1
|
Liu S, Wang X, Tang X, Fang W. Histone deacetylase HDAC3 regulates ergosterol production for oxidative stress tolerance in the entomopathogenic and endophytic fungus Metarhizium robertsii. mSystems 2024; 9:e0095324. [PMID: 39287372 PMCID: PMC11494875 DOI: 10.1128/msystems.00953-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Oxidative stress is encountered by fungi in almost all niches, resulting in fungal degeneration or even death. Fungal tolerance to oxidative stress has been extensively studied, but the current understanding of the mechanisms regulating oxidative stress tolerance in fungi remains limited. The entomopathogenic and endophytic fungus Metarhizium robertsii encounters oxidative stress when it infects insects and develops a symbiotic relationship with plants, and we found that host reactive oxygen species (ROSs) greatly limited fungal growth in both insects and plants. We identified a histone H3 deacetylase (HDAC3) that catalyzed the deacetylation of lysine 56 of histone H3. Deleting Hdac3 significantly reduced the tolerance of M. robertsii to oxidative stress from insects and plants, thereby decreasing fungal ability to colonize the insect hemocoel and plant roots. HDAC3 achieved this by regulating the expression of three genes in the ergosterol biosynthesis pathway, which includes the lanosterol synthase gene Las1. The deletion of Hdac3 or Las1 reduced the ergosterol content and impaired cell membrane integrity. This resulted in an increase in ROS accumulation in fungal cells that were thus more sensitive to oxidative stress. We further showed that HDAC3 regulated the expression of the three ergosterol biosynthesis genes in an indirect manner. Our work significantly advances insights into the epigenetic regulation of oxidative stress tolerance and the interactions between M. robertsii and its plant and insect hosts.IMPORTANCEOxidative stress is a common challenge encountered by fungi that have evolved sophisticated mechanisms underlying tolerance to this stress. Although fungal tolerance to oxidative stress has been extensively investigated, the current understanding of the mechanisms for fungi to regulate oxidative stress tolerance remains limited. In the model entomopathogenic and plant symbiotic fungus Metarhizium robertsii, we found that the histone H3 deacetylase HDAC3 regulates the production of ergosterol, an essential cell membrane component. This maintains the cell membrane integrity to resist the oxidative stress derived from the insect and plant hosts for successful infection of insects and development of symbiotic associates with plants. Our work provides significant insights into the regulation of oxidative stress tolerance in M. robertsii and its interactions with insects and plants.
Collapse
Affiliation(s)
- Shuxing Liu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Xinmiao Wang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Xingyuan Tang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Weiguo Fang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Zhao H, Ju X, Nie Y, James TY, Liu XY. High-throughput screening carbon and nitrogen sources to promote growth and sporulation in Rhizopus arrhizus. AMB Express 2024; 14:76. [PMID: 38942930 PMCID: PMC11213844 DOI: 10.1186/s13568-024-01733-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024] Open
Abstract
Rhizopus arrhizus is a saprotrophic, sometimes clinically- and industrially-relevant mold (Mucorales) and distributed worldwide, suggesting it can assimilate a broad spectrum of substrates. Here, 69 strains of R. arrhizus were investigated by using the Biolog FF MicroPlate for the profiles of utilizing 95 carbon and nitrogen substrates. The study showed that most R. arrhizus strains were similar in average well color development (AWCD) and substrate richness (SR). Nevertheless, 13 strains were unique in principal component analyses, heatmap, AWCD, and SR analyses, which may imply a niche differentiation within R. arrhizus. The species R. arrhizus was able to utilize all the 95 carbon and nitrogen substrates, consistent with the hypothesis of a great metabolic diversity. It possessed a substrate preference of alcohols, and seven substrates were most frequently utilized, with N-acetyl-D-galactosamine and L-phenylalanine ranking at the top of the list. Eight substrates, especially L-arabinose and xylitol, were capable of promoting sporulation and being applied for rejuvenating degenerated strains. By phenotyping R. arrhizus strains in carbon and nitrogen assimilation capacity, this study revealed the extent of intra-specific variability and laid a foundation for estimating optimum substrates that may be useful for industrial applications.
Collapse
Affiliation(s)
- Heng Zhao
- College of Life Sciences, Shandong Normal University, Jinan, 250358, China
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Xiao Ju
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate School, China Pharmaceutical University, Nanjing, 211198, China
| | - Yong Nie
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, 243002, China
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109-1048, USA
| | - Xiao-Yong Liu
- College of Life Sciences, Shandong Normal University, Jinan, 250358, China.
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
Guo X, He Y, Cheng Y, Liang J, Xu P, He W, Che J, Men J, Yuan Y, Yue T. The composition of Tibetan kefir grain TKG-Y and the antibacterial potential and milk fermentation ability of S. warneri KYS-164 screened from TKG-Y. Food Funct 2024; 15:5026-5040. [PMID: 38650522 DOI: 10.1039/d4fo00112e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
This study utilized high-throughput sequencing and SEM observation to elucidate the microbial composition of a Tibetan herder's homemade kefir grain named TKG-Y. Subsequently, S. warneri KYS-164 was isolated from TKG-Y, which can produce mixed protein substances with antibacterial activity, namely bacteriocin-like inhibitory substances (BLIS). BLIS can significantly reduce the growth rate of Escherichia coli 366-a, Staphylococcus aureus CICC 10384 and mixed strains at low concentrations (1 × MIC). The presence of the warnericin-centered gene cluster in KYS-164 may explain the antibacterial properties of the BLIS. Pepsin and an acidic environment can reduce the number of colonies of KYS-164 by 2.5 Log10 CFU mL-1 within 1 h, and reduce the antibacterial activity of BLIS by 21.48%. S. warneri KYS-164 showed no antibiotic resistance and biological toxicity after 80 subcultures, while BLIS produced by 40 generations of the strain retained their inhibitory efficacy against pathogenic bacteria. After 48-hour fermentation of milk with KYS-164, volatile compounds such as aldehydes, phenols, esters, and alcohols, giving it a floral, fruity, milky, oily, and nutty aroma, were released, enriching the sensory characteristics of dairy products. This study not only revealed the bacterial colony composition information of home-made kefir grain TKG-Y but also discovered and proved that S. warneri KYS-164 has the potential to inhibit bacteria and ferment dairy products. This will provide a basis for subsequent applied research on KYS-164.
Collapse
Affiliation(s)
- Xing Guo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Yining He
- School of Food and Advanced Technology, Massey University, Palmerston North, 4442, New Zealand
| | - Yifan Cheng
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Jingyimei Liang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
- College of Analytical Chemistry and Food Science, Universidade de Vigo, Vigo, 36310, Spain
| | - Pandi Xu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Wenwen He
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Jiayin Che
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Jiexing Men
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
4
|
Danner C, Mach RL, Mach-Aigner AR. The phenomenon of strain degeneration in biotechnologically relevant fungi. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12615-z. [PMID: 37341752 DOI: 10.1007/s00253-023-12615-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/22/2023]
Abstract
Fungi are widely exploited for large-scale production in the biotechnological industry to produce a diverse range of substances due to their versatility and relative ease of growing on various substrates. The occurrence of a phenomenon-the so-called fungal strain degeneration-leads to the spontaneous loss or decline of production capacity and results in an economic loss on a tremendous scale. Some of the most commonly applied genera of fungi in the biotechnical industry, such as Aspergillus, Trichoderma, and Penicillium, are threatened by this phenomenon. Although fungal degeneration has been known for almost a century, the phenomenon and its underlying mechanisms still need to be understood. The proposed mechanisms causing fungi to degenerate can be of genetic or epigenetic origin. Other factors, such as culture conditions, stress, or aging, were also reported to have an influence. This mini-review addresses the topic of fungal degeneration by describing examples of productivity losses in biotechnical processes using Aspergillus niger, Aspergillus oryzae, Trichoderma reesei, and Penicillium chrysogenum. Further, potential reasons, circumvention, and prevention methods are discussed. This is the first mini-review which provides a comprehensive overview on this phenomenon in biotechnologically used fungi, and it also includes a collection of strategies that can be useful to minimize economic losses which can arise from strain degeneration. KEY POINTS: • Spontaneous loss of productivity is evident in many fungi used in biotechnology. • The properties and mechanisms underlying this phenomenon are very versatile. • Only studying these underlying mechanisms enables the design of a tailored solution.
Collapse
Affiliation(s)
- Caroline Danner
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria
| | - Astrid R Mach-Aigner
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria.
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060, Vienna, Austria.
| |
Collapse
|
5
|
Liu X, Tang D, Yin F, Wang J, Zhang X, Xiao Y, Li JQ, Qin Z. Mitochondrion-Targeted Triphenylphosphonium-Based Kresoxim-Methyl Analogues: Synthesis, Fungicidal Activity, and Action Mechanism Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13563-13573. [PMID: 36223487 DOI: 10.1021/acs.jafc.2c05071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
β-Methoxyacrylate fungicides as complex III Qo site inhibitors play a crucial role in the control of crop diseases. In this study, the triphenylphosphonium (TPP)-driven mitochondrion-targeting strategy was used to modify the kresoxim-methyl scaffold at the toxicophore or side chain to develop novel mitochondrion-targeted QoI fungicides. These kresoxim-methyl analogues exhibited different fungicidal activities, depending on the position of TPP conjugation and the linker length. Among them, 2A-5 and 2C-4 showed excellent characteristics superior to kresoxim-methyl as candidate fungicides, in which the activity enhancement against Phytophthora capsici was the most remarkable, with an EC50 value of about 5 μM. Notably, both hyphal and zoospore structures of the pathogens were severely damaged after treatment with them. The action mechanism approach revealed that they might cause a significant decrease in ATP synthesis and ROS outbreak in different ways. The results also provided a new insight into the contribution of targeting group TPP to the fungicidal activity in TPP-driven fungicides.
Collapse
Affiliation(s)
- Xuelian Liu
- College of Science, China Agricultural University, Beijing100193, China
| | - Dachao Tang
- College of Science, China Agricultural University, Beijing100193, China
| | - Fahong Yin
- College of Science, China Agricultural University, Beijing100193, China
| | - Jiayao Wang
- College of Science, China Agricultural University, Beijing100193, China
| | - Xueqin Zhang
- College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Yumei Xiao
- College of Science, China Agricultural University, Beijing100193, China
| | - Jia-Qi Li
- College of Science, China Agricultural University, Beijing100193, China
| | - Zhaohai Qin
- College of Science, China Agricultural University, Beijing100193, China
| |
Collapse
|