphere. River beds are a main source of biogenic CH4 , but emission estimates and the relative contribution of ebullition as a transport pathway are poorly constrained. This study meets a need for more direct measurements with a whole-year data set on CH4 ebullition from a small stream in southern Germany. Four gas traps were installed in a cross section in a river bend, representing different bed substrates between undercut and slip-off slope. For a comparison, diffusive fluxes were estimated from concentration gradients in the sediment and from measurements of dissolved CH4 in the surface water. The data revealed highest activity with gas fluxes above 1000 ml m- 2 d- 1 in the center of the stream, sustained ebullition during winter, and a larger contribution of ebullitive compared to diffusive CH4 fluxes. Increased gas fluxes from the center of the river may be connected to greater exchange with the surface water, thus increased carbon and nutrient supply, and a higher sediment permeability for gas bubbles. By using stable isotope fractionation, we estimated that 12-44% of the CH4 transported diffusively was oxidized. Predictors like temperature, air pressure drop, discharge, or precipitation could not or only poorly explain temporal variations of ebullitive CH4 fluxes.
Collapse
Affiliation(s)
- Tamara Michaelis
- TUM School of Engineering and Design, Chair of Hydrogeology, Technical University of Munich, Munich, Germany
| | - Felicitas Kaplar
- TUM School of Engineering and Design, Chair of Hydrogeology, Technical University of Munich, Munich, Germany
| | - Thomas Baumann
- TUM School of Engineering and Design, Chair of Hydrogeology, Technical University of Munich, Munich, Germany
| | - Anja Wunderlich
- TUM School of Engineering and Design, Chair of Hydrogeology, Technical University of Munich, Munich, Germany
| | - Florian Einsiedl
- TUM School of Engineering and Design, Chair of Hydrogeology, Technical University of Munich, Munich, Germany.
| |
Collapse
|
4
|
Wang H, Zhou Q. Dominant factors analyses and challenges of anaerobic digestion under cold environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119378. [PMID: 37883833 DOI: 10.1016/j.jenvman.2023.119378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023]
Abstract
With the development of fermentation technology and the improvement of efficiency, anaerobic digestion (AD) has been playing an increasingly primary role in waste treatment and resource recovery. Temperature is undoubtedly the most important factor because it shapes microbial habitats, changes the composition of the microbial community structure, and even affects the expression of related functional genes. More than half of the biosphere is in a long-term or seasonal low-temperature environment (<20 °C), which makes psychrophilic AD have broad application prospects. Therefore, this review discusses the influencing factors and enhancement strategies of psychrophilic AD, which may provide a corresponding reference for future research on low-temperature fermentation. First, the occurrence of AD has been discussed. Then, the adaptation of microorganisms to the low-temperature environment was analyzed. Moreover, the challenges of psychrophilic AD have been reviewed. Meanwhile, the strategies for improving psychrophilic AD are presented. Further, from technology to application, the current situation of psychrophilic AD in pilot-scale tests is described. Finally, the economic and environmental feasibility of psychrophilic AD has been highlighted. In summary, psychrophilic AD is technically feasible, while economic analysis shows that the output benefits cannot fully cover the input costs, and the large-scale practical application of psychrophilic AD is still in its infancy. More research should focus on how to improve fermentation efficiency and reduce the investment cost of psychrophilic AD.
Collapse
Affiliation(s)
- Hui Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
5
|
Lorenzetti APR, Kusebauch U, Zaramela LS, Wu WJ, de Almeida JPP, Turkarslan S, L. G. de Lomana A, Gomes-Filho JV, Vêncio RZN, Moritz RL, Koide T, Baliga NS. A Genome-Scale Atlas Reveals Complex Interplay of Transcription and Translation in an Archaeon. mSystems 2023; 8:e0081622. [PMID: 36912639 PMCID: PMC10134880 DOI: 10.1128/msystems.00816-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/10/2023] [Indexed: 03/14/2023] Open
Abstract
The scale of post-transcriptional regulation and the implications of its interplay with other forms of regulation in environmental acclimation are underexplored for organisms of the domain Archaea. Here, we have investigated the scale of post-transcriptional regulation in the extremely halophilic archaeon Halobacterium salinarum NRC-1 by integrating the transcriptome-wide locations of transcript processing sites (TPSs) and SmAP1 binding, the genome-wide locations of antisense RNAs (asRNAs), and the consequences of RNase_2099C knockout on the differential expression of all genes. This integrated analysis has discovered that 54% of all protein-coding genes in the genome of this haloarchaeon are likely targeted by multiple mechanisms for putative post-transcriptional processing and regulation, with about 20% of genes likely being regulated by combinatorial schemes involving SmAP1, asRNAs, and RNase_2099C. Comparative analysis of mRNA levels (transcriptome sequencing [RNA-Seq]) and protein levels (sequential window acquisition of all theoretical fragment ion spectra mass spectrometry [SWATH-MS]) for 2,579 genes over four phases of batch culture growth in complex medium generated additional evidence for the conditional post-transcriptional regulation of 7% of all protein-coding genes. We demonstrate that post-transcriptional regulation may act to fine-tune specialized and rapid acclimation to stressful environments, e.g., as a switch to turn on gas vesicle biogenesis to promote vertical relocation under anoxic conditions and modulate the frequency of transposition by insertion sequence (IS) elements of the IS200/IS605, IS4, and ISH3 families. Findings from this study are provided as an atlas in a public Web resource (https://halodata.systemsbiology.net). IMPORTANCE While the transcriptional regulation landscape of archaea has been extensively investigated, we currently have limited knowledge about post-transcriptional regulation and its driving mechanisms in this domain of life. In this study, we collected and integrated omics data from multiple sources and technologies to infer post-transcriptionally regulated genes and the putative mechanisms modulating their expression at the protein level in Halobacterium salinarum NRC-1. The results suggest that post-transcriptional regulation may drive environmental acclimation by regulating hallmark biological processes. To foster discoveries by other research groups interested in the topic, we extended our integrated data to the public in the form of an interactive atlas (https://halodata.systemsbiology.net).
Collapse
Affiliation(s)
- Alan P. R. Lorenzetti
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Institute for Systems Biology, Seattle, Washington, USA
| | | | - Lívia S. Zaramela
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, Washington, USA
| | - João P. P. de Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | - José V. Gomes-Filho
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo Z. N. Vêncio
- Department of Computation and Mathematics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Tie Koide
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
- Lawrence Berkeley National Lab, Berkeley, California, USA
| |
Collapse
|