1
|
Li T, Wang Q, Liu Y, Wang J, Zhu H, Cao L, Liu D, Shen Q. Divergent roles of ADP-ribosylation factor GTPase-activating proteins in lignocellulose utilization of Trichoderma guizhouense NJAU4742. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:122. [PMID: 39294712 PMCID: PMC11411985 DOI: 10.1186/s13068-024-02570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 09/15/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND The ability of lignocellulose degradation for filamentous fungi is always attributed to their efficient CAZymes system with broader applications in bioenergy development. ADP-ribosylation factor GTPase-activating proteins (Arf-GAPs), pivotal in fungal morphogenesis, lack comprehensive studies on their regulatory mechanisms in lignocellulose utilization. RESULTS Here, the orthologs (TgGlo3 and TgGcs1) of Arf-GAPs in S. cerevisiae were characterized in Trichoderma guizhouense NJAU4742. The results indicated that overexpression of Tggcs1 (OE-Tggcs1) enhanced the lignocellulose utilization, whereas increased expression of Tgglo3 (OE-Tgglo3) elicited antithetical responses. On the fourth day of fermentation with rice straw as the sole carbon source, the activities of endoglucanase, cellobiohydrolase, xylanase, and filter paper of the wild-type strain (WT) reached 8.20 U mL-1, 4.42 U mL-1, 14.10 U mL-1, and 3.56 U mL-1, respectively. Compared to WT, the four enzymes activities of OE-Tggcs1 increased by 7.93%, 6.11%, 9.08%, and 12.92%, respectively, while those decreased to varying degrees of OE-Tgglo3. During the nutritional growth, OE-Tgglo3 resulted in the hyphal morphology characterized by sparsity and constriction, while OE-Tggcs1 led to a notable increase in vacuole volume. In addition, OE-Tggcs1 exhibited higher transport efficiencies for glucose and cellobiose thereby sustaining robust cellular metabolic rates. Further investigations revealed that Tgglo3 and Tggcs1 differentially regulated the transcription level of a dynamin-like GTPase gene (Tggtp), eliciting distinct redox states and apoptotic reaction, thus orchestrating the cellular response to lignocellulose utilization. CONCLUSIONS Overall, these findings underscored the significance of TgArf-GAPs as pivotal regulators in lignocellulose utilization and provided initial insights into their differential modulation of downstream targets.
Collapse
Affiliation(s)
- Tuo Li
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Qin Wang
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jiaguo Wang
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Han Zhu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Linhua Cao
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Dongyang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China.
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Qirong Shen
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing, China
- Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| |
Collapse
|
2
|
Li Q, Zhang M, Wei B, Lan W, Wang Q, Chen C, Zhao H, Liu D, Gadd GM. Fungal biomineralization of toxic metals accelerates organic pollutant removal. Curr Biol 2024; 34:2077-2084.e3. [PMID: 38663397 DOI: 10.1016/j.cub.2024.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 05/23/2024]
Abstract
Fungal biomineralization plays an important role in the biogeochemical cycling of metals in the environment and has been extensively explored for bioremediation and element biorecovery. However, the cellular and metabolic responses of fungi in the presence of toxic metals during biomineralization and their impact on organic matter transformations are unclear. This is an important question because co-contamination by toxic metals and organic pollutants is a common phenomenon in the natural environment. In this research, the biomineralization process and oxidative stress response of the geoactive soil fungus Aspergillus niger were investigated in the presence of toxic metals (Co, Cu, Mn, and Fe) and the azo dye orange II (AO II). We have found that the co-existence of toxic metals and AO II not only enhanced the fungal biomineralization of toxic metals but also accelerated the removal of AO II. We hypothesize that the fungus and in situ mycogenic biominerals (toxic metal oxalates) constituted a quasi-bioreactor, where the biominerals removed organic pollutants by catalyzing reactive oxygen species (ROS) generation resulting from oxidative stress. We have therefore demonstrated that a fungal/biomineral system can successfully achieve the goal of toxic metal immobilization and organic pollutant decomposition. Such findings inform the potential development of fungal-biomineral hybrid systems for mixed pollutant bioremediation as well as provide further understanding of fungal organic-inorganic pollutant transformations in the environment and their importance in biogeochemical cycles.
Collapse
Affiliation(s)
- Qianwei Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Miao Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Biao Wei
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Wei Lan
- Pipechina Institute of Science and Technology, No. 51 Jinguang Road, Guangyang District, Langfang 065000, China
| | - Qinghong Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Huazhang Zhao
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Shanxi Laboratory for Yellow River, College of Environmental and Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Daoqing Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Geoffrey Michael Gadd
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China; Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK.
| |
Collapse
|
3
|
Liu Y, Li T, Zhu H, Cao L, Liang L, Liu D, Shen Q. Methionine inducing carbohydrate esterase secretion of Trichoderma harzianum enhances the accessibility of substrate glycosidic bonds. Microb Cell Fact 2024; 23:120. [PMID: 38664812 PMCID: PMC11046756 DOI: 10.1186/s12934-024-02394-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The conversion of plant biomass into biochemicals is a promising way to alleviate energy shortage, which depends on efficient microbial saccharification and cellular metabolism. Trichoderma spp. have plentiful CAZymes systems that can utilize all-components of lignocellulose. Acetylation of polysaccharides causes nanostructure densification and hydrophobicity enhancement, which is an obstacle for glycoside hydrolases to hydrolyze glycosidic bonds. The improvement of deacetylation ability can effectively release the potential for polysaccharide degradation. RESULTS Ammonium sulfate addition facilitated the deacetylation of xylan by inducing the up-regulation of multiple carbohydrate esterases (CE3/CE4/CE15/CE16) of Trichoderma harzianum. Mainly, the pathway of ammonium-sulfate's cellular assimilates inducing up-regulation of the deacetylase gene (Thce3) was revealed. The intracellular metabolite changes were revealed through metabonomic analysis. Whole genome bisulfite sequencing identified a novel differentially methylated region (DMR) that existed in the ThgsfR2 promoter, and the DMR was closely related to lignocellulolytic response. ThGsfR2 was identified as a negative regulatory factor of Thce3, and methylation in ThgsfR2 promoter released the expression of Thce3. The up-regulation of CEs facilitated the substrate deacetylation. CONCLUSION Ammonium sulfate increased the polysaccharide deacetylation capacity by inducing the up-regulation of multiple carbohydrate esterases of T. harzianum, which removed the spatial barrier of the glycosidic bond and improved hydrophilicity, and ultimately increased the accessibility of glycosidic bond to glycoside hydrolases.
Collapse
Affiliation(s)
- Yang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tuo Li
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Han Zhu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Linhua Cao
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Lebin Liang
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Dongyang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Qirong Shen
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
4
|
Chen Y, Fu Y, Xia Y, Miao Y, Shao J, Xuan W, Liu Y, Xun W, Yan Q, Shen Q, Zhang R. Trichoderma-secreted anthranilic acid promotes lateral root development via auxin signaling and RBOHF-induced endodermal cell wall remodeling. Cell Rep 2024; 43:114030. [PMID: 38551966 DOI: 10.1016/j.celrep.2024.114030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/06/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Trichoderma spp. have evolved the capacity to communicate with plants by producing various secondary metabolites (SMs). Nonhormonal SMs play important roles in plant root development, while specific SMs from rhizosphere microbes and their underlying mechanisms to control plant root branching are still largely unknown. In this study, a compound, anthranilic acid (2-AA), is identified from T. guizhouense NJAU4742 to promote lateral root development. Further studies demonstrate that 2-AA positively regulates auxin signaling and transport in the canonical auxin pathway. 2-AA also partly rescues the lateral root numbers of CASP1pro:shy2-2, which regulates endodermal cell wall remodeling via an RBOHF-induced reactive oxygen species burst. In addition, our work reports another role for microbial 2-AA in the regulation of lateral root development, which is different from its better-known role in plant indole-3-acetic acid biosynthesis. In summary, this study identifies 2-AA from T. guizhouense NJAU4742, which plays versatile roles in regulating plant root development.
Collapse
Affiliation(s)
- Yu Chen
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yansong Fu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanwei Xia
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Youzhi Miao
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahui Shao
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weibing Xun
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiuyan Yan
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Qirong Shen
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruifu Zhang
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Lu H, Zhou P, Li F, Wang Y, Gu J, Wang Y, Sun S, Zhang M, Wang X. Trichoderma guizhouense NJAU4742 augments morphophysiological responses, nutrient availability and photosynthetic efficacy of ornamental Ilex verticillata. TREE PHYSIOLOGY 2024; 44:tpae033. [PMID: 38501890 DOI: 10.1093/treephys/tpae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Winterberry holly (Ilex verticillata [L.] A. Gray), a deciduous shrub producing glossy bright red berries, is a valuable ornamental and medicinal plant with good market prospects. However, the growth and development of I. verticillata are significantly affected by various stresses, and environmentally hazardous agrochemicals are often used to mitigate them. Trichoderma spp., ubiquitous soil-borne eco-friendly plant growth-promoting fungi, are potent biostimulants and biofertilizers and viable alternatives to agrochemicals for healthy and sustainable agriculture. In this study, the temporal efficacy of different dosages of the filamentous fungus Trichoderma guizhouense NJAU4742 in promoting morphophysiological responses of I. verticillata and the physicochemical properties and enzymatic activities of the substrate were investigated. Different concentrations of the strain T. guizhouense NJAU4742 spore suspension (C [0%], T1 [5%, v/m], T2 [10%, v/m] and T3 [15%, v/m]) were injected in the substrate contained in a pot in which 1-year-old I. verticillata was planted for temporal treatment (15, 45 and 75 days) under open-air conditions. The beneficial effects of T2 and/or T3 treatment for a long duration (75 days) were evident on the different root, aerial and photosynthetic traits; total contents of nitrogen (N), phosphorus (P) and potassium (K) in different tissues and the physicochemical properties of the substrate and its enzymatic activities (urease and invertase). Overall, the study revealed the potency of strain T. guizhouense NJAU4742 as a sustainable solution to improve the growth and development and ornamental value of I. verticillata.
Collapse
Affiliation(s)
- Huixin Lu
- Department of Landscape Architecture, College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, No. 1 Weigang, Xuanwu District, Nanjing 210095, China
- Department of Plant Nutrition and Fertilizer, College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Peng Zhou
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Jiangning District, Nanjing 211153, China
| | - Fei Li
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Jiangning District, Nanjing 211153, China
| | - Yanjie Wang
- Department of Landscape Architecture, College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Jiaying Gu
- Department of Landscape Architecture, College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Ying Wang
- Department of Landscape Architecture, College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Shubin Sun
- Department of Plant Nutrition and Fertilizer, College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Min Zhang
- Jiangsu Academy of Forestry, 109 Danyang Road, Dongshanqiao, Jiangning District, Nanjing 211153, China
| | - Xiaowen Wang
- Department of Landscape Architecture, College of Horticulture, Nanjing Agricultural University, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| |
Collapse
|
6
|
Meng X, Liu X, Bao Y, Luo T, Wang J. Effect of citric acid on cell membrane structure and function of Issatchenkia terricola WJL-G4. J Appl Microbiol 2024; 135:lxae057. [PMID: 38449343 DOI: 10.1093/jambio/lxae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/17/2024] [Accepted: 03/05/2024] [Indexed: 03/08/2024]
Abstract
AIMS This study aimed to investigate the changes of cell membrane structure and function of Issatchenkia terricola under citric acid by performing physiological analysis. METHODS AND RESULTS The membrane integrity, surface hydrophobicity, structure, fluidity, apoptosis, and fatty acid methyl esters composition of I. terricola WJL-G4 cells were determined by propidium iodide staining, microbial adhesion to hydrocarbon test, transmission electron microscopy analysis, fluorescence anisotropy, flow cytometry, and gas chromatography-mass, respectively. The results showed that with the increasing of citric acid concentrations, the cell vitality, membrane integrity, and fluidity of I. terricola reduced; meanwhile, apoptosis rate, membrane permeable, hydrophobicity, and ergosterol contents augmented significantly. Compared to control, the activities of Na+, K+-ATPase, and Ca2+, Mg2+-ATPase increased by 3.73-fold and 6.70-fold, respectively, when citric acid concentration increased to 20 g l-1. The cells cracked and their cytoplasm effused when the citric acid concentration reached 80 g l-1. CONCLUSIONS I. terricola could successfully adjust its membrane structure and function below 60 g l-1 of citric acid. However, for citric acid concentrations above 80 g l-1, its structure and function were dramatically changed, which might result in reduced functionality.
Collapse
Affiliation(s)
- Xiangfeng Meng
- College of Life Science, Northeast Forestry University, No. 26, Hexing St., Harbin 150040, China
| | - Xinyi Liu
- College of Life Science, Northeast Forestry University, No. 26, Hexing St., Harbin 150040, China
| | - Yihong Bao
- College of Life Science, Northeast Forestry University, No. 26, Hexing St., Harbin 150040, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, No. 26, Hexing St., Harbin 150040, China
| | - Ting Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 999, Xuefu St., Nanchang 330047, China
| | - Jinling Wang
- College of Life Science, Northeast Forestry University, No. 26, Hexing St., Harbin 150040, China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, No. 26, Hexing St., Harbin 150040, China
| |
Collapse
|
7
|
Liu Y, Li T, Zhu H, Zhou Y, Shen Q, Liu D. Cysteine facilitates the lignocellulolytic response of Trichoderma guizhouense NJAU4742 by indirectly up-regulating membrane sugar transporters. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:159. [PMID: 37891614 PMCID: PMC10612256 DOI: 10.1186/s13068-023-02418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Filamentous fungi possess a rich CAZymes system, which is widely studied and applied in the bio-conversion of plant biomass to alcohol chemicals. Carbon source acquisition is the fundamental driver for CAZymes-producing sustainability and secondary metabolism, therefore, a deeper insight into the regulatory network of sugar transport in filamentous fungi has become urgent. RESULTS This study reports an important linkage of sulfur assimilation to lignocellulose response of filamentous fungus. Inorganic sulfur addition facilitated biodegradation of rice straw by Trichoderma guizhouense NJAU4742. Cysteine and glutathione were revealed as major intracellular metabolites responsive to sulfur addition by metabolomics, cysteine content was increased in this process and glutathione increased correspondingly. Two membrane sugar transporter genes, Tgmst1 and Tgmst2, were identified as the critical response genes significantly up-regulated when intracellular cysteine increased. Tgmst1 and Tgmst2 were both positively regulated by the glucose regulation-related protein (GRP), up-regulation of both Tgmst1 and Tggrp can cause a significant increase in intracellular glucose. The transcriptional regulatory function of GRP mainly relied on GSH-induced glutathionylation, and the transcription activating efficiency was positively related to the glutathionylation level, furthermore, DTT-induced deglutathionylation resulted in the down-regulation of downstream genes. CONCLUSIONS Inorganic sulfur addition induces a rise in intracellular Cys content, and the conversion of cysteine to glutathione caused the increase of glutathionylation level of GRP, which in turn up-regulated Tgmst1 and Tgmst2. Subsequently, the sugar transport efficiency of single cells was improved, which facilitated the maintenance of vigorous CAZymes metabolism and the straw-to-biomass conversion.
Collapse
Affiliation(s)
- Yang Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Tuo Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Han Zhu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yihao Zhou
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Dongyang Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing, People's Republic of China.
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Profile of Dr. Qirong Shen. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1725-1727. [PMID: 37452898 DOI: 10.1007/s11427-023-2355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
|