1
|
Shropshire JD, Conner WR, Vanderpool D, Hoffmann AA, Turelli M, Cooper BS. Rapid host switching of Wolbachia and even more rapid turnover of their phages and incompatibility-causing loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.04.569981. [PMID: 38105949 PMCID: PMC10723362 DOI: 10.1101/2023.12.04.569981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
About half of all insect species carry maternally inherited Wolbachia alphaproteobacteria, making Wolbachia the most common endosymbionts known in nature. Often Wolbachia spread to high frequencies within populations due to cytoplasmic incompatibility (CI), a Wolbachia-induced sperm modification caused by prophage-associated genes (cifs) that kill embryos without Wolbachia. Several Wolbachia variants also block viruses, including wMel from Drosophila melanogaster when transinfected into the mosquito Aedes aegypti. CI enables the establishment and stable maintenance of pathogen-blocking wMel in natural Ae. aegypti populations. These transinfections are reducing dengue disease incidence on multiple continents. While it has long been known that closely related Wolbachia occupy distantly related hosts, the timing of Wolbachia host switching and molecular evolution has not been widely quantified. We provide a new, conservative calibration for Wolbachia chronograms based on examples of co-divergence of Wolbachia and their insect hosts. Synthesizing publicly available and new genomic data, we use our calibration to demonstrate that wMel-like variants separated by only about 370,000 years have naturally colonized holometabolous dipteran and hymenopteran insects that diverged approximately 350 million years ago. Data from Wolbachia variants closely related to those currently dominant in D. melanogaster and D. simulans illustrate that cifs are rapidly acquired and lost among Wolbachia genomes, on a time scale of 104-105 years. This turnover occurs with and without the Wovirus prophages that contain them, with closely related cifs found in distantly related phages and distantly related cifs found in closely related phages. We present evidence for purifying selection on CI rescue function and on particular Cif protein domains. Our results quantify the tempo and mode of rapid host switching and horizontal gene transfer that underlie the spread and diversity of Wolbachia sampled from diverse host species. The wMel variants we highlight from hosts in different climates may offer new options for broadening Wolbachia-based biocontrol of diseases and pests.
Collapse
Affiliation(s)
- J. Dylan Shropshire
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - William R. Conner
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Dan Vanderpool
- Forest Service, National Genomics Center for Wildlife and Fish Conservation, Missoula, Montana, USA
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Australia
| | - Michael Turelli
- Department of Evolution and Ecology, University of California, Davis, California, USA
| | - Brandon S. Cooper
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| |
Collapse
|
2
|
Towett-Kirui S, Morrow JL, Close S, Royer JE, Riegler M. Bacterial Communities Are Less Diverse in a Strepsipteran Endoparasitoid than in Its Fruit Fly Hosts and Dominated by Wolbachia. MICROBIAL ECOLOGY 2023; 86:2120-2132. [PMID: 37103495 PMCID: PMC10497669 DOI: 10.1007/s00248-023-02218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Microbiomes play vital roles in insect fitness and health and can be influenced by interactions between insects and their parasites. Many studies investigate the microbiome of free-living insects, whereas microbiomes of endoparasitoids and their interactions with parasitised insects are less explored. Due to their development in the constrained environment within a host, endoparasitoids are expected to have less diverse yet distinct microbiomes. We used high-throughput 16S rRNA gene amplicon sequencing to characterise the bacterial communities of Dipterophagus daci (Strepsiptera) and seven of its tephritid fruit fly host species. Bacterial communities of D. daci were less diverse and contained fewer taxa relative to the bacterial communities of the tephritid hosts. The strepsipteran's microbiome was dominated by Pseudomonadota (formerly Proteobacteria) (> 96%), mainly attributed to the presence of Wolbachia, with few other bacterial community members, indicative of an overall less diverse microbiome in D. daci. In contrast, a dominance of Wolbachia was not found in flies parasitised by early stages of D. daci nor unparasitised flies. Yet, early stages of D. daci parasitisation resulted in structural changes in the bacterial communities of parasitised flies. Furthermore, parasitisation with early stages of D. daci with Wolbachia was associated with a change in the relative abundance of some bacterial taxa relative to parasitisation with early stages of D. daci lacking Wolbachia. Our study is a first comprehensive characterisation of bacterial communities in a Strepsiptera species together with the more diverse bacterial communities of its hosts and reveals effects of concealed stages of parasitisation on host bacterial communities.
Collapse
Affiliation(s)
- Sharon Towett-Kirui
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jennifer L Morrow
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Shannon Close
- Queensland Department of Agriculture and Fisheries, EcoSciences Precinct, Boggo Road, Dutton Park, QLD, 4102, Australia
| | - Jane E Royer
- Queensland Department of Agriculture and Fisheries, EcoSciences Precinct, Boggo Road, Dutton Park, QLD, 4102, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
3
|
Archer J, Hurst GDD, Hornett EA. Male-killer symbiont screening reveals novel associations in Adalia ladybirds. Access Microbiol 2023; 5:acmi000585.v3. [PMID: 37601442 PMCID: PMC10436010 DOI: 10.1099/acmi.0.000585.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/18/2023] [Indexed: 08/22/2023] Open
Abstract
While male-killing bacteria are known to infect across arthropods, ladybird beetles represent a hotspot for these symbioses. In some host species, there are multiple different symbionts that vary in presence and frequency between populations. To further our understanding of spatial and frequency variation, we tested for the presence of three male-killing bacteria: Wolbachia , Rickettsia and Spiroplasma , in two Adalia ladybird species from a previously unexplored UK population. The two-spot ladybird, A. bipunctata, is known to harbour all three male-killers, and we identified Spiroplasma infection in the Merseyside population for the first time. However, in contrast to previous studies on two-spot ladybirds from continental Europe, evidence from egg-hatch rates indicates the Spiroplasma strain present in the Merseyside population does not cause embryonic male-killing. In the related ten-spot ladybird, A. decempunctata, there is only one previous record of a male-killing symbiont, a Rickettsia , which we did not detect in the Merseyside sample. However, PCR assays indicated the presence of a Spiroplasma in a single A. decempunctata specimen. Marker sequence indicated that this Spiroplasma was divergent from that found in sympatric A. bipunctata. Genome sequencing of the Spiroplasma -infected A. decempunctata additionally revealed the presence of cobionts in the form of a Centistes parasitoid wasp and the parasitic fungi Beauveria. Further study of A. decempunctata from this population is needed to resolve whether it is the ladybird or wasp cobiont that harbours Spiroplasma , and to establish the phenotype of this strain. These data indicate first that microbial symbiont phenotype should not be assumed from past studies conducted in different locations, and second that cobiont presence may confound screening studies aimed to detect the frequency of a symbiont in field collected material from a focal host species.
Collapse
Affiliation(s)
- Jack Archer
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Gregory D. D. Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Emily A. Hornett
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
4
|
Dudzic JP, Curtis CI, Gowen BE, Perlman SJ. A highly divergent Wolbachia with a tiny genome in an insect-parasitic tylenchid nematode. Proc Biol Sci 2022; 289:20221518. [PMID: 36168763 PMCID: PMC9515626 DOI: 10.1098/rspb.2022.1518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Wolbachia symbionts are the most successful host-associated microbes on the planet, infecting arthropods and nematodes. Their role in nematodes is particularly enigmatic, with filarial nematode species either 100% infected and dependent on symbionts for reproduction and development, or not at all infected. We have discovered a highly divergent strain of Wolbachia in an insect-parasitic tylenchid nematode, Howardula sp., in a nematode clade that has not previously been known to harbour Wolbachia. While this nematode is 100% infected with Wolbachia, we did not detect it in related species. We sequenced the Howardula symbiont (wHow) genome and found that it is highly reduced, comprising only 550 kilobase pairs of DNA, approximately 35% smaller than the smallest Wolbachia nematode symbiont genomes. The wHow genome is a subset of all other Wolbachia genomes and has not acquired any new genetic information. While it has lost many genes, including genes involved in cell wall synthesis and cell division, it has retained the entire haem biosynthesis pathway, suggesting that haem supplementation is critical. wHow provides key insights into our understanding of what are the lower limits of Wolbachia cells, as well as the role of Wolbachia symbionts in the biology and convergent evolution of diverse parasitic nematodes.
Collapse
Affiliation(s)
- Jan P Dudzic
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Caitlin I Curtis
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Brent E Gowen
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Steve J Perlman
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
5
|
Gomes TMFF, Wallau GL, Loreto ELS. Multiple long-range host shifts of major Wolbachia supergroups infecting arthropods. Sci Rep 2022; 12:8131. [PMID: 35581290 PMCID: PMC9114371 DOI: 10.1038/s41598-022-12299-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Wolbachia is a genus of intracellular bacterial endosymbionts found in 20–66% of all insect species and a range of other invertebrates. It is classified as a single species, Wolbachia pipientis, divided into supergroups A to U, with supergroups A and B infecting arthropods exclusively. Wolbachia is transmitted mainly via vertical transmission through female oocytes, but can also be transmitted across different taxa by host shift (HS): the direct transmission of Wolbachia cells between organisms without involving vertically transmitted gametic cells. To assess the HS contribution, we recovered 50 orthologous genes from over 1000 Wolbachia genomes, reconstructed their phylogeny and calculated gene similarity. Of 15 supergroup A Wolbachia lineages, 10 have similarities ranging from 95 to 99.9%, while their hosts’ similarities are around 60 to 80%. For supergroup B, four out of eight lineages, which infect diverse and distantly-related organisms such as Acari, Hemiptera and Diptera, showed similarities from 93 to 97%. These results show that Wolbachia genomes have a much higher similarity when compared to their hosts’ genes, which is a major indicator of HS. Our comparative genomic analysis suggests that, at least for supergroups A and B, HS is more frequent than expected, occurring even between distantly-related species.
Collapse
Affiliation(s)
- Tiago M F F Gomes
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriel L Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
| | - Elgion L S Loreto
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil. .,Departamento de Entomologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil. .,Biochemistry and Molecular Biology Department, Federal University of Santa Maria, Av. Roraima 1000, Santa Maria, RS, CEP 97105.900, Brazil.
| |
Collapse
|
6
|
Towett-Kirui S, Morrow JL, Riegler M. Substantial rearrangements, single nucleotide frameshift deletion and low diversity in mitogenome of Wolbachia-infected strepsipteran endoparasitoid in comparison to its tephritid hosts. Sci Rep 2022; 12:477. [PMID: 35013476 PMCID: PMC8748643 DOI: 10.1038/s41598-021-04398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/21/2021] [Indexed: 12/01/2022] Open
Abstract
Insect mitogenome organisation is highly conserved, yet, some insects, especially with parasitic life cycles, have rearranged mitogenomes. Furthermore, intraspecific mitochondrial diversity can be reduced by fitness-affecting bacterial endosymbionts like Wolbachia due to their maternal coinheritance with mitochondria. We have sequenced mitogenomes of the Wolbachia-infected endoparasitoid Dipterophagus daci (Strepsiptera: Halictophagidae) and four of its 22 known tephritid fruit fly host species using total genomic extracts of parasitised flies collected across > 700 km in Australia. This halictophagid mitogenome revealed extensive rearrangements relative to the four fly mitogenomes which exhibited the ancestral insect mitogenome pattern. Compared to the only four available other strepsipteran mitogenomes, the D. daci mitogenome had additional transpositions of one rRNA and two tRNA genes, and a single nucleotide frameshift deletion in nad5 requiring translational frameshifting or, alternatively, resulting in a large protein truncation. Dipterophagus daci displays an almost completely endoparasitic life cycle when compared to Strepsiptera that have maintained the ancestral state of free-living adults. Our results support the hypothesis that the transition to extreme endoparasitism evolved together with increased levels of mitogenome changes. Furthermore, intraspecific mitogenome diversity was substantially smaller in D. daci than the parasitised flies suggesting Wolbachia reduced mitochondrial diversity because of a role in D. daci fitness.
Collapse
Affiliation(s)
- Sharon Towett-Kirui
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jennifer L Morrow
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|