1
|
Zhang Y, Feng H, Druzhinina IS, Xie X, Wang E, Martin F, Yuan Z. Phosphorus/nitrogen sensing and signaling in diverse root-fungus symbioses. Trends Microbiol 2024; 32:200-215. [PMID: 37689488 DOI: 10.1016/j.tim.2023.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023]
Abstract
Establishing mutualistic relationships between plants and fungi is crucial for overcoming nutrient deficiencies in plants. This review highlights the intricate nutrient sensing and uptake mechanisms used by plants in response to phosphate and nitrogen starvation, as well as their interactions with plant immunity. The coordination of transport systems in both host plants and fungal partners ensures efficient nutrient uptake and assimilation, contributing to the long-term maintenance of these mutualistic associations. It is also essential to understand the distinct responses of fungal partners to external nutrient levels and forms, as they significantly impact the outcomes of symbiotic interactions. Our review also highlights the importance of evolutionarily younger and newly discovered root-fungus associations, such as endophytic associations, which offer potential benefits for improving plant nutrition. Mechanistic insights into the complex dynamics of phosphorus and nitrogen sensing within diverse root-fungus associations can facilitate the identification of molecular targets for engineering symbiotic systems and developing plant phenotypes with enhanced nutrient use efficiency. Ultimately, this knowledge can inform tailored fertilizer management practices to optimize plant nutrition.
Collapse
Affiliation(s)
- Yuwei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 10091, China; Nanjing Forestry University, Nanjing 210037, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Huan Feng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | | | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Francis Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est - Nancy, 54 280 Champenoux, France.
| | - Zhilin Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| |
Collapse
|
2
|
Peng L, Zhang Y, Druzhinina IS, Kubicek CP, Wang Y, Zhu Z, Zhang Y, Wang K, Liu Z, Zhang X, Martin F, Yuan Z. A facultative ectomycorrhizal association is triggered by organic nitrogen. Curr Biol 2022; 32:5235-5249.e7. [PMID: 36402137 DOI: 10.1016/j.cub.2022.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/19/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022]
Abstract
Increasing nitrogen (N) deposition often tends to negatively impact the functions of belowground ectomycorrhizal networks, although the exact molecular mechanisms underlying this trait are still unclear. Here, we assess how the root-associated fungus Clitopilus hobsonii establishes an ectomycorrhiza-like association with its host tree Populus tomentosa and how this interaction is favored by organic N over mineral N. The establishment of a functional symbiosis in the presence of organic N promotes plant growth and the transfer of 15N from the fungus to above ground plant tissues. Genomic traits and in planta transcriptional signatures suggest that C. hobsonii may have a dual lifestyle with saprotrophic and mutualistic traits. For example, several genes involved in the digestion of cellulose and hemicellulose are highly expressed during the interaction, whereas the expression of multiple copies of pectin-digesting genes is tightly controlled. Conversely, the nutritional mutualism is dampened in the presence of ammonium (NH4+) or nitrate (NO3-). Increasing levels of NH4+ led to a higher expression of pectin-digesting genes and a continuous increase in hydrogen peroxide production in roots, whereas the presence of NO3- resulted in toxin production. In summary, our results suggest that C. hobsonii is a facultative ectomycorrhizal fungus. Access to various forms of N acts as an on/off switch for mutualism caused by large-scale fungal physiological remodeling. Furthermore, the abundance of pectin-degrading enzymes with distinct expression patterns during functional divergence after exposure to NH4+ or organic N is likely to be central to the transition from parasitism to mutualism.
Collapse
Affiliation(s)
- Long Peng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Yan Zhang
- Liaoning Provincial Institute of Poplar, Gaizhou 115213, China
| | | | - Christian P Kubicek
- Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna A1060, Austria
| | - Yuchen Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Zhiyong Zhu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Yuwei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Kexuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Zhuo Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Xiaoguo Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China
| | - Francis Martin
- Université de Lorraine, INRAE, UMR 1136 "Interactions Arbres/Microorganismes," Centre INRAE Grand Est - Nancy, Champenoux 54280, France.
| | - Zhilin Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China.
| |
Collapse
|