1
|
Tian S, Li R, Cao P, Yu J, Xue Q, Lu G, Wang L. A Lionfish-Skin-Inspired Intrinsic Antifouling Coating for Full-Ocean-Depth up to 7730 Meters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410208. [PMID: 39723720 DOI: 10.1002/smll.202410208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/02/2024] [Indexed: 12/28/2024]
Abstract
As marine equipment advances from shallow to deep-sea environments, the demand for high-performance antifouling materials continues to increase. The lionfish, a species inhabiting both deep-sea and shallow coral reefs, prevents fouling organism adhesion via its smooth, mucus-covered skin, which contains antimicrobial peptides. Inspired by lionfish skin, this work integrates zwitterionic segments with hydration-based fouling-release properties and the furan oxime ester structure with intrinsic antibacterial activity to develop a silicone-based antifouling coating capable of operating from shallow to deep-sea environments. The coating exhibits excellent antifouling properties in shallow-water environments, completely inhibiting protein adhesion and reducing bacterial, algae adhesion by up to 33.23% and 85.23%, respectively. displays superior intrinsic bactericidal activity, achieving a 100% bactericidal rate. Field panel immersion tests confirmed the coating's effectiveness in preventing the adhesion of large shallow-water fouling organisms. After 51 days of immersion at a maximum depth of 7730 meters in the Mariana Trench, no live bacteria are detected on the coating surface, which remained in excellent condition and retained its full bactericidal efficacy. This antifouling coating presents a promising solution for marine equipment across full ocean depths adn expands applications in the marine industry.
Collapse
Affiliation(s)
- Shu Tian
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Ruiqi Li
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Peizhan Cao
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Junyu Yu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Qunji Xue
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Guangming Lu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Liping Wang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
2
|
Bi F, Bao Q, Liu H, Sun J, Dai W, Li A, Zhang J, He P. Molecular mechanisms underlying the effects of antibiotics on the growth and development of green tide algae Ulva prolifera. MARINE POLLUTION BULLETIN 2024; 209:117128. [PMID: 39432985 DOI: 10.1016/j.marpolbul.2024.117128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/28/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024]
Abstract
Different types of algae exhibit varied sensitivities to antibiotics, influencing their growth by eradicating epiphytic bacteria. This study explored the impact of co-culturing neomycin sulfate, polymyxin B, and penicillin G on the growth and development of Ulva prolifera gametophytes. The findings revealed a significant influence of antibiotics on the morphology, growth, chlorophyll fluorescence parameters, and CAT activity of U. prolifera. The 16S rDNA sequencing revealed a significant decrease in the abundance of Maribacter spp. after antibiotic treatment of U. prolifera. Antibiotic treatment caused up-regulation of genes related to cellulose synthase, tubulin, and ribosomal protein. Conversely, key genes in the DNA replication pathway, such as mcm and Polε, were down-regulated, influencing cell division and resulting in irregular algal shapes. The up-regulation of enzyme genes in the C3 and C4 pathways, CAT, and drug metabolism genes enhanced the antioxidant and photosynthetic capacities of U. prolifera, providing a certain resilience to stress.
Collapse
Affiliation(s)
- Fangling Bi
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qunjing Bao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hongtao Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jingyi Sun
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Dai
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Aiqin Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jianheng Zhang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Peimin He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
Balbi T, Bozzo M, Auguste M, Montagna M, Miglioli A, Drouet K, Vezzulli L, Canesi L. Impact of ocean warming on early development of the Mediterranean mussel Mytilus galloprovincialis: Effects on larval susceptibility to potential vibrio pathogens. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109937. [PMID: 39357629 DOI: 10.1016/j.fsi.2024.109937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
In a global change scenario, ocean warming and pathogen infection can occur simultaneously in coastal areas, threatening marine species. Data are shown on the impact of temperature on early larvae of the Mediterranean mussel Mytilus galloprovincialis. Increasing temperatures (18-20-22 °C) altered larval phenotypes at 48 hpf and affected gene expression from eggs to 24 and 48 hpf, with shell biogenesis related genes among the most affected. The effects of temperature on larval susceptibility to infection were evaluated using Vibrio coralliilyticus, a coral pathogen increasingly associated with bivalve mortalities, whose ecology is affected by global warming. Malformations and mortalities at 48 hpf were observed at higher temperature and vibrio concentrations, with interactive effects. In non-lethal conditions, interactions on gene expression at 24 and 48 hpf were also detected. Although temperature is the main environmental driver affecting M. galloprovincialis early larvae, warming may increase the susceptibility to vibrio infection, with consequences on mussel populations.
Collapse
Affiliation(s)
- Teresa Balbi
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy; National Biodiversity Future Center, 90133, Palermo, Italy.
| | - Matteo Bozzo
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy
| | - Manon Auguste
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - Michele Montagna
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy
| | - Angelica Miglioli
- Sorbonne Université/CNRS, Institut de la Mer, UMR7009 Laboratoire de Biologie du Développement, 06230, Chemin du Lazaret, 06230, Villefranche-sur-Mer, France
| | - Kévin Drouet
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIO, Toulon, France
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| | - Laura Canesi
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genova, Italy; National Biodiversity Future Center, 90133, Palermo, Italy
| |
Collapse
|
4
|
Bosi E, Taviani E, Avesani A, Doni L, Auguste M, Oliveri C, Leonessi M, Martinez-Urtaza J, Vetriani C, Vezzulli L. Pan-Genome Provides Insights into Vibrio Evolution and Adaptation to Deep-Sea Hydrothermal Vents. Genome Biol Evol 2024; 16:evae131. [PMID: 39007295 PMCID: PMC11247349 DOI: 10.1093/gbe/evae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2024] [Indexed: 07/16/2024] Open
Abstract
This study delves into the genomic features of 10 Vibrio strains collected from deep-sea hydrothermal vents in the Pacific Ocean, providing insights into their evolutionary history and ecological adaptations. Through sequencing and pan-genome analysis involving 141 Vibrio species, we found that deep-sea strains exhibit larger genomes with unique gene distributions, suggesting adaptation to the vent environment. The phylogenomic reconstruction of the investigated isolates revealed the presence of 2 main clades: The first is monophyletic, consisting exclusively of Vibrio alginolyticus, while the second forms a monophyletic clade comprising both Vibrio antiquarius and Vibrio diabolicus species, which were previously isolated from deep-sea vents. All strains carry virulence and antibiotic resistance genes related to those found in human pathogenic Vibrio species which may play a wider ecological role other than host infection in these environments. In addition, functional genomic analysis identified genes potentially related to deep-sea survival and stress response, alongside candidate genes encoding for novel antimicrobial agents. Ultimately, the pan-genome we generated represents a valuable resource for future studies investigating the taxonomy, evolution, and ecology of Vibrio species.
Collapse
Affiliation(s)
- Emanuele Bosi
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Elisa Taviani
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Alessia Avesani
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
| | - Lapo Doni
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Manon Auguste
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Caterina Oliveri
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
| | - Martina Leonessi
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Jaime Martinez-Urtaza
- Facultat de Biociéncies, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona 08193, Spain
| | - Costantino Vetriani
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genoa 16132, Italy
- National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
5
|
Kudo R, Yamano R, Yu J, Hatakeyama S, Jiang C, Mino S, Yamaki S, Ando Y, Sakai Y, Sawabe T. The Description of Pseudoalteromonas apostichopi sp. nov., Vibrio apostichopi sp. nov., and Marinobacter apostichopi sp. nov. from the Fertilized Eggs and Larvae of Apostichopus japonicus. Curr Microbiol 2024; 81:246. [PMID: 38940874 DOI: 10.1007/s00284-024-03751-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024]
Abstract
Three novel bacterial strains, FE4T, FE10T, and LA51T, which are phylogenetically affiliated to the genera Pseudoalteromonas, Vibrio, or Marinobacter, respectively, isolated from fertilized eggs and juveniles of sea cucumber Apostichopus japonicus were characterized by a genome-based taxonomical approach including multilocus sequence analysis (MLSA) combined with classical phenotypic and chemotaxonomic characterizations. A molecular network reconstructed on the basis of nucleotide sequences of four phylogenetic maker protein genes revealed that the strains FE4T, FE10T, and LA51T were closely related to Pseudoalteromonas shioyasakiensis, Vibrio lentus, and Marinobacter similis, respectively. Average nucleotide identity (ANI) comparisons against phylogenetically related species to FE4T, FE10T, and LA51T demonstrated that each newly described strain could not be identified as any previously described species within each genus showing < 95% ANI: 91.3% of FE4T against P. shioyasakiensis JCM 18891 T, 92.6% of FE10T against "V. bathopelagicus" Sal10, and 92.6% of LA51T against M. similis A3d10T, in maximum, respectively. Here, we show molecular phylogenetic, genomic, phenotypic, and chemotaxonomic features of the newly described species FE4T, FE10T, and LA51T. We also propose Pseudoalteromonas apostichopi sp. nov. with FE4T (JCM 36173 T = LMG 33143 T) as the type strain, Vibrio apostichopi sp. nov. with FE10T (JCM 36174 T = LMG 33144 T) as the type strain, and Marinobacter apostichopi sp. nov. with LA51T (JCM 36175 T = LMG 33145 T) as the type strain.
Collapse
Affiliation(s)
- Rika Kudo
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Ryota Yamano
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Juanwen Yu
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Shuya Hatakeyama
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Chunqi Jiang
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan.
| | - Shogo Yamaki
- Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yasuhiro Ando
- Laboratory of Marine Bioresources Chemistry, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Yuichi Sakai
- Hakodate Fisheries Research, Hokkaido Research Organization, Local Independent Administrative Agency, Hakodate, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan.
| |
Collapse
|
6
|
Wang Y, Luo J, Zhao Y, Zhang J, Guan X, Sun L. Haemolysins are essential to the pathogenicity of deep-sea Vibrio fluvialis. iScience 2024; 27:109558. [PMID: 38650982 PMCID: PMC11033176 DOI: 10.1016/j.isci.2024.109558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/19/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Vibrio fluvialis is an emerging foodborne pathogen that produces VFH (Vibrio fluvialis hemolysin) and δVFH (delta-Vibrio fluvialis hemolysin). The function of δVFH is unclear. Currently, no pathogenic V. fluvialis from deep sea has been reported. In this work, a deep-sea V. fluvialis isolate (V13) was examined for pathogenicity. V13 was most closely related to V. fluvialis ATCC 33809, a human isolate, but possessed 262 unique genes. V13 caused lethal infection in fish and induced pyroptosis involving activation of the NLRP3 inflammasome, caspase 1 (Casp1), and gasdermin D (GSDMD). V13 defective in VFH or VFH plus δVFH exhibited significantly weakened cytotoxicity. Recombinant δVFH induced NLRP3-Casp1-GSDMD-mediated pyroptosis in a manner that depended on K+ efflux and intracellular Ca2+ accumulation. δVFH bound several plasma membrane lipids, and these bindings were crucial for δVFH cytotoxicity. Together these results provided new insights into the function of δVFH and the virulence mechanism of V. fluvialis.
Collapse
Affiliation(s)
- Yujian Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jingchang Luo
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhao
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jian Zhang
- School of Ocean, Yantai University, Yantai 264005, China
| | - Xiaolu Guan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Chu M, Zhang X. Alien species invasion of deep-sea bacteria into mouse gut microbiota. J Adv Res 2023; 45:101-115. [PMID: 35690372 PMCID: PMC10006512 DOI: 10.1016/j.jare.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Deep sea has numerous bacteria which dominate in the biomass of deep-sea sediments. Some deep-sea bacteria may possess the capacity to destroy mammal health by the alteration of gut microbiota, acting as potential pathogens. OBJECTIVES Pathogenic bacteria are great threats to human health. However, the ultimate origin of pathogenic bacteria has not been intensively explored. In this study, therefore, the influence of deep-sea bacteria on the gut microbiota was evaluated on a global scale. METHODS The bacteria isolated from each of 106 deep-sea sediment samples were transplanted into mice in our study to assess the infectiousness of deep-sea bacteria. RESULTS The results showed that some bacteria from deep sea, an area that has existed since the earth was formed, could proliferate in mouse gut. Based on the infectious evaluation of the bacteria from each of 106 deep-sea sediments, the bacteria isolated from 13 sediments invaded the gut bacterial communities of mice, leading to the significant alteration of mouse gut microbiota. Among the 13 deep-sea sediments, the bacteria isolated from 9 sediments could destroy mouse health by inducing glucose metabolism deterioration, liver damage and inflammatory symptom. As an example, a bacterium was isolated from deep-sea sediment DP040, which was identified to be Bacillus cereus (termed as Bacillus cereus DP040). Bacillus cereus DP040 could invade the gut microbiota of mice to change the gut microbial structure, leading to inflammatory symptom of mice. The deep-sea sediments containing the bacteria destroying the health of mice were distributed in hydrothermal vent, mid-ocean ridge and hadal trench of the Indian Ocean, the Atlantic Ocean and the Pacific Ocean. CONCLUSION Our findings demonstrate that deep sea is an important origin of potential pathogenic bacteria and provide the first biosecurity insight into the alien species invasion of deep-sea bacteria into mammal gut microbiota.
Collapse
Affiliation(s)
- Mengqi Chu
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaobo Zhang
- College of Life Sciences, Laboratory for Marine Biology and Biotechnology of Pilot National Laboratory for Marine Science and Technology (Qingdao) and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
8
|
Auguste M, Rahman FU, Balbi T, Leonessi M, Oliveri C, Bellese G, Vezzulli L, Furones D, Canesi L. Responses of Mytilus galloprovincialis to challenge with environmental isolates of the potential emerging pathogen Malaciobacter marinus. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1-9. [PMID: 36154890 DOI: 10.1016/j.fsi.2022.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Bacteria of the Arcobacter-like spp. represent emerging foodborne zoonotic pathogens in humans and animals. Their increasing presence in seafood, suggesting higher occurrence in seawater due to marine pollution, is raising some environmental concern. Although Arcobacter is frequently detected in diseased oysters and stressed bivalve species, no data are available so far on its potential pathogenicity or interactions with the immune system of the bivalve host. In this work, responses to challenge with two strains of Malaciobacter marinus IRTA-19-131 and IRTA-19-132, R1 and R2), isolated from adult Crassostrea gigas during a mortality event in 2019 in Spain, were investigated in the mussel Mytilus galloprovincialis. In vivo experiments were performed in larvae (48 h post-fertilization), and in adult mussels at 24 h post-injection, in order to evaluate the pathogenicity for early developmental stages, and the hemolymph immune responses, respectively. Both R1 and R2 were moderately pathogenic to early larvae, with significant decreases in the development of normal D-veligers from 104 and 103 CFU/mL, respectively. In adults, both strains decreased hemocyte lysosomal membrane stability (LMS), and stimulated extracellular defense responses (ROS production and lysozyme activity). The interactions between mussel hemocytes and M. marinus were investigated in in vitro short-term experiments (30-90 min) using the R1 strain (106-108 CFU/mL). R1 decreased LMS and induced lysosomal enlargement, but not cell detachment or death, and stimulated extracellular ROS production and lysozyme release, confirming in vivo data. Moreover, lysosomal internalization and degradation of bacteria were observed, together with changes in levels of activated mTor and LC3, indicating phagocytic activity. Overall, the results indicate the activation of both extracellular and intracellular immune defenses against M. marinus R1. Accordingly, these responses resulted in a significant hemolymph bactericidal activity, with a large contribution of hemolymph serum. The results represent the first data on the potential pathogenicity of Arcobacter isolated from a shellfish mortality to bivalve larvae and adults, and on their interactions with the immune system of the host.
Collapse
Affiliation(s)
- Manon Auguste
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy.
| | - Faiz Ur Rahman
- IRTA_Sant Carles de la Ràpita Centre, Aquaculture Program, Spain; Unit of Microbiology, Department of Basic Health Sciences, Faculty of Medicine and Health Sciences, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Teresa Balbi
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy
| | - Martina Leonessi
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy
| | - Caterina Oliveri
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy
| | - Grazia Bellese
- DIMES, Dept. of Experimental Medicine, University of Genoa, Italy
| | - Luigi Vezzulli
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy
| | - Dolors Furones
- IRTA_Sant Carles de la Ràpita Centre, Aquaculture Program, Spain
| | - Laura Canesi
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy
| |
Collapse
|
9
|
Zhang M, Wang J, Zeng R, Wang D, Wang W, Tong X, Qu W. Agarose-Degrading Characteristics of a Deep-Sea Bacterium Vibrio Natriegens WPAGA4 and Its Cold-Adapted GH50 Agarase Aga3420. Mar Drugs 2022; 20:692. [PMID: 36355015 PMCID: PMC9698624 DOI: 10.3390/md20110692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/23/2023] Open
Abstract
Up until now, the characterizations of GH50 agarases from Vibrio species have rarely been reported compared to GH16 agarases. In this study, a deep-sea strain, WPAGA4, was isolated and identified as Vibrio natriegens due to the maximum similarity of its 16S rRNA gene sequence, the values of its average nucleotide identity, and through digital DNA-DNA hybridization. Two circular chromosomes in V. natriegens WPAGA4 were assembled. A total of 4561 coding genes, 37 rRNA, 131 tRNA, and 59 other non-coding RNA genes were predicted in the genome of V. natriegens WPAGA4. An agarase gene belonging to the GH50 family was annotated in the genome sequence and expressed in E. coli cells. The optimum temperature and pH of the recombinant Aga3420 (rAga3420) were 40 °C and 7.0, respectively. Neoagarobiose (NA2) was the only product during the degradation process of agarose by rAga3420. rAga3420 had a favorable stability following incubation at 10-30 °C for 50 min. The Km, Vmax, and kcat values of rAga3420 were 2.8 mg/mL, 78.1 U/mg, and 376.9 s-1, respectively. rAga3420 displayed cold-adapted properties as 59.7% and 41.2% of the relative activity remained at 10 3 °C and 0 °C, respectively. This property ensured V. natriegens WPAGA4 could degrade and metabolize the agarose in cold deep-sea environments and enables rAga3420 to be an appropriate industrial enzyme for NA2 production, with industrial potential in medical and cosmetic fields.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jianxin Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Runying Zeng
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| | - Dingquan Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Wenxin Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Xiufang Tong
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Wu Qu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| |
Collapse
|
10
|
Appah JKM, Lynch SA, Lim A, O' Riordan R, O'Reilly L, de Oliveira L, Wheeler AJ. A health survey of the reef forming scleractinian cold-water corals Lophelia pertusa and Madrepora oculata in a remote submarine canyon on the European continental margin, NE Atlantic. J Invertebr Pathol 2022; 192:107782. [PMID: 35667398 DOI: 10.1016/j.jip.2022.107782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
Monitoring of cold-water corals (CWCs) for pathogens and diseases is limited due to the environment, protected nature of the corals and their habitat and as well as the challenging and sampling effort required. It is recognised that environmental factors such as temperature and pH can expedite the ability of pathogens to cause diseases in cold-water corals therefore the characterisation of pathogen diversity, prevalence and associated pathologies is essential. The present study combined histology and polymerase chain reaction (PCR) diagnostic techniques to screen for two significant pathogen groups (bacteria of the genus Vibrio and the protozoan Haplosporidia) in the dominant NE Atlantic deep-water framework corals Lophelia pertusa (13 colonies) and Madrepora oculata (2 colonies) at three sampling locations (canyon head, south branch and the flank) in the Porcupine Bank Canyon (PBC), NE Atlantic. One M. oculata colony and four L. pertusa colonies were collected from both the canyon flank and the south branch whilst five L. pertusa colonies were collected from the canyon head. No pathogens were detected in the M. oculata samples. Neither histology nor PCR detected Vibrio spp. in L. pertusa, although Illumina technology used in this study to profile the CWCs microbiome, detected V. shilonii (0.03%) in a single L. pertusa individual, from the canyon head, that had also been screened in this study. A macroborer was observed at a prevalence of 0.07% at the canyon head only. Rickettsiales-like organisms (RLOs) were visualised with an overall prevalence of 40% and with a low intensity of 1 to 4 (RLO) colonies per individual polyp by histology. L. pertusa from the PBC canyon head had an RLO prevalence of 13.3% with the highest detection of 26.7% recorded in the south branch corals. Similarly, unidentified cells observed in L. pertusa from the south branch (20%) were more common than those observed in L. pertusa from the canyon head (6.7%). No RLOs or unidentified cells were observed in corals from the flank. Mean particulate organic matter concentration is highest in the south branch (2,612 μg l-1) followed by the canyon head (1,065 μg l-1) and lowest at the canyon flank (494 μg l-1). Although the route of pathogen entry and the impact of RLO infection on L. pertusa is unclear, particulate availability and the feeding strategies employed by the scleractinian corals may be influencing their exposure to pathogens. The absence of a pathogen in M. oculata may be attributed to the smaller number of colonies screened or the narrower diet in M. oculata compared to the unrestricted diet exhibited in L. pertusa, if ingestion is a route of entry for pathogen groups. The findings of this study also shed some light on how environmental conditions experienced by deep sea organisms and their life strategies may be limiting pathogen diversity and prevalence.
Collapse
Affiliation(s)
- J K M Appah
- School of Biological, Earth and Environmental Sciences / Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland.
| | - S A Lynch
- School of Biological, Earth and Environmental Sciences / Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland
| | - A Lim
- School of Biological, Earth and Environmental Sciences / Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland; Green Rebel Marine, Crosshaven Boatyard, Crosshaven, Co Cork, Ireland
| | - R O' Riordan
- School of Biological, Earth and Environmental Sciences / Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland
| | - L O'Reilly
- School of Biological, Earth and Environmental Sciences / Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland
| | - L de Oliveira
- School of Biological, Earth and Environmental Sciences / Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland
| | - A J Wheeler
- School of Biological, Earth and Environmental Sciences / Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland; Irish Centre for Research in Applied Geosciences / Marine & Renewable Energy Institute (MaREI), University College, Cork
| |
Collapse
|