1
|
Shao Z, Gu S, Zhang X, Xue J, Yan T, Guo S, Pommier T, Jousset A, Yang T, Xu Y, Shen Q, Wei Z. Siderophore interactions drive the ability of Pseudomonas spp . consortia to protect tomato against Ralstonia solanacearum. HORTICULTURE RESEARCH 2024; 11:uhae186. [PMID: 39247881 PMCID: PMC11377186 DOI: 10.1093/hr/uhae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
The soil-borne bacterial pathogen Ralstonia solanacearum causes significant losses in Solanaceae crop production worldwide, including tomato, potato, and eggplant. To efficiently prevent outbreaks, it is essential to understand the complex interactions between pathogens and the microbiome. One promising mechanism for enhancing microbiome functionality is siderophore-mediated competition, which is shaped by the low iron availability in the rhizosphere. This study explores the critical role of iron competition in determining microbiome functionality and its potential for designing high-performance microbiome engineering strategies. We investigated the impact of siderophore-mediated interactions on the efficacy of Pseudomonas spp. consortia in suppressing R. solanacearum , both in vitro and in vivo. Our findings show that siderophore production significantly enhances the inhibitory effects of Pseudomonas strains on pathogen growth, while other metabolites are less effective under iron-limited conditions. Moreover, siderophores play a crucial role in shaping interactions within the consortia, ultimately determining the level of protection against bacterial wilt disease. This study highlights the key role of siderophores in mediating consortium interactions and their impact on tomato health. Our results also emphasize the limited efficacy of other secondary metabolites in iron-limited environments, underscoring the importance of siderophore-mediated competition in maintaining tomato health and suppressing disease.
Collapse
Affiliation(s)
- Zhengying Shao
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaohua Gu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaoni Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiao Xue
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Yan
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Saisai Guo
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Thomas Pommier
- Setec Energie Environnement, 97/101 bvd Vivier Merle, Lyon 69003, France
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianjie Yang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangchun Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Educational Ministry Engineering Center of Resource-saving fertilizers,National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Vergani L, Patania J, Riva V, Nerva L, Nuzzo F, Gambino G, Borin S, Mapelli F. Deciphering the interaction of bacteria inoculants with the recipient endophytic community in grapevine micropropagated plants. Appl Environ Microbiol 2024; 90:e0207823. [PMID: 38289136 PMCID: PMC10880630 DOI: 10.1128/aem.02078-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/03/2024] [Indexed: 02/22/2024] Open
Abstract
Engineering the plant microbiome with beneficial endophytic bacteria can improve the growth, health, and productivity of the holobiont. Here, we administered two beneficial bacterial strains, Kosakonia VR04 sp. and Rhizobium GR12 sp., to micropropagated grapevine cuttings obtained via somatic embryogenesis. While both strains colonized the plant endosphere, only Rhizobium GR12 sp. increased root biomass under nutritional-deficit conditions, as supported by the plant growth promotion traits detected in its genome. Phylogenetic and co-occurrence analyses revealed that the plant native bacterial community, originally dominated by Streptococcaceae and Micrococcaceae, dramatically changed depending on the inoculation treatments, as invading strains differently affected the relative abundance and the interactions of pre-existing taxa. After 30 days of plantlets' growth, Pantoea became a predominant taxon, and considering untreated plantlets as references, Rhizobium sp. GR12 showed a minor impact on the endophytic bacterial community. On the other hand, Kosakonia sp. VR04 caused a major change in community composition, suggesting an opportunistic colonization pattern. Overall, the results corroborate the importance of preserving the native endophytic community structure and functions during plant microbiome engineering.IMPORTANCEA better comprehension of bacterial colonization processes and outcomes could benefit the use of plant probiotics in the field. In this study, we applied two different beneficial bacteria to grapevine micropropagated plantlets and described how the inoculation of these strains impacts endophytic microbiota assembly. We showed that under nutritional deficit conditions, the response of the receiving endophytic bacterial communities to the invasion of the beneficial strains related to the manifestation of plant growth promotion effects by the inoculated invading strains. Rhizobium sp. GR12 was able to preserve the native microbiome structure despite its effective colonization, highlighting the importance of the plant-endophyte associations for the holobiont performance. Moreover, our approach showed that the use of micropropagated plantlets could be a valuable strategy to study the interplay among the plant, its native microbiota, and the invader on a wider portfolio of species besides model plants, facilitating the application of new knowledge in agriculture.
Collapse
Affiliation(s)
- Lorenzo Vergani
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy
| | - Joa Patania
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy
| | - Valentina Riva
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy
| | - Luca Nerva
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Turin, Italy
- Italy Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, Conegliano, Italy
| | - Floriana Nuzzo
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Turin, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Turin, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
3
|
Qiao Y, Huang Q, Guo H, Qi M, Zhang H, Xu Q, Shen Q, Ling N. Nutrient status changes bacterial interactions in a synthetic community. Appl Environ Microbiol 2024; 90:e0156623. [PMID: 38126758 PMCID: PMC10807438 DOI: 10.1128/aem.01566-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Microbial interactions affect community stability and niche spaces in all ecosystems. However, it is not clear what factors influence these interactions, leading to changes in species fitness and ecological niches. Here, we utilized 16 monocultures and their corresponding pairwise co-cultures to measure niche changes among 16 cultivable bacterial species in a wide range of carbon sources, and we used resource availability as a parameter to alter the interactions of the synthetic bacterial community. Our results suggest that metabolic similarity drives niche deformation between bacterial species. We further found that resource limitation resulted in increased microbial inhibition and more negative interactions. At high resource availability, bacteria exhibited little inhibitory potential and stronger facilitation (in 71% of cases), promoting niche expansion. Overall, our results show that metabolic similarity induces different degrees of resource competition, altering pairwise interactions within the synthetic community and potentially modulating bacterial niches. This framework may lay the basis for understanding complex niche deformation and microbial interactions as modulated by metabolic similarity and resource availability.IMPORTANCEUnderstanding the intricate dynamics of microbial interactions is crucial for unraveling the stability and ecological roles of diverse ecosystems. However, the factors driving these interactions, leading to shifts in species fitness and ecological niches, remain inadequately explored. We demonstrate that metabolic similarity serves as a key driver of niche deformation between bacterial species. Resource availability emerges as a pivotal parameter, affecting interactions within the community. Our findings reveal heightened microbial inhibition and more negative interactions under resource-limited conditions. The prevalent facilitation is observed under conditions of high resource availability, underscoring the potential for niche expansion in such contexts. These findings emphasize that metabolic similarity induces varying degrees of resource competition, thereby altering pairwise interactions within the synthetic community and potentially modulating bacterial niches. Our workflow has broad implications for understanding the roles of metabolic similarity and resource availability in microbial interactions and for designing synthetic microbial communities.
Collapse
Affiliation(s)
- Yizhu Qiao
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qiwei Huang
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Hanyue Guo
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Meijie Qi
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - He Zhang
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qicheng Xu
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Qirong Shen
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ning Ling
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|