1
|
Ayala-García P, Herrero-Gómez I, Jiménez-Guerrero I, Otto V, Moreno-de Castro N, Müsken M, Jänsch L, van Ham M, Vinardell JM, López-Baena FJ, Ollero FJ, Pérez-Montaño F, Borrero-de Acuña JM. Extracellular Vesicle-Driven Crosstalk between Legume Plants and Rhizobia: The Peribacteroid Space of Symbiosomes as a Protein Trafficking Interface. J Proteome Res 2025; 24:94-110. [PMID: 39665174 PMCID: PMC11705226 DOI: 10.1021/acs.jproteome.4c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024]
Abstract
Prokaryotes and eukaryotes secrete extracellular vesicles (EVs) into the surrounding milieu to preserve and transport elevated concentrations of biomolecules across long distances. EVs encapsulate metabolites, DNA, RNA, and proteins, whose abundance and composition fluctuate depending on environmental cues. EVs are involved in eukaryote-to-prokaryote communication owing to their ability to navigate different ecological niches and exchange molecular cargo between the two domains. Among the different bacterium-host relationships, rhizobium-legume symbiosis is one of the closest known to nature. A crucial developmental stage of symbiosis is the formation of N2-fixing root nodules by the plant. These nodules contain endocytosed rhizobia─called bacteroids─confined by plant-derived peribacteroid membranes. The unrestricted interface between the bacterial external membrane and the peribacteroid membrane is the peribacteroid space. Many molecular aspects of symbiosis have been studied, but the interbacterial and interdomain molecule trafficking by EVs in the peribacteroid space has not been questioned yet. Here, we unveil intensive EV trafficking within the symbiosome interface of several rhizobium-legume dual systems by developing a robust EV isolation procedure. We analyze the EV-encased proteomes from the peribacteroid space of each bacterium-host partnership, uncovering both conserved and differential traits of every symbiotic system. This study opens the gates for designing EV-based biotechnological tools for sustainable agriculture.
Collapse
Affiliation(s)
- Paula Ayala-García
- Department
of Microbiology, Faculty of Biology, Universidad
de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Irene Herrero-Gómez
- Department
of Microbiology, Faculty of Biology, Universidad
de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Irene Jiménez-Guerrero
- Department
of Microbiology, Faculty of Biology, Universidad
de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Viktoria Otto
- Institute
of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Natalia Moreno-de Castro
- Department
of Microbiology, Faculty of Biology, Universidad
de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Mathias Müsken
- Central
Facility for Microscopy, Helmholtz Centre
for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Lothar Jänsch
- Cellular
Proteome Research, Helmholtz Centre for
Infection Research, Inhoffenstraße
7, 38124 Braunschweig, Germany
| | - Marco van Ham
- Cellular
Proteome Research, Helmholtz Centre for
Infection Research, Inhoffenstraße
7, 38124 Braunschweig, Germany
| | - José-María Vinardell
- Department
of Microbiology, Faculty of Biology, Universidad
de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Francisco Javier López-Baena
- Department
of Microbiology, Faculty of Biology, Universidad
de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Francisco Javier Ollero
- Department
of Microbiology, Faculty of Biology, Universidad
de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - Francisco Pérez-Montaño
- Department
of Microbiology, Faculty of Biology, Universidad
de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| | - José Manuel Borrero-de Acuña
- Department
of Microbiology, Faculty of Biology, Universidad
de Sevilla, Av. de la Reina Mercedes 6, 41012 Sevilla, Spain
| |
Collapse
|
2
|
Geller AM, Shalom M, Zlotkin D, Blum N, Levy A. Identification of type VI secretion system effector-immunity pairs using structural bioinformatics. Mol Syst Biol 2024; 20:702-718. [PMID: 38658795 PMCID: PMC11148199 DOI: 10.1038/s44320-024-00035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
The type VI secretion system (T6SS) is an important mediator of microbe-microbe and microbe-host interactions. Gram-negative bacteria use the T6SS to inject T6SS effectors (T6Es), which are usually proteins with toxic activity, into neighboring cells. Antibacterial effectors have cognate immunity proteins that neutralize self-intoxication. Here, we applied novel structural bioinformatic tools to perform systematic discovery and functional annotation of T6Es and their cognate immunity proteins from a dataset of 17,920 T6SS-encoding bacterial genomes. Using structural clustering, we identified 517 putative T6E families, outperforming sequence-based clustering. We developed a logistic regression model to reliably quantify protein-protein interaction of new T6E-immunity pairs, yielding candidate immunity proteins for 231 out of the 517 T6E families. We used sensitive structure-based annotation which yielded functional annotations for 51% of the T6E families, again outperforming sequence-based annotation. Next, we validated four novel T6E-immunity pairs using basic experiments in E. coli. In particular, we showed that the Pfam domain DUF3289 is a homolog of Colicin M and that DUF943 acts as its cognate immunity protein. Furthermore, we discovered a novel T6E that is a structural homolog of SleB, a lytic transglycosylase, and identified a specific glutamate that acts as its putative catalytic residue. Overall, this study applies novel structural bioinformatic tools to T6E-immunity pair discovery, and provides an extensive database of annotated T6E-immunity pairs.
Collapse
Affiliation(s)
- Alexander M Geller
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maor Shalom
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - David Zlotkin
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noam Blum
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaf Levy
- Department of Plant Pathology and Microbiology, The Institute of Environmental Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
3
|
Abd El-Daim IA, Saad MM. Editorial: Holobionts cross talks during microbial-mediated stress tolerance in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1377919. [PMID: 38425799 PMCID: PMC10902458 DOI: 10.3389/fpls.2024.1377919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Affiliation(s)
- Islam A. Abd El-Daim
- Institute of Biology, Environmental and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, United Kingdom
- Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Centre, Giza, Egypt
| | - Maged M. Saad
- DARWIN21, Center for Desert Agriculture (CDA), Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
4
|
Ayala-García P, Moreno-de Castro N, Jiménez-Guerrero I, Müsken M, Arce-Rodríguez A, Pérez-Montaño F, Borrero-de Acuña JM. Isolation, Quantification, and Visualization of Extracellular Membrane Vesicles in Rhizobia Under Free-Living Conditions. Methods Mol Biol 2024; 2751:219-228. [PMID: 38265719 DOI: 10.1007/978-1-0716-3617-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Rhizobia are a group of soil proteobacteria that are able to establish a symbiotic interaction with legumes. These bacteria are capable to fix atmospheric nitrogen into ammonia within specific plant root organs called nodules. The rhizobia-legume interaction is established by a complex molecular dialogue that starts with flavonoids exudated by the plant roots. In response, signaling molecules known as Nod factors (NFs) are secreted by the bacteria. These factors are sensed by specific plant receptors that trigger a downstream signaling cascade leading to rhizobium-specific intracellular colonization of the root hair via the formation of infection threads and the eventual development of nodules on roots. In these organs, rhizobia can fix nitrogen from the atmosphere for the plant in exchange for photosynthates and the appropriate environment for nitrogen fixation. Recently, it has been demonstrated that extracellular membrane vesicles (EMVs) produced by some rhizobia carry NFs. EMVs are proteolipidic structures that are secreted to the milieu from the bacterial membranes and are involved in several important biological processes, including intercellular communication. Thus far, little is known about rhizobia vesicles, and further studies are needed to understand their functions, including their role as transporting vessels of signaling molecules during the process of symbiosis. Here, we present a detailed protocol to isolate high-purity EMVs from free-living cultured rhizobia, test their integrity, and quantify their abundance.
Collapse
Affiliation(s)
| | | | | | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | |
Collapse
|
5
|
Jiménez‐Guerrero I, López‐Baena FJ, Borrero‐de Acuña JM, Pérez‐Montaño F. Membrane vesicle engineering with "à la carte" bacterial-immunogenic molecules for organism-free plant vaccination. Microb Biotechnol 2023; 16:2223-2235. [PMID: 37530752 PMCID: PMC10686165 DOI: 10.1111/1751-7915.14323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023] Open
Abstract
The United Nations heralds a world population exponential increase exceeding 9.7 billion by 2050. This poses the challenge of covering the nutritional needs of an overpopulated world by the hand of preserving the environment. Extensive agriculture practices harnessed the employment of fertilizers and pesticides to boost crop productivity and prevent economic and harvest yield losses attributed to plagues and diseases. Unfortunately, the concomitant hazardous effects stemmed from such agriculture techniques are cumbersome, that is, biodiversity loss, soils and waters contaminations, and human and animal poisoning. Hence, the so-called 'green agriculture' research revolves around designing novel biopesticides and plant growth-promoting bio-agents to the end of curbing the detrimental effects. In this field, microbe-plant interactions studies offer multiple possibilities for reshaping the plant holobiont physiology to its benefit. Along these lines, bacterial extracellular membrane vesicles emerge as an appealing molecular tool to capitalize on. These nanoparticles convey a manifold of molecules that mediate intricate bacteria-plant interactions including plant immunomodulation. Herein, we bring into the spotlight bacterial extracellular membrane vesicle engineering to encase immunomodulatory effectors into their cargo for their application as biocontrol agents. The overarching goal is achieving plant priming by deploying its innate immune responses thereby preventing upcoming infections.
Collapse
|
6
|
Allsopp LP, Bernal P. Killing in the name of: T6SS structure and effector diversity. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001367. [PMID: 37490402 PMCID: PMC10433429 DOI: 10.1099/mic.0.001367] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
The life of bacteria is challenging, to endure bacteria employ a range of mechanisms to optimize their environment, including deploying the type VI secretion system (T6SS). Acting as a bacterial crossbow, this system delivers effectors responsible for subverting host cells, killing competitors and facilitating general secretion to access common goods. Due to its importance, this lethal machine has been evolutionarily maintained, disseminated and specialized to fulfil these vital functions. In fact, T6SS structural clusters are present in over 25 % of Gram-negative bacteria, varying in number from one to six different genetic clusters per organism. Since its discovery in 2006, research on the T6SS has rapidly progressed, yielding remarkable breakthroughs. The identification and characterization of novel components of the T6SS, combined with biochemical and structural studies, have revealed fascinating mechanisms governing its assembly, loading, firing and disassembly processes. Recent findings have also demonstrated the efficacy of this system against fungal and Gram-positive cells, expanding its scope. Ongoing research continues to uncover an extensive and expanding repertoire of T6SS effectors, the genuine mediators of T6SS function. These studies are shedding light on new aspects of the biology of prokaryotic and eukaryotic organisms. This review provides a comprehensive overview of the T6SS, highlighting recent discoveries of its structure and the diversity of its effectors. Additionally, it injects a personal perspective on avenues for future research, aiming to deepen our understanding of this combative system.
Collapse
Affiliation(s)
- Luke P. Allsopp
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Patricia Bernal
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla 41012, Spain
| |
Collapse
|
7
|
Maphosa S, Moleleki LN, Motaung TE. Bacterial secretion system functions: evidence of interactions and downstream implications. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37083586 DOI: 10.1099/mic.0.001326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Unprecedented insights into the biology and functions of bacteria have been and continue to be gained through studying bacterial secretion systems in isolation. This method, however, results in our understanding of the systems being primarily based on the idea that they operate independently, ignoring the subtleties of downstream interconnections. Gram-negative bacteria are naturally able to adapt to and navigate their frequently varied and dynamic surroundings, mostly because of the covert connections between secretion systems. Therefore, to comprehend some of the linked downstream repercussions for organisms that follow this discourse, it is vital to have mechanistic insights into how the intersecretion system functions in bacterial rivalry, virulence, and survival, among other things. To that purpose, this paper discusses a few key instances of molecular antagonistic and interdependent relationships between bacterial secretion systems and their produced functional products.
Collapse
Affiliation(s)
- Silindile Maphosa
- Division of Microbiology, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Hatfield, Pretoria, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Lucy N Moleleki
- Division of Microbiology, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Thabiso E Motaung
- Division of Microbiology, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| |
Collapse
|
8
|
Bernal P, Civantos C, Pacheco-Sánchez D, Quesada JM, Filloux A, Llamas MA. Transcriptional organization and regulation of the Pseudomonas putida K1 type VI secretion system gene cluster. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001295. [PMID: 36748579 PMCID: PMC9993120 DOI: 10.1099/mic.0.001295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The type VI secretion system (T6SS) is an antimicrobial molecular weapon that is widespread in Proteobacteria and offers competitive advantages to T6SS-positive micro-organisms. Three T6SSs have recently been described in Pseudomonas putida KT2440 and it has been shown that one, K1-T6SS, is used to outcompete a wide range of phytopathogens, protecting plants from pathogen infections. Given the relevance of this system as a powerful and innovative mechanism of biological control, it is critical to understand the processes that govern its expression. Here, we experimentally defined two transcriptional units in the K1-T6SS cluster. One encodes the structural components of the system and is transcribed from two adjacent promoters. The other encodes two hypothetical proteins, the tip of the system and the associated adapters, and effectors and cognate immunity proteins, and it is also transcribed from two adjacent promoters. The four identified promoters contain the typical features of σ70-dependent promoters. We have studied the expression of the system under different conditions and in a number of mutants lacking global regulators. P. putida K1-T6SS expression is induced in the stationary phase, but its transcription does not depend on the stationary σ factor RpoS. In fact, the expression of the system is indirectly repressed by RpoS. Furthermore, it is also repressed by RpoN and the transcriptional regulator FleQ, an enhancer-binding protein typically acting in conjunction with RpoN. Importantly, expression of the K1-T6SS gene cluster is positively regulated by the GacS-GacA two-component regulatory system (TCS) and repressed by the RetS sensor kinase, which inhibits this TCS. Our findings identified a complex regulatory network that governs T6SS expression in general and P. putida K1-T6SS in particular, with implications for controlling and manipulating a bacterial agent that is highly relevant in biological control.
Collapse
Affiliation(s)
- Patricia Bernal
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain.,MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK.,Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Cristina Civantos
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Daniel Pacheco-Sánchez
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - José M Quesada
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK.,Singapore Centre for Environmental Life Sciences Engineering. Nanyang Technological University, Singapore
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín (CSIC), Granada, Spain
| |
Collapse
|
9
|
Kikuchi Y, Toyofuku M, Ichinaka Y, Kiyokawa T, Obana N, Nomura N, Taoka A. Physical Properties and Shifting of the Extracellular Membrane Vesicles Attached to Living Bacterial Cell Surfaces. Microbiol Spectr 2022; 10:e0216522. [PMID: 36383005 PMCID: PMC9769862 DOI: 10.1128/spectrum.02165-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Bacterial cells release nanometer-sized extracellular membrane vesicles (MVs) to deliver cargo molecules for use in mediating various biological processes. However, the detailed processes of transporting these cargos from MVs to recipient cells remain unclear because of the lack of imaging techniques to image nanometer-sized fragile vesicles in a living bacterial cell surface. Herein, we quantitatively demonstrated that the direct binding of MV to the cell surface significantly promotes hydrophobic quorum-sensing signal (C16-HSL) transportation to the recipient cells. Moreover, we analyzed the MV-binding process in the Paracoccus denitrificans cell surface using high-speed atomic force microscopy phase imaging. Although MV shapes were unaltered after binding to the cell surface, the physical properties of a group of single MV particles were shifted. Additionally, the phase shift values of MVs were higher than that of the cell's surfaces upon binding, whereas the phase shift values of the group of MVs were decreased during observation. The shifting physical properties occurred irreversibly only once for each MV during the observations. The decreasing phase shift values indicated alterations of chemical components in the MVs as well, thereby suggesting the dynamic process in which single MV particles deliver their hydrophobic cargo into the recipient cell. IMPORTANCE Compared to the increasing knowledge about MV release mechanisms from donor cells, the mechanism by which recipient cells receive cargo from MVs remains unknown. Herein, we have successfully imaged single MV-binding processes in living bacterial cell surfaces. Accordingly, we confirmed the shift in the MV hydrophobic properties after landing on the cell surface. Our results showed the detailed states and the attaching process of a single MV into the cell surface and can aid the development of a new model for MV reception into Gram-negative bacterial cell surfaces. The insight provided by this study is significant for understanding MV-mediated cell-cell communication mechanisms. Moreover, the AFM technique presented for nanometer-scaled mapping of dynamic physical properties alteration on a living cell could be applied for the analyses of various biological phenomena occurring on the cell surface, and it gives us a new view into the understanding of the phenotypes of the bacterial cell surface.
Collapse
Affiliation(s)
- Yousuke Kikuchi
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma, Kanazawa, Japan
| | - Masanori Toyofuku
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tennodai, Tsukuba, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Seika, Kyoto, Japan
| | - Yuki Ichinaka
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Japan
| | - Tatsunori Kiyokawa
- Graduate of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Japan
| | - Nozomu Obana
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tennodai, Tsukuba, Japan
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tennodai, Tsukuba, Japan
| | - Azuma Taoka
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma, Kanazawa, Japan
| |
Collapse
|
10
|
Riaz M, Akhtar N, Msimbira LA, Antar M, Ashraf S, Khan SN, Smith DL. Neocosmospora rubicola, a stem rot disease in potato: Characterization, distribution and management. Front Microbiol 2022; 13:953097. [PMID: 36033873 PMCID: PMC9403868 DOI: 10.3389/fmicb.2022.953097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
Potato (Solanum tuberosum L.) is one of the most important crops in maintaining global food security. Plant stand and yield are affected by production technology, climate, soil type, and biotic factors such as insects and diseases. Numerous fungal diseases including Neocosmospora rubicola, causing stem rot, are known to have negative effects on potato growth and yield quality. The pathogen is known to stunt growth and cause leaf yellowing with grayish-black stems. The infectivity of N. rubicola across a number of crops indicates the need to search for appropriate management approaches. Synthetic pesticides application is a major method to mitigate almost all potato diseases at this time. However, these pesticides significantly contribute to environmental damage and continuous use leads to pesticide resistance by pathogens. Consumers interest in organic products have influenced agronomists to shift toward the use of biologicals in controlling most pathogens, including N. rubicola. This review is an initial effort to carefully examine current and alternative approaches to control N. rubicola that are both environmentally safe and ecologically sound. Therefore, this review aims to draw attention to the N. rubicola distribution and symptomatology, and sustainable management strategies for potato stem rot disease. Applications of plant growth promoting bacteria (PGPB) as bioformulations with synthetic fertilizers have the potential to increase the tuber yield in both healthy and N. rubicola infested soils. Phosphorus and nitrogen applications along with the PGPB can improve plants uptake efficiency and reduce infestation of pathogen leading to increased yield. Therefore, to control N. rubicola infestation, with maximum tuber yield benefits, a pre-application of the biofertilizer is shown as a better option, based on the most recent studies. With the current limited information on the disease, precise screening of the available resistant potato cultivars, developing molecular markers for resistance genes against N. rubicola will assist to reduce spread and virulence of the pathogen.
Collapse
Affiliation(s)
- Muhammad Riaz
- Department of Plant Pathology, University of the Punjab, Lahore, Pakistan
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | - Naureen Akhtar
- Department of Plant Pathology, University of the Punjab, Lahore, Pakistan
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | | | - Mohammed Antar
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | - Shoaib Ashraf
- Department of Animal Science, McGill University, Montreal, QC, Canada
| | - Salik Nawaz Khan
- Department of Plant Pathology, University of the Punjab, Lahore, Pakistan
| | - Donald L. Smith
- Department of Plant Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Cassan FD, Coniglio A, Amavizca E, Maroniche G, Cascales E, Bashan Y, de-Bashan LE. The Azospirillum brasilense type VI secretion system promotes cell aggregation, biocontrol protection against phytopathogens and attachment to the microalgae Chlorella sorokiniana. Environ Microbiol 2021; 23:6257-6274. [PMID: 34472164 DOI: 10.1111/1462-2920.15749] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 01/26/2023]
Abstract
The plant-growth-promoting bacterium Azospirillum brasilense is able to associate with the microalgae Chlorella sorokiniana. Attachment of A. brasilense increases the metabolic performances of the microalgae. Recent genome analyses have revealed that the A. brasilense Az39 genome contains two complete sets of genes encoding type VI secretion systems (T6SS), including the T6SS1 that is induced by the indole-3-acetic acid (IAA) phytohormone. The T6SS is a multiprotein machine, widespread in Gram-negative bacteria, that delivers protein effectors in both prokaryotic and eukaryotic cells. Here we show that the A. brasilense T6SS is required for Chlorella-Azospirillum synthetic mutualism. Our data demonstrate that the T6SS is an important determinant to promote production of lipids, carbohydrates and photosynthetic pigments by the microalgae. We further show that this is likely due to the role of the T6SS during the attachment stage and for the production of IAA phytohormones. Finally, we demonstrate that the A. brasilense T6SS provides antagonistic activities against a number of plant pathogens such as Agrobacterium, Pectobacterium, Dickeya and Ralstonia species in vitro, suggesting that, in addition to promoting growth, A. brasilense might confer T6SS-dependent bio-control protection to microalgae and plants against bacterial pathogens.
Collapse
Affiliation(s)
- Fabricio D Cassan
- Laboratorio de Fisiología Vegetal y de la interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB), Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Anahí Coniglio
- Laboratorio de Fisiología Vegetal y de la interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB), Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Edgar Amavizca
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), La Paz, Mexico
| | - Guillermo Maroniche
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| | - Yoav Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), La Paz, Mexico.,The Bashan Institute of Science, Auburn, AL, USA
| | - Luz E de-Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), La Paz, Mexico.,The Bashan Institute of Science, Auburn, AL, USA.,Department of Entomology and Plant Pathology, 301 Funchess Hall, Auburn University, Auburn, AL, USA
| |
Collapse
|
12
|
Bernal P, Eberl L, de Jonge R, Lepek VC, Malone JG. Understanding plant-microorganism interactions to envision a future of sustainable agriculture. Environ Microbiol 2021; 23:1809-1811. [PMID: 33754448 DOI: 10.1111/1462-2920.15479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Patricia Bernal
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, E41012, Spain
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Ronnie de Jonge
- Department of Biology, Plant-Microbe Interactions, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Viviana C Lepek
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", Universidad Nacional de San Martín (IIB-UNSAM-CONICET), Buenos Aires, Argentina
| | - Jacob G Malone
- Molecular Microbiology Department, John Innes Centre, Norwich, UK.,School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|