1
|
di Stefano G, Battistuzzi M, La Rocca N, Selinger VM, Nürnberg DJ, Billi D. Far-red light photoacclimation in a desert Chroococcidiopsis strain with a reduced FaRLiP gene cluster and expression of its chlorophyll f synthase in space-resistant isolates. Front Microbiol 2024; 15:1450575. [PMID: 39328908 PMCID: PMC11424453 DOI: 10.3389/fmicb.2024.1450575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Some cyanobacteria can use far-red light (FRL) to drive oxygenic photosynthesis, a phenomenon known as Far-Red Light Photoacclimation (FaRLiP). It can expand photosynthetically active radiation beyond the visible light (VL) range. Therefore, it holds promise for biotechnological applications and may prove useful for the future human exploration of outer space. Typically, FaRLiP relies on a cluster of ~20 genes, encoding paralogs of the standard photosynthetic machinery. One of them, a highly divergent D1 gene known as chlF (or psbA4), is the synthase responsible for the formation of the FRL-absorbing chlorophyll f (Chl f) that is essential for FaRLiP. The minimum gene set required for this phenotype is unclear. The desert cyanobacterium Chroococcidiopsis sp. CCMEE 010 is unusual in being capable of FaRLiP with a reduced gene cluster (15 genes), and it lacks most of the genes encoding FR-Photosystem I. Methods Here we investigated whether the reduced gene cluster of Chroococcidiopsis sp. CCMEE 010 is transcriptionally regulated by FRL and characterized the spectral changes that occur during the FaRLiP response of Chroococcidiopsis sp. CCMEE 010. In addition, the heterologous expression of the Chl f synthase from CCMEE 010 was attempted in three closely related desert strains of Chroococcidiopsis. Results All 15 genes of the FaRLiP cluster were preferentially expressed under FRL, accompanied by a progressive red-shift of the photosynthetic absorption spectrum. The Chl f synthase from CCMEE 010 was successfully expressed in two desert strains of Chroococcidiopsis and transformants could be selected in both VL and FRL. Discussion In Chroococcidiopsis sp. CCME 010, all the far-red genes of the unusually reduced FaRLiP cluster, are transcriptionally regulated by FRL and two closely related desert strains heterologously expressing the chlF010 gene could grow in FRL. Since the transformation hosts had been reported to survive outer space conditions, such an achievement lays the foundation toward novel cyanobacteria-based technologies to support human space exploration.
Collapse
Affiliation(s)
- Giorgia di Stefano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Ph.D. Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Mariano Battistuzzi
- Department of Biology, University of Padua, Padua, Italy
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), Padua, Italy
- Giuseppe Colombo University Center for Studies and Activities, University of Padua, Padua, Italy
| | - Nicoletta La Rocca
- Department of Biology, University of Padua, Padua, Italy
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), Padua, Italy
| | - Vera M. Selinger
- Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Dennis J. Nürnberg
- Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
2
|
Bozan M, Berreth H, Lindberg P, Bühler K. Cyanobacterial biofilms: from natural systems to applications. Trends Biotechnol 2024:S0167-7799(24)00215-4. [PMID: 39214791 DOI: 10.1016/j.tibtech.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Cyanobacteria are the ancestors of oxygenic photosynthesis. Fueled by light and water, their ability to reduce CO2 to sugar holds potential for carbon-neutral production processes. Due to challenges connected to cultivation and engineering issues, cyanobiotechnology has yet to be able to establish itself broadly in industry. In recent years, applying cyanobacterial biofilms as whole-cell biocatalysts instead of suspension cultures has emerged as a novel concept to counteract low cell densities and low reaction stability, critical challenges in cyanobacterial applications. This review explores the potential of cyanobacterial biofilms for biotechnology and bioremediation. It briefly introduces cyanobacteria as primary producers in natural structured microbial communities; describes various applications in biotechnology and bioremediation; and discusses innovations, challenges, and future trends in this exciting research field.
Collapse
Affiliation(s)
- Mahir Bozan
- Department of Environmental Microbiology, Helmholtz - Center for Environmental Research, Leipzig, Germany
| | - Hannah Berreth
- Department of Environmental Microbiology, Helmholtz - Center for Environmental Research, Leipzig, Germany
| | - Pia Lindberg
- Department of Chemistry - Ångström, Uppsala University, Uppsala, Sweden
| | - Katja Bühler
- Department of Environmental Microbiology, Helmholtz - Center for Environmental Research, Leipzig, Germany.
| |
Collapse
|
3
|
Lai Z, Liu Z, Zhao Y, Qin S, Zhang W, Lang T, Zhu Z, Sun Y. Distinct microbial communities under different rock-associated microhabitats in the Qaidam Desert. ENVIRONMENTAL RESEARCH 2024; 250:118462. [PMID: 38367835 DOI: 10.1016/j.envres.2024.118462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
Hypolithic communities, which occupy highly specialised microhabitats beneath translucent rocks in desert and arid environments, have assembly mechanisms and ecosystem functions are not fully understood. Thus, in this study, we aimed to examine the microbial community structure, assembly, and function of light-accessible (under quartz, calcite, and hypolithic lichen-dominated biocrusts) and light-inaccessible microhabitats (under basalt and adjacent soil) in the Qaidam Desert, China. The results showed that hypolithic communities have different characteristics compared with microbial communities of light-inaccessible microhabitats. Notably, hypolithic bacterial communities were dominated by Cyanobacteria, whereas light-inaccessible microhabitats showed a predominance of Bacteroidetes and Proteobacteria. Although the class Dothideomycetes (phylum: Ascomycota) dominated the fungal communities between the two microhabitat types, Sordariomycetes were more prevalent in light-accessible microhabitats. Network and robustness analyses showed that hypolithic communities were less complex and more resilient than microbial communities in light-inaccessible microhabitats. Our results indicated that deterministic processes, specifically homogeneous selection, govern the establishment of bacterial and fungal communities in light-accessible and light-inaccessible microhabitats. The hypolithic community showed an increased frequency of phylotypes that exhibited increased tolerance to functional stress response pathways. In contrast to light-inaccessible microhabitats, light-accessible microhabitats showed a slight decrease and a notable increase in the prevalence of carbon fixation pathways in prokaryotes and carbon fixation in photosynthetic organisms, respectively. For fungi, light-accessible microhabitats enriched saprotrophic and ectomycorrhizal groups. These results highlight the importance of complex and diverse microhabitats in desert regions, which serve as vital shelters for microbes. Combining future research on interactions between hypolithic communities and environments may enhance our current understanding of their pivotal roles in sustaining desert ecosystems. This knowledge then be applied to design and implement informed conservation efforts to preserve these unique rock-associated microhabitats in desert ecosystems.
Collapse
Affiliation(s)
- Zongrui Lai
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Zhen Liu
- CAS Engineering Laboratory for Yellow River Delta Modern Agriculture, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanyuan Zhao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Shugao Qin
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wenqi Zhang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Tao Lang
- MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area & Shenzhen Key Laboratory of Marine Bio-resource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China; College of Agricultural and Food Engineering, Baise University, Baise, Guangxi 533000, China.
| | - Zhengjie Zhu
- College of Agricultural and Food Engineering, Baise University, Baise, Guangxi 533000, China
| | - Yanfei Sun
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
4
|
Bosch J, Lebre PH, Marais E, Maggs‐Kölling G, Cowan DA. Kinetics and pathways of sub-lithic microbial community (hypolithon) development. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13290. [PMID: 38923208 PMCID: PMC11194044 DOI: 10.1111/1758-2229.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/03/2024] [Indexed: 06/28/2024]
Abstract
Type I hypolithons are microbial communities dominated by Cyanobacteria. They adhere to the underside of semi-translucent rocks in desert pavements, providing them with a refuge from the harsh abiotic stresses found on the desert soil surface. Despite their crucial role in soil nutrient cycling, our understanding of their growth rates and community development pathways remains limited. This study aimed to quantify the dynamics of hypolithon formation in the pavements of the Namib Desert. We established replicate arrays of sterile rock tiles with varying light transmission in two areas of the Namib Desert, each with different annual precipitation regimes. These were sampled annually over 7 years, and the samples were analysed using eDNA extraction and 16S rRNA gene amplicon sequencing. Our findings revealed that in the zone with higher precipitation, hypolithon formation became evident in semi-translucent rocks 3 years after the arrays were set up. This coincided with a Cyanobacterial 'bloom' in the adherent microbial community in the third year. In contrast, no visible hypolithon formation was observed at the array set up in the hyper-arid zone. This study provides the first quantitative evidence of the kinetics of hypolithon development in hot desert environments, suggesting that development rates are strongly influenced by precipitation regimes.
Collapse
Affiliation(s)
- Jason Bosch
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
- Institute of Microbiology of the Czech Academy of SciencesCzech Academy of SciencesPrahaCzech Republic
| | - Pedro H. Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| | | | | | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
5
|
León-Sobrino C, Ramond JB, Coclet C, Kapitango RM, Maggs-Kölling G, Cowan D. Temporal dynamics of microbial transcription in wetted hyperarid desert soils. FEMS Microbiol Ecol 2024; 100:fiae009. [PMID: 38299778 PMCID: PMC10913055 DOI: 10.1093/femsec/fiae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 02/02/2024] Open
Abstract
Rainfall is rare in hyperarid deserts but, when it occurs, it triggers large biological responses essential for the long-term maintenance of the ecosystem. In drylands, microbes play major roles in nutrient cycling, but their responses to short-lived opportunity windows are poorly understood. Due to its ephemeral nature, mRNA is ideally suited to study microbiome dynamics upon abrupt changes in the environment. We analyzed microbial community transcriptomes after simulated rainfall in a Namib Desert soil over 7 days. Using total mRNA from dry and watered plots we infer short-term functional responses in the microbiome. A rapid two-phase cycle of activation and return to basal state was completed in a short period. Motility systems activated immediately, whereas competition-toxicity increased in parallel to predator taxa and the drying of soils. Carbon fixation systems were downregulated, and reactivated upon return to a near-dry state. The chaperone HSP20 was markedly regulated by watering across all major bacteria, suggesting a particularly important role in adaptation to desiccated ecosystems. We show that transcriptomes provide consistent and high resolution information on microbiome processes in a low-biomass environment, revealing shared patterns across taxa. We propose a structured dispersal-predation dynamic as a central driver of desert microbial responses to rainfall.
Collapse
Affiliation(s)
- Carlos León-Sobrino
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0002 Pretoria, South Africa
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Jean-Baptiste Ramond
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0002 Pretoria, South Africa
- Extreme Ecosystem Microbiomics and Ecogenomics (E²ME) Lab., Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Clément Coclet
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0002 Pretoria, South Africa
| | | | | | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, 0002 Pretoria, South Africa
| |
Collapse
|
6
|
Villa F, Wu YL, Zerboni A, Cappitelli F. In Living Color: Pigment-Based Microbial Ecology At the Mineral-Air Interface. Bioscience 2022; 72:1156-1175. [PMID: 36451971 PMCID: PMC9699719 DOI: 10.1093/biosci/biac091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pigment-based color is one of the most important phenotypic traits of biofilms at the mineral-air interface (subaerial biofilms, SABs), because it reflects the physiology of the microbial community. Because color is the hallmark of all SABs, we argue that pigment-based color could convey the mechanisms that drive microbial adaptation and coexistence across different terrestrial environments and link phenotypic traits to community fitness and ecological dynamics. Within this framework, we present the most relevant microbial pigments at the mineral-air interface and discuss some of the evolutionary landscapes that necessitate pigments as adaptive strategies for resource allocation and survivability. We report several pigment features that reflect SAB communities' structure and function, as well as pigment ecology in the context of microbial life-history strategies and coexistence theory. Finally, we conclude the study of pigment-based ecology by presenting its potential application and some of the key challenges in the research.
Collapse
|
7
|
Billi D, Napoli A, Mosca C, Fagliarone C, de Carolis R, Balbi A, Scanu M, Selinger VM, Antonaru LA, Nürnberg DJ. Identification of far-red light acclimation in an endolithic Chroococcidiopsis strain and associated genomic features: Implications for oxygenic photosynthesis on exoplanets. Front Microbiol 2022; 13:933404. [PMID: 35992689 PMCID: PMC9386421 DOI: 10.3389/fmicb.2022.933404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Deserts represent extreme habitats where photosynthetic life is restricted to the lithic niche. The ability of rock-inhabiting cyanobacteria to modify their photosynthetic apparatus and harvest far-red light (near-infrared) was investigated in 10 strains of the genus Chroococcidiopsis, previously isolated from diverse endolithic and hypolithic desert communities. The analysis of their growth capacity, photosynthetic pigments, and apcE2-gene presence revealed that only Chroococcidiopsis sp. CCMEE 010 was capable of far-red light photoacclimation (FaRLiP). A total of 15 FaRLiP genes were identified, encoding paralogous subunits of photosystem I, photosystem II, and the phycobilisome, along with three regulatory elements. CCMEE 010 is unique among known FaRLiP strains by undergoing this acclimation process with a significantly reduced cluster, which lacks major photosystem I paralogs psaA and psaB. The identification of an endolithic, extremotolerant cyanobacterium capable of FaRLiP not only contributes to our appreciation of this phenotype’s distribution in nature but also has implications for the possibility of oxygenic photosynthesis on exoplanets.
Collapse
Affiliation(s)
- Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- *Correspondence: Daniela Billi,
| | - Alessandro Napoli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Ph.D. Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Mosca
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Amedeo Balbi
- Department of Physics, University of Rome Tor Vergata, Rome, Italy
| | - Matteo Scanu
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Vera M. Selinger
- Department of Physics, Biochemistry and Biophysics of Photosynthetic Organisms, Freie Universität Berlin, Berlin, Germany
| | - Laura A. Antonaru
- Department of Physics, Biochemistry and Biophysics of Photosynthetic Organisms, Freie Universität Berlin, Berlin, Germany
| | - Dennis J. Nürnberg
- Department of Physics, Biochemistry and Biophysics of Photosynthetic Organisms, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
8
|
Adaptation of Cyanobacteria to the Endolithic Light Spectrum in Hyper-Arid Deserts. Microorganisms 2022; 10:microorganisms10061198. [PMID: 35744716 PMCID: PMC9228357 DOI: 10.3390/microorganisms10061198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
In hyper-arid deserts, endolithic microbial communities survive in the pore spaces and cracks of rocks, an environment that enhances water retention and filters UV radiation. The rock colonization zone is enriched in far-red light (FRL) and depleted in visible light. This poses a challenge to cyanobacteria, which are the primary producers of endolithic communities. Many species of cyanobacteria are capable of Far-Red-Light Photoacclimation (FaRLiP), a process in which FRL induces the synthesis of specialized chlorophylls and remodeling of the photosynthetic apparatus, providing the ability to grow in FRL. While FaRLiP has been reported in cyanobacteria from various low-light environments, our understanding of light adaptations for endolithic cyanobacteria remains limited. Here, we demonstrated that endolithic Chroococcidiopsis isolates from deserts around the world synthesize chlorophyll f, an FRL-specialized chlorophyll when FRL is the sole light source. The metagenome-assembled genomes of these isolates encoded chlorophyll f synthase and all the genes required to implement the FaRLiP response. We also present evidence of FRL-induced changes to the major light-harvesting complexes of a Chroococcidiopsis isolate. These findings indicate that endolithic cyanobacteria from hyper-arid deserts use FRL photoacclimation as an adaptation to the unique light transmission spectrum of their rocky habitat.
Collapse
|
9
|
Mehda S, Muñoz-Martín MÁ, Oustani M, Hamdi-Aïssa B, Perona E, Mateo P. Lithic cyanobacterial communities in the polyextreme Sahara Desert: implications for the search for the limits of life. Environ Microbiol 2021; 24:451-474. [PMID: 34837297 DOI: 10.1111/1462-2920.15850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022]
Abstract
The hyperarid Sahara Desert presents extreme and persistent dry conditions with a limited number of hours during which the moisture availability, temperature and light allow phototrophic growth. Some cyanobacteria can live in these hostile conditions by seeking refuge under (hypolithic) or inside (endolithic) rocks, by colonizing porous spaces (cryptoendoliths) or fissures in stones (chasmoendoliths). Chroococcidiopsis spp. have been reported as the dominant or even the only phototrophs in these hot desert lithic communities. However, the results of this study reveal the high diversity of and variability in cyanobacteria among the sampled habitats in the Sahara Desert. The chasmoendolithic samples presented high coccoid cyanobacteria abundances, although the dominant cyanobacteria were distinct among different locations. A high predominance of a newly described cyanobacterium, Pseudoacaryochloris sahariense, was found in hard, compact, and more opaque stones with cryptoendolithic colonization. On the other hand, the hypolithic samples were dominated by filamentous, non-heterocystous cyanobacteria. Thermophysiological bioassays confirmed desiccation and extreme temperature tolerance as drivers in the cyanobacterial community composition of these lithic niches. The results of the present study provide key factors for understanding life strategies under polyextreme environmental conditions. The isolated strains, especially the newly described cyanobacterium P. sahariense, might represent suitable microorganisms in astrobiology studies aimed at investigating the limits of life.
Collapse
Affiliation(s)
- Smail Mehda
- Departamento de Biología. Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Laboratory of Biogeochemistry of Desert Areas, University of Ouargla, Ouargla, 30000, Algeria.,Faculty of Life and Natural Sciences, Department of Agronomy, University of El Oued, El Oued, 39000, Algeria
| | - M Ángeles Muñoz-Martín
- Departamento de Biología. Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Mabrouka Oustani
- Laboratory of Saharan Bio-Resources: Preservation and Development, University of Ouargla, Ouargla, 30000, Algeria
| | - Baelhadj Hamdi-Aïssa
- Laboratory of Biogeochemistry of Desert Areas, University of Ouargla, Ouargla, 30000, Algeria
| | - Elvira Perona
- Departamento de Biología. Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Pilar Mateo
- Departamento de Biología. Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| |
Collapse
|