1
|
Gentilhomme AS, Dhakar K, Timmins-Schiffman E, Chaw M, Firth E, Junge K, Nunn BL. Proteomic Insights into Psychrophile Growth in Perchlorate-Amended Subzero Conditions: Implications for Martian Life Detection. ASTROBIOLOGY 2025; 25:177-188. [PMID: 39960803 DOI: 10.1089/ast.2024.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Since the discovery of perchlorates in martian soils, astrobiologists have been curious if and how life could survive in these low-water, high-salt environments. Perchlorates induce chaotropic and oxidative stress but can also confer increased cold tolerance in some extremophiles. Though bacterial survival has been demonstrated at subzero temperatures and in perchlorate solution, proteomic analysis of cells growing in an environment like martian regolith brines-perchlorate with subzero temperatures-has yet to be demonstrated. By defining biosignatures of survival and growth in perchlorate-amended media at subzero conditions, we move closer to understanding the mechanisms that underlie the feasibility of life on Mars. Colwellia psychrerythraea str. 34H (Cp34H), a marine psychrophile, was exposed to perchlorate ions in the form of a diluted Phoenix Mars Lander Wet Chemistry Laboratory solution at -1°C and -5°C. At both temperatures in perchlorate-amended media, Cp34H grew at reduced rates. Mass spectrometry-based proteomics analyses revealed that proteins responsible for mitigating effects of oxidative and chaotropic stress increased, while cellular transport proteins decreased. Cumulative protein signatures suggested modifications to cell-cell or cell-surface adhesion properties. These physical and biochemical traits could serve as putative identifiable biosignatures for life detection in martian environments.
Collapse
Affiliation(s)
- Anais S Gentilhomme
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Kusum Dhakar
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | - Matthew Chaw
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Erin Firth
- Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Karen Junge
- Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Brook L Nunn
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Kloss LDF, Doellinger J, Gries A, Soler E, Lasch P, Heinz J. Proteomic insights into survival strategies of Escherichia coli in perchlorate-rich Martian brines. Sci Rep 2025; 15:6988. [PMID: 40011700 DOI: 10.1038/s41598-025-91562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/21/2025] [Indexed: 02/28/2025] Open
Abstract
Brines, potentially formed by the deliquescence and freezing point depression of highly hygroscopic salts, such as perchlorates (ClO4-), may allow for the spatial and temporal stability of liquid water on present-day Mars. It is therefore of great interest to explore the microbial habitability of Martian brines, for which our current understanding is, however, still limited. Putative microbes growing in the perchlorate-rich Martian regolith may be harmed due to the induction of various stressors including osmotic, chaotropic, and oxidative stress. We adapted the model organism Escherichia coli to increasing sodium perchlorate concentrations and used a proteomic approach to characterize the adaptive phenotype. Separately, the microbe was adapted to elevated concentrations of sodium chloride and glycerol, which enabled us to distinguish perchlorate-specific adaptation mechanisms from those in response to osmotic, ion and water activity stress. We found that the perchlorate-specific stress response focused on pathways alleviating damage to nucleic acids, presumably caused by increased chaotropic and/or oxidative stress. The significant enrichments that have been found include DNA repair, RNA methylation and de novo inosine monophosphate (IMP) biosynthesis. Our study provides insights into the adaptive mechanisms necessary for microorganisms to survive under perchlorate stress, with implications for understanding the habitability of Martian brines.
Collapse
Affiliation(s)
- Lea D F Kloss
- Center for Astronomy and Astrophysics, RG Astrobiology, Technische Universität Berlin, Berlin, Germany
- Institute for Computer Science and Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Joerg Doellinger
- Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), Robert Koch-Institute, Berlin, Germany
| | - Anne Gries
- Center for Astronomy and Astrophysics, RG Astrobiology, Technische Universität Berlin, Berlin, Germany
| | - Elisa Soler
- Center for Astronomy and Astrophysics, RG Astrobiology, Technische Universität Berlin, Berlin, Germany
| | - Peter Lasch
- Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), Robert Koch-Institute, Berlin, Germany
| | - Jacob Heinz
- Center for Astronomy and Astrophysics, RG Astrobiology, Technische Universität Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Fischer FC, Schulze-Makuch D, Heinz J. Microbial preference for chlorate over perchlorate under simulated shallow subsurface Mars-like conditions. Sci Rep 2024; 14:11537. [PMID: 38773211 PMCID: PMC11109124 DOI: 10.1038/s41598-024-62346-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
The Martian surface and shallow subsurface lacks stable liquid water, yet hygroscopic salts in the regolith may enable the transient formation of liquid brines. This study investigated the combined impact of water scarcity, UV exposure, and regolith depth on microbial survival under Mars-like environmental conditions. Both vegetative cells of Debaryomyces hansenii and Planococcus halocryophilus, alongside with spores of Aspergillus niger, were exposed to an experimental chamber simulating Martian environmental conditions (constant temperatures of about - 11 °C, low pressure of approximately 6 mbar, a CO2 atmosphere, and 2 h of daily UV irradiation). We evaluated colony-forming units (CFU) and water content at three different regolith depths before and after exposure periods of 3 and 7 days, respectively. Each organism was tested under three conditions: one without the addition of salts to the regolith, one containing sodium chlorate, and one with sodium perchlorate. Our results reveal that the residual water content after the exposure experiments increased with regolith depth, along with the organism survival rates in chlorate-containing and salt-free samples. The survival rates of the three organisms in perchlorate-containing regolith were consistently lower for all organisms and depths compared to chlorate, with the most significant difference being observed at a depth of 10-12 cm, which corresponds to the depth with the highest residual water content. The postulated reason for this is an increase in the salt concentration at this depth due to the freezing of water, showing that for these organisms, perchlorate brines are more toxic than chlorate brines under the experimental conditions. This underscores the significance of chlorate salts when considering the habitability of Martian environments.
Collapse
Affiliation(s)
- Florian Carlo Fischer
- Center for Astronomy and Astrophysics, RG Astrobiology, Technische Universität Berlin, Berlin, Germany
| | - Dirk Schulze-Makuch
- Center for Astronomy and Astrophysics, RG Astrobiology, Technische Universität Berlin, Berlin, Germany
- GFZ German Research Center for Geosciences, Section Geomicrobiology, Potsdam, Germany
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| | - Jacob Heinz
- Center for Astronomy and Astrophysics, RG Astrobiology, Technische Universität Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Fagliarone C, Fernandez BG, Di Stefano G, Mosca C, Billi D. Insights into the chaotropic tolerance of the desert cyanobacterium Chroococcidiopsis sp. 029 (Chroococcidiopsales, Cyanobacteria). JOURNAL OF PHYCOLOGY 2024; 60:185-194. [PMID: 38156502 DOI: 10.1111/jpy.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/21/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023]
Abstract
The mechanism of perchlorate resistance of the desert cyanobacterium Chroococcidiopsis sp. CCMEE 029 was investigated by assessing whether the pathways associated with its desiccation tolerance might play a role against the destabilizing effects of this chaotropic agent. During 3 weeks of growth in the presence of 2.4 mM perchlorate, an upregulation of trehalose and sucrose biosynthetic pathways was detected. This suggested that in response to the water stress triggered by perchlorate salts, these two compatible solutes play a role in the stabilization of macromolecules and membranes as they do in response to dehydration. During the perchlorate exposure, the production of oxidizing species was observed by using an oxidant-sensing fluorochrome and determining the expression of the antioxidant defense genes, namely superoxide dismutases and catalases, while the presence of oxidative DNA damage was highlighted by the over-expression of genes of the base excision repair. The involvement of desiccation-tolerance mechanisms in the perchlorate resistance of this desert cyanobacterium is interesting since, so far, chaotropic-tolerant bacteria have been identified among halophiles. Hence, it is anticipated that desert microorganisms might possess an unrevealed capability of adapting to perchlorate concentrations exceeding those naturally occurring in dry environments. Furthermore, in the endeavor of supporting future human outposts on Mars, the identified mechanisms might contribute to enhance the perchlorate resistance of microorganisms relevant for biologically driven utilization of the perchlorate-rich soil of the red planet.
Collapse
Affiliation(s)
| | - Beatriz Gallego Fernandez
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Giorgia Di Stefano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Mosca
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
5
|
Cassaro A, Pacelli C, Onofri S. Survival, metabolic activity, and ultrastructural damages of Antarctic black fungus in perchlorates media. Front Microbiol 2022; 13:992077. [PMID: 36523839 PMCID: PMC9744811 DOI: 10.3389/fmicb.2022.992077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/06/2022] [Indexed: 09/12/2023] Open
Abstract
Evidence from recent Mars landers identified the presence of perchlorates salts at 1 wt % in regolith and their widespread distribution on the Martian surface that has been hypothesized as a critical chemical hazard for putative life forms. However, the hypersaline environment may also potentially preserve life and its biomolecules over geological timescales. The high concentration of natural perchlorates is scarcely reported on Earth. The presence of perchlorates in soil and ice has been recorded in some extreme environments including the McMurdo Dry Valleys in Antarctica, one of the best terrestrial analogues for Mars. In the frame of "Life in space" Italian astrobiology project, the polyextremophilic black fungus Cryomyces antarcticus, a eukaryotic test organism isolated from the Antarctic cryptoendolithic communities, has been tested for its resistance, when grown on different hypersaline substrata. In addition, C. antarcticus was grown on Martian relevant perchlorate medium (0.4 wt% of Mg(ClO4)2 and 0.6 wt% of Ca(ClO4)2) to investigate the possibility for the fungus to survive in Martian environment. Here, the results indicate a good survivability and metabolic activity recovery of the black fungus when grown on four Martian relevant perchlorates. A low percentage of damaged cellular membranes have been found, confirming the ultrastructural investigation.
Collapse
Affiliation(s)
- Alessia Cassaro
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, Viterbo, Italy
| | - Claudia Pacelli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, Viterbo, Italy
- Human Spaceflight and Scientific Research Unit, Italian Space Agency, via del Politecnico, Rome, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, Viterbo, Italy
| |
Collapse
|